Comparison of Physical and System Factors Impacting Hydration Sensing in Leaves Using Terahertz Time-Domain and Quantum Cascade Laser Feedback Interferometry Imaging
Abstract
:1. Introduction
2. Leaf–THz Interaction
3. Experimental Setup
3.1. Broadband THz TDS Imaging
3.2. Fast THz LFI Imaging
4. Results
4.1. Broadband TDS Imaging Results
4.2. Fast LFI Imaging Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FOA. The State of Food and Agriculture (SOFA); Technical Report; FOA: Rome, Italy, 2022. [Google Scholar]
- Calicioglu, O.; Flammini, A.; Bracco, S.; Bellu, L.; Sims, R. The future challenges of food and agriculture: An integrated analysis of trends and solutions. Sustainability 2019, 11, 222. [Google Scholar] [CrossRef] [Green Version]
- Klerkx, L.; Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Glob. Food Secur. 2020, 24, 100347. [Google Scholar] [CrossRef]
- Rose, D.C.; Chilvers, J. Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Front. Sustain. Food Syst 2018, 2, 87. [Google Scholar] [CrossRef] [Green Version]
- Ariunbold, G.O.; Bandyopadhyay, A.; Parameswaran, K.; Sacher, J.; Sengupta, A. Advanced Spectroscopy in Precision Agriculture. Opt. Photonics News 2019, 30, 40–47. [Google Scholar] [CrossRef]
- Jones, H.G. Monitoring plant and soil water status: Established and novel methods revisited and their relevance to studies of drought tolerance. J. Exp. Bot. 2007, 58, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Ihuoma, S.O.; Madramootoo, C.A. Recent advances in crop water stress detection. Comput. Electron. Agric. 2017, 141, 267–275. [Google Scholar] [CrossRef]
- Yeong, T.J.; Pin, J.K.; Yao, L.K.; Hannan, M.A.; Hoon, S.T.G. Applications of Photonics in Agriculture Sector: A Review. Molecules 2019, 24, 2025. [Google Scholar]
- Hu, B.B.; Nuss, M.C. Imaging with terahertz waves. Opt. Lett. 1995, 20, 1716–1718. [Google Scholar] [CrossRef] [Green Version]
- Federici, J. Review of moisture and liquid detection and mapping using terahertz imaging. J. Infrared Millim Terahertz Waves 2012, 33, 97–126. [Google Scholar] [CrossRef]
- Song, Z.; Yan, S.; Zang, Z.; Fu, Y.; Wei, D.; Cui, H.L.; Lai, P. Temporal and Spatial Variability of Water Status in Plant Leaves by Terahertz Imaging. IEEE Trans. THz Sci. Technol. 2018, 8, 520–527. [Google Scholar] [CrossRef]
- Afsah-Hejri, L.; Akbari, E.; Toudeshki, A.; Homayouni, T.; Alizadeh, A.; Ehsani, R. Terahertz spectroscopy and imaging: A review on agricultural applications. Comp. Electron. Agric. 2020, 177, 105628. [Google Scholar] [CrossRef]
- Zang, Z.; Li, Z.; Lu, X.; Liang, J.; Wang, J.; Cui, H.L.; Yan, S. Terahertz spectroscopy for quantification of free water and bound water in leaf. Comput. Electron. Agric. 2021, 191, 106515. [Google Scholar] [CrossRef]
- Zang, Z.; Wang, J.; Cui, H.; Yan, S. Terahertz spectral imaging based quantitative determination of spatial distribution of plant leaf constituents. Plant Methods 2019, 15, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borovkova, M.; Khodzitsky, M.; Demchenko, P.; Cherkasova, O.; Popov, A.; Meglinski, I. Terahertz time-domain spectroscopy for non-invasive assessment of water content in biological samples. Biomed. Opt. Express 2018, 9, 2266–2276. [Google Scholar] [CrossRef] [Green Version]
- Zahid, A.; Abbas, H.; Ren, A.; Zoha, A.; Heidari, H.; Shah, S.; Imran, M.; Alomainy, A.; Abbasi, Q. Machine learning driven non-invasive approach of water content estimation in living plant leaves using terahertz waves. Plant Methods 2019, 15, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellison, W. Permittivity of pure water, at standard atmospheric pressure, over a frequency range of 0–25 THz and the temperature range of 0–100 °C. J. Phys. Chem. Ref. Data 2006, 36, 36101. [Google Scholar]
- Xu, J.; Plaxco, K.; Allen, S. Absorption spectra of liquid water and aqueous buffers between 0.3–3.2 THz. J. Chem. Phys. 2006, 112, 036101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, W. Leaf Anatomy in Grass Systematic. Int. J. Plant Sci 1958, 119, 170–178. [Google Scholar] [CrossRef]
- Wilmink, G.J.; Ibey, B.L.; Rivest, B.D.; Grundt, J.E.; Roach, W.P.; Tongue, T.D.; Schulkin, B.J.; Laman, N.; Peraltaa, X.G.; Roth, C.C.; et al. Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues. J. Biomed. Opt. 2011, 16, 47006. [Google Scholar] [CrossRef]
- Gente, R.; Rehn, A.; Probst, T.; Stubling, E.; Camus, E.; Covarrubias, A.; Balzer, J.; Koch, M. Outdoor Measurements of Leaf Water Content Using THz Quasi Time-Domain Spectroscopy. J. Infrared Milli. Terahertz Waves 2018, 39, 943–948. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Sengupta, A. A Review of the Concept, Applications and Implementation Issues of Terahertz Spectral Imaging Technique. IETE Tech. Rev 2021, 39, 471–489. [Google Scholar] [CrossRef]
- Lewis, R.A. A review of terahertz detectors. J. Phys. D Appl. Phys. 2019, 52, 433001. [Google Scholar] [CrossRef]
- Rakić, A.; Taimre, T.; Bertling, K.; Lim, Y.; Dean, P.; Valavanis, A.; Indjin, D. Sensing and imaging using laser feedback interferometry with quantum cascade lasers. Appl. Phys. Rev. 2019, 6, 021320. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Bandyopadhyay, A.; Bertling, K.; Lim, Y.L.; Gillespie, T.; Robinson, A.; Indjin, D.; Han, Y.; Li, L.; Linfield, E.H.; et al. Monitoring water dynamics in plants using laser feedback interferometry. In Proceedings of the CLEO-PR, Sydney, NSW, Australia, 2–6 August 2020. [Google Scholar]
- Kundu, U.; Bandyopadhyay, A.; Bertling, K.; Rakic, A.D.; Sengupta, A. Rapid genetic discrimination in plants through terahertz spectroscopy. In Proceedings of the Terahertz Photonics II, Strasbourg, France, 31 May 2022; Jarrahi, M., Preu, S., Turchinovich, D., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2022; Volume 12134, p. 121340F. [Google Scholar] [CrossRef]
- Volkov, A.; Artemov, V.; Volkov, A.; Sysoev, N. Possible mechanism of molecular motion in liquid water from dielectric spectroscopy data. J. Mol. Liq. 2017, 248, 564–568. [Google Scholar] [CrossRef]
- Yada, H.; Nagai, M.; Tanaka, K. Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy. Chem. Phys. Lett. 2007, 464, 166–170. [Google Scholar] [CrossRef]
- Afsah-Hejri, L.; Hajeb, P.; Ara, P.; Ehsani, R. A Comprehensive Review on Food Applications of Terahertz Spectroscopy and Imaging. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1563–1621. [Google Scholar] [CrossRef]
- Mittleman, D. Terahertz Imaging in Sensing with Terahertz Radiation; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Singh, A.; Perez-Lopez, A.; Simpson, J.; Castro-Camus, E. Three-dimensional water mapping of succulent Agave victoriaereginae leaves by terahertz imaging. Sci. Rep. 2020, 10, 1404. [Google Scholar] [CrossRef] [Green Version]
- Mangena, P. Water Stress: Morphological and Anatomical Changes in Soybean (Glycine max L.) Plants. In Plant, Abiotic Stress and Responses to Climate Change; Intechopen: London, UK, 2018; Chapter 2; pp. 9–31. [Google Scholar]
- Singh, K.; Bandyopadhyay, A.; Sengupta, A. Extraction of optical parameters of composite materials for real-world THz application. Proc. SPIE 2021, 11685, 11685. [Google Scholar]
- Keeley, J.; Bertling, K.; Rubino, P.L.; Lim, Y.L.; Taimre, T.; Qi, X.; Kundu, I.; Li, L.H.; Indjin, D.; Rakić, A.D.; et al. Detection sensitivity of laser feedback interferometry using a terahertz quantum cascade laser. Opt. Lett. 2019, 44, 3314–3317. [Google Scholar] [CrossRef]
- Bertling, K.; Qi, X.; Taimre, T.; Lim, Y.L.; Rakic, A.D. Feedback Regimes of LFI Sensors: Experimental Investigations. Sensor 2022, 22, 9001. [Google Scholar] [CrossRef]
- Rakić, A.D.; Taimre, T.; Bertling, K.; Lim, Y.L.; Dean, P.; Indjin, D.; Ikonić, Z.; Harrison, P.; Valavanis, A.; Khanna, S.P.; et al. Swept-frequency feedback interferometry using terahertz frequency QCLs: A method for imaging and materials analysis. Opt. Express 2013, 21, 22194–22205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.; Bertling, K.; Dean, P.; Keeley, J.; Burnett, A.D.; Lim, Y.L.; Khanna, S.P.; Valavanis, A.; Linfield, E.H.; Davies, A.G.; et al. Laser Feedback Interferometry as a Tool for Analysis of Granular Materials at Terahertz Frequencies: Towards Imaging and Identification of Plastic Explosives. Sensors 2016, 16, 352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taimre, T.; Bertling, K.; Lim, Y.L.; Dean, P.; Indjin, D.; Rakić, A.D. Methodology for Materials Analysis using Swept-Frequency Feedback Interferometry with Terahertz Frequency Quantum Cascade Lasers. Opt. Express 2014, 22, 18633–18647. [Google Scholar] [CrossRef] [PubMed]
- Bertling, K.; Han, S.; Wu, T.; Zhao, C.; Lim, Y.L.; Dean, P.; Khanna, S.P.; Indjin, D.; Linfield, E.H.; Davies, A.G.; et al. Determining ethanol content of liquid solutions using laser feedback interferometry with a terahertz quantum cascade laser. IEEE Sens. Lett. 2018, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Keeley, J.; Freeman, J.; Bertling, K.; Lim, Y.L.; Mohandas, R.A.; Taimre, T.; Li, L.H.; Indjin, D.; Rakić, A.D.; Linfield, E.H.; et al. Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry. Sci. Rep. 2017, 7, 7236. [Google Scholar] [CrossRef] [Green Version]
- Agnew, G.; Grier, A.; Taimre, T.; Bertling, K.; Lim, Y.L.; Ikonić, Z.; Dean, P.; Valavanis, A.; Indjin, D.; Rakić, A.D. Frequency Tuning Range Control in Pulsed Terahertz Quantum-Cascade Lasers: Applications in Interferometry. IEEE J. Quantum Electron. 2018, 54, 1–8. [Google Scholar] [CrossRef]
- Bertling, K.; Taimre, T.; Agnew, G.; Lim, Y.L.; Dean, P.; Indjin, D.; Höfling, S.; Weih, R.; Kamp, M.; von Edlinger, M.; et al. Simple electrical modulation scheme for laser feedback imaging. IEEE J. Sens. 2016, 16, 1937–1942. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.L.; Bertling, K.; Taimre, T.; Gillespie, T.; Glenn, C.; Robinson, A.; Indjin, D.; Han, Y.; Li, L.; Linfield, E.H.; et al. Coherent imaging using laser feedback interferometry with pulsed-mode terahertz quantum cascade lasers. Opt. Express 2019, 27, 10221–10233. [Google Scholar] [CrossRef]
- Ren, Y.; Wallis, R.; Jessop, D.S.; Degl’Innocenti, R.; Klimont, A.; Beere, H.E.; Ritchie, D.A. Fast terahertz imaging using a quantum cascade amplifier. Appl. Phys. Lett. 2015, 107, 011107. [Google Scholar] [CrossRef]
- Wienold, M.; Hagelschuer, T.; Rothbart, N.; Schrottke, L.; Biermann, K.; Grahn, H.; Hübers, H.W. Real-time terahertz imaging through self-mixing in a quantum-cascade laser. Appl. Phys. Lett. 2016, 109, 011102. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, M.; Bandyopadhyay, A.; Bertling, K.; Sengupta, A.; Rakic, A.D. Quantifying relative moisture content in dielectric models using CW-THz spectroscopy and supervised machine learning regression. Proc. SPIE 2021, 11827, 1182704. [Google Scholar]
- Kashyap, M.; Bandyopadhyay, A.; Bertling, K.; Sengupta, A.; Rakic, A.D. Study of moisture content in leaves through regression analysis of terahertz images. In Proceedings of the Optical Sensing and Detection VII, Strasbourg, France, 17 May 2022; Berghmans, F., Zergioti, I., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2022; Volume 12139, p. 121390J. [Google Scholar] [CrossRef]
- Khalatpour, A.; Paulsen, A.K.; Deimert, C.; Wasilewski, Z.R.; Hu, Q. High-power portable terahertz laser systems. Nat. Photonics 2021, 15, 16. [Google Scholar] [CrossRef]
- Qi, X.; Bertling, K.; Taimre, T.; Lim, Y.L.; Gillespie, T.; Dean, P.; Li, L.; Linfield, E.H.; Davies, A.G.; Indjin, D.; et al. Terahertz imaging with self-pulsations in quantum cascade lasers under optical feedback. APL Photonics 2021, 6, 091301. [Google Scholar] [CrossRef]
System Parameters | THz-TDS | Fast THz-QCL-LFI |
---|---|---|
Frequency (THz) | 0.2 to 4 | 2.71 |
with 600 fs pulse width | with 600 MHz freq. sweep | |
Pixel Acq. Time (ms/pixel) | 630 | 0.1 |
Image Size (pixels) | 500 × 500 | |
Image Size (mm) | 25 × 25 | |
Image Acq. Time (s) | 4500 | 25 |
Image Pixel Size (µm) | 200 | 50 |
Resolvable | 1.0 THz—1464 µm | |
Feature | 2.0 THz—732 µm | 2.71 THz—396 µm |
Resolution | 2.75 THz—536 µm | |
1.0 THz—69.5 dB | ||
Dynamic Range | 2.0 THz—60 dB | 2.71 THz—80 dB |
2.75 THz—49.5 dB | ||
Recovered Information | Amplitude and Phase | Amplitude |
Source Power (mW) | 0.03 (average power) | 10 (peak) |
of Water (cm) [18] | 120–740 | 500 |
Tx/Rx Operation | ||
Temperature (K) | 300 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, K.; Bandyopadhyay, A.; Bertling, K.; Lim, Y.L.; Gillespie, T.; Indjin, D.; Li, L.; Linfield, E.H.; Davies, A.G.; Dean, P.; et al. Comparison of Physical and System Factors Impacting Hydration Sensing in Leaves Using Terahertz Time-Domain and Quantum Cascade Laser Feedback Interferometry Imaging. Sensors 2023, 23, 2721. https://doi.org/10.3390/s23052721
Singh K, Bandyopadhyay A, Bertling K, Lim YL, Gillespie T, Indjin D, Li L, Linfield EH, Davies AG, Dean P, et al. Comparison of Physical and System Factors Impacting Hydration Sensing in Leaves Using Terahertz Time-Domain and Quantum Cascade Laser Feedback Interferometry Imaging. Sensors. 2023; 23(5):2721. https://doi.org/10.3390/s23052721
Chicago/Turabian StyleSingh, Khushboo, Aparajita Bandyopadhyay, Karl Bertling, Yah Leng Lim, Tim Gillespie, Dragan Indjin, Lianhe Li, Edmund H. Linfield, A. Giles Davies, Paul Dean, and et al. 2023. "Comparison of Physical and System Factors Impacting Hydration Sensing in Leaves Using Terahertz Time-Domain and Quantum Cascade Laser Feedback Interferometry Imaging" Sensors 23, no. 5: 2721. https://doi.org/10.3390/s23052721
APA StyleSingh, K., Bandyopadhyay, A., Bertling, K., Lim, Y. L., Gillespie, T., Indjin, D., Li, L., Linfield, E. H., Davies, A. G., Dean, P., Rakić, A. D., & Sengupta, A. (2023). Comparison of Physical and System Factors Impacting Hydration Sensing in Leaves Using Terahertz Time-Domain and Quantum Cascade Laser Feedback Interferometry Imaging. Sensors, 23(5), 2721. https://doi.org/10.3390/s23052721