Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,283)

Search Parameters:
Keywords = quality assurance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4690 KiB  
Article
Research and Development of Test Automation Maturity Model Building and Assessment Methods for E2E Testing
by Daiju Kato, Ayane Mogi, Hiroshi Ishikawa and Yasufumi Takama
Software 2025, 4(3), 19; https://doi.org/10.3390/software4030019 - 5 Aug 2025
Abstract
Background: While several test-automation maturity models (e.g., CMMI, TMMi, TAIM) exist, none explicitly integrate ISO 9001-based quality management systems (QMS), leaving a gap for organizations that must align E2E test automation with formal quality assurance. Objective: This study proposes a test-automation maturity model [...] Read more.
Background: While several test-automation maturity models (e.g., CMMI, TMMi, TAIM) exist, none explicitly integrate ISO 9001-based quality management systems (QMS), leaving a gap for organizations that must align E2E test automation with formal quality assurance. Objective: This study proposes a test-automation maturity model (TAMM) that bridges E2E automation capability with ISO 9001/ISO 9004 self-assessment principles, and evaluates its reliability and practical impact in industry. Methods: TAMM comprises eight maturity dimensions, 39 requirements, and 429 checklist items. Three independent assessors applied the checklist to three software teams; inter-rater reliability was ensured via consensus review (Cohen’s κ = 0.75). Short-term remediation actions based on the checklist were implemented over six months and re-assessed. Synergy with the organization’s ISO 9001 QMS was analyzed using ISO 9004 self-check scores. Results: Within 6 months of remediation, mean TAMM score rose from 2.75 → 2.85. Inter-rater reliability is filled with Cohen’s κ = 0.75. Conclusions: The proposed TAMM delivers measurable, short-term maturity gains and complements ISO 9001-based QMS without introducing conflicting processes. Practitioners can use the checklist to identify actionable gaps, prioritize remediation, and quantify progress, while researchers may extend TAMM to other domains or automate scoring via repository mining. Full article
(This article belongs to the Special Issue Software Reliability, Security and Quality Assurance)
Show Figures

Figure 1

28 pages, 3364 KiB  
Review
Principles, Applications, and Future Evolution of Agricultural Nondestructive Testing Based on Microwaves
by Ran Tao, Leijun Xu, Xue Bai and Jianfeng Chen
Sensors 2025, 25(15), 4783; https://doi.org/10.3390/s25154783 - 3 Aug 2025
Viewed by 130
Abstract
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness [...] Read more.
Agricultural nondestructive testing technology is pivotal in safeguarding food quality assurance, safety monitoring, and supply chain transparency. While conventional optical methods such as near-infrared spectroscopy and hyperspectral imaging demonstrate proficiency in surface composition analysis, their constrained penetration depth and environmental sensitivity limit effectiveness in dynamic agricultural inspections. This review highlights the transformative potential of microwave technologies, systematically examining their operational principles, current implementations, and developmental trajectories for agricultural quality control. Microwave technology leverages dielectric response mechanisms to overcome traditional limitations, such as low-frequency penetration for grain silo moisture testing and high-frequency multi-parameter analysis, enabling simultaneous detection of moisture gradients, density variations, and foreign contaminants. Established applications span moisture quantification in cereal grains, oilseed crops, and plant tissues, while emerging implementations address storage condition monitoring, mycotoxin detection, and adulteration screening. The high-frequency branch of the microwave–millimeter wave systems enhances analytical precision through molecular resonance effects and sub-millimeter spatial resolution, achieving trace-level contaminant identification. Current challenges focus on three areas: excessive absorption of low-frequency microwaves by high-moisture agricultural products, significant path loss of microwave high-frequency signals in complex environments, and the lack of a standardized dielectric database. In the future, it is essential to develop low-cost, highly sensitive, and portable systems based on solid-state microelectronics and metamaterials, and to utilize IoT and 6G communications to enable dynamic monitoring. This review not only consolidates the state-of-the-art but also identifies future innovation pathways, providing a roadmap for scalable deployment of next-generation agricultural NDT systems. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

38 pages, 1194 KiB  
Review
Transforming Data Annotation with AI Agents: A Review of Architectures, Reasoning, Applications, and Impact
by Md Monjurul Karim, Sangeen Khan, Dong Hoang Van, Xinyue Liu, Chunhui Wang and Qiang Qu
Future Internet 2025, 17(8), 353; https://doi.org/10.3390/fi17080353 - 2 Aug 2025
Viewed by 413
Abstract
Data annotation serves as a critical foundation for artificial intelligence (AI) and machine learning (ML). Recently, AI agents powered by large language models (LLMs) have emerged as effective solutions to longstanding challenges in data annotation, such as scalability, consistency, cost, and limitations in [...] Read more.
Data annotation serves as a critical foundation for artificial intelligence (AI) and machine learning (ML). Recently, AI agents powered by large language models (LLMs) have emerged as effective solutions to longstanding challenges in data annotation, such as scalability, consistency, cost, and limitations in domain expertise. These agents facilitate intelligent automation and adaptive decision-making, thereby enhancing the efficiency and reliability of annotation workflows across various fields. Despite the growing interest in this area, a systematic understanding of the role and capabilities of AI agents in annotation is still underexplored. This paper seeks to fill that gap by providing a comprehensive review of how LLM-driven agents support advanced reasoning strategies, adaptive learning, and collaborative annotation efforts. We analyze agent architectures, integration patterns within workflows, and evaluation methods, along with real-world applications in sectors such as healthcare, finance, technology, and media. Furthermore, we evaluate current tools and platforms that support agent-based annotation, addressing key challenges such as quality assurance, bias mitigation, transparency, and scalability. Lastly, we outline future research directions, highlighting the importance of federated learning, cross-modal reasoning, and responsible system design to advance the development of next-generation annotation ecosystems. Full article
Show Figures

Figure 1

48 pages, 1556 KiB  
Review
Extemporaneous Compounding, Pharmacy Preparations and Related Product Care in the Netherlands
by Herman J. Woerdenbag, Boy van Basten, Christien Oussoren, Oscar S. N. M. Smeets, Astrid Annaciri-Donkers, Mirjam Crul, J. Marina Maurer, Kirsten J. M. Schimmel, E. Marleen Kemper, Marjolijn N. Lub-de Hooge, Nanno Schreuder, Melissa Eikmann, Arwin S. Ramcharan, Richard B. Lantink, Julian Quodbach, Hendrikus H. Boersma, Oscar Kelder, Karin H. M. Larmené-Beld, Paul P. H. Le Brun, Robbert Jan Kok, Reinout C. A. Schellekens, Oscar Breukels, Henderik W. Frijlink and Bahez Garebadd Show full author list remove Hide full author list
Pharmaceutics 2025, 17(8), 1005; https://doi.org/10.3390/pharmaceutics17081005 - 31 Jul 2025
Viewed by 303
Abstract
Background/Objectives: In many parts of the world, pharmacists hold the primary responsibility for providing safe and effective pharmacotherapy. A key aspect is the availability of appropriate medicines for each individual patient. When industrially manufactured medicines are unsuitable or unavailable, pharmacists can prepare [...] Read more.
Background/Objectives: In many parts of the world, pharmacists hold the primary responsibility for providing safe and effective pharmacotherapy. A key aspect is the availability of appropriate medicines for each individual patient. When industrially manufactured medicines are unsuitable or unavailable, pharmacists can prepare tailor-made medicines. While this principle applies globally, practices vary between countries. In the Netherlands, the preparation of medicines in pharmacies is well-established and integrated into routine healthcare. This narrative review explores the role and significance of extemporaneous compounding, pharmacy preparations and related product care in the Netherlands. Methods: Pharmacists involved in pharmacy preparations across various professional sectors, including community and hospital pharmacies, central compounding facilities, academia, and the professional pharmacists’ organisation, provided detailed and expert insights based on the literature and policy documents while also sharing their critical perspectives. Results: We present arguments supporting the need for pharmacy preparations and examine their position and role in community and hospital pharmacies in the Netherlands. Additional topics are discussed, including the regulatory and legal framework, outsourcing, quality assurance, standardisation, education, and international context. Specific pharmacy preparation topics, often with a research component and a strong focus on product care, are highlighted, including paediatric dosage forms, swallowing difficulties and feeding tubes, hospital-at-home care, reconstitution of oncolytic drugs and biologicals, total parenteral nutrition (TPN), advanced therapy medicinal products (ATMPs), radiopharmaceuticals and optical tracers, clinical trial medication, robotisation in reconstitution, and patient-centric solid oral dosage forms. Conclusions: The widespread acceptance of pharmacy preparations in the Netherlands is the result of a unique combination of strict adherence to tailored regulations that ensure quality and safety, and patient-oriented flexibility in design, formulation, and production. This approach is further reinforced by the standardisation of a broad range of formulations and procedures across primary, secondary and tertiary care, as well as by continuous research-driven innovation to develop new medicines, formulations, and production methods. Full article
Show Figures

Graphical abstract

8 pages, 193 KiB  
Editorial
Chromatography and Mass Spectrometry: Evolving Techniques for Food Analysis
by Andreia Bento da Silva and Noélia Duarte
Foods 2025, 14(15), 2694; https://doi.org/10.3390/foods14152694 - 30 Jul 2025
Viewed by 264
Abstract
The assurance of food safety and quality is considered a worldwide concern due to its implications for public health [...] Full article
(This article belongs to the Section Food Analytical Methods)
24 pages, 1806 KiB  
Article
Optimization of Cleaning and Hygiene Processes in Healthcare Using Digital Technologies and Ensuring Quality Assurance with Blockchain
by Semra Tebrizcik, Süleyman Ersöz, Elvan Duman, Adnan Aktepe and Ahmet Kürşad Türker
Appl. Sci. 2025, 15(15), 8460; https://doi.org/10.3390/app15158460 - 30 Jul 2025
Viewed by 175
Abstract
Many hospitals still lack digital traceability in hygiene and cleaning management, leading to operational inefficiencies and inconsistent quality control. This study aims to establish cleaning and hygiene processes in healthcare services that are planned in accordance with standards, as well as to enhance [...] Read more.
Many hospitals still lack digital traceability in hygiene and cleaning management, leading to operational inefficiencies and inconsistent quality control. This study aims to establish cleaning and hygiene processes in healthcare services that are planned in accordance with standards, as well as to enhance the traceability and sustainability of these processes through digitalization. This study proposes a Hyperledger Fabric-based blockchain architecture to establish a reliable and transparent quality assurance system in process management. The proposed Quality Assurance Model utilizes digital technologies and IoT-based RFID devices to ensure the transparent and reliable monitoring of cleaning processes. Operational data related to cleaning processes are automatically recorded and secured using a decentralized blockchain infrastructure. The permissioned nature of Hyperledger Fabric provides a more secure solution compared to traditional data management systems in the healthcare sector while preserving data privacy. Additionally, the execute–order–validate mechanism supports effective data sharing among stakeholders, and consensus algorithms along with chaincode rules enhance the reliability of processes. A working prototype was implemented and validated using Hyperledger Caliper under resource-constrained cloud environments, confirming the system’s feasibility through over 100 TPS throughput and zero transaction failures. Through the proposed system, cleaning/hygiene processes in patient rooms are conducted securely, contributing to the improvement of quality standards in healthcare services. Full article
Show Figures

Figure 1

24 pages, 1686 KiB  
Review
Data-Driven Predictive Modeling for Investigating the Impact of Gear Manufacturing Parameters on Noise Levels in Electric Vehicle Drivetrains
by Krisztián Horváth
World Electr. Veh. J. 2025, 16(8), 426; https://doi.org/10.3390/wevj16080426 - 30 Jul 2025
Viewed by 265
Abstract
Reducing gear noise in electric vehicle (EV) drivetrains is crucial due to the absence of internal combustion engine noise, making even minor acoustic disturbances noticeable. Manufacturing parameters significantly influence gear-generated noise, yet traditional analytical methods often fail to predict these complex relationships accurately. [...] Read more.
Reducing gear noise in electric vehicle (EV) drivetrains is crucial due to the absence of internal combustion engine noise, making even minor acoustic disturbances noticeable. Manufacturing parameters significantly influence gear-generated noise, yet traditional analytical methods often fail to predict these complex relationships accurately. This research addresses this gap by introducing a data-driven approach using machine learning (ML) to predict gear noise levels from manufacturing and sensor-derived data. The presented methodology encompasses systematic data collection from various production stages—including soft and hard machining, heat treatment, honing, rolling tests, and end-of-line (EOL) acoustic measurements. Predictive models employing Random Forest, Gradient Boosting (XGBoost), and Neural Network algorithms were developed and compared to traditional statistical approaches. The analysis identified critical manufacturing parameters, such as surface waviness, profile errors, and tooth geometry deviations, significantly influencing noise generation. Advanced ML models, specifically Random Forest, XGBoost, and deep neural networks, demonstrated superior prediction accuracy, providing early-stage identification of gear units likely to exceed acceptable noise thresholds. Integrating these data-driven models into manufacturing processes enables early detection of potential noise issues, reduces quality assurance costs, and supports sustainable manufacturing by minimizing prototype production and resource consumption. This research enhances the understanding of gear noise formation and offers practical solutions for real-time quality assurance. Full article
Show Figures

Graphical abstract

14 pages, 5364 KiB  
Article
Study on the Microbial Inactivation and Quality Assurance of Ultrasonic-Assisted Slightly Acidic Electrolyzed Water for Mirror Carp (Cyprinus carpio L.) Fillets During Refrigerated Storage
by Qiang Zhong, Xiufang Xia and Fangfei Li
Foods 2025, 14(15), 2652; https://doi.org/10.3390/foods14152652 - 29 Jul 2025
Viewed by 229
Abstract
The advancement of non-thermal disinfection technologies represents a critical pathway for ensuring food safety, meeting environmental sustainability requirements, and meeting consumer preferences for clean-label products. This study systematically evaluated the combined preservation effect of ultrasonic-assisted slightly acidic electrolyzed water (US+SAEW) on mirror carp [...] Read more.
The advancement of non-thermal disinfection technologies represents a critical pathway for ensuring food safety, meeting environmental sustainability requirements, and meeting consumer preferences for clean-label products. This study systematically evaluated the combined preservation effect of ultrasonic-assisted slightly acidic electrolyzed water (US+SAEW) on mirror carp fillets during refrigeration. Results demonstrated that US+SAEW exhibited superior antimicrobial efficacy compared to individual US or SAEW, achieving reductions of 0.73, 0.74, and 0.79 log CFU/g in total viable counts (TVC), Aeromonas bacteria, and lactic acid bacteria counts compared to the control, respectively. Furthermore, the combined intervention significantly suppressed microbial proliferation throughout the refrigeration period while simultaneously delaying protein and lipid degradation/oxidation induced by spoilage bacteria, thereby inhibiting the formation of alkaline nitrogenous compounds. Consequently, lower levels of pH, total volatile basic nitrogen (TVB-N), protein carbonyl, and thiobarbituric acid reactive substances (TBARS) were observed in US+SAEW compared to the other treatments. Multimodal characterization through low-field nuclear magnetic resonance (LF-NMR), texture, and color analysis confirmed that US+SAEW effectively preserved quality characteristics, extending the shelf life of mirror carp fillets by four days. This study provides a novel non-thermal preservation strategy that combines microbial safety maintenance with quality retention, offering particular advantages for thermolabile food. Full article
(This article belongs to the Special Issue Innovative Muscle Foods Preservation and Packaging Technologies)
Show Figures

Figure 1

13 pages, 1058 KiB  
Article
A Machine Learning-Based Guide for Repeated Laboratory Testing in Pediatric Emergency Departments
by Adi Shuchami, Teddy Lazebnik, Shai Ashkenazi, Avner Herman Cohen, Yael Reichenberg and Vered Shkalim Zemer
Diagnostics 2025, 15(15), 1885; https://doi.org/10.3390/diagnostics15151885 - 28 Jul 2025
Viewed by 324
Abstract
Background/Objectives: Laboratory tests conducted in community settings are occasionally repeated within hours of presentation to pediatric emergency departments (PEDs). Reducing unnecessary repetitions can ease child discomfort and alleviate the healthcare burden without compromising the diagnostic process or quality of care. The aim [...] Read more.
Background/Objectives: Laboratory tests conducted in community settings are occasionally repeated within hours of presentation to pediatric emergency departments (PEDs). Reducing unnecessary repetitions can ease child discomfort and alleviate the healthcare burden without compromising the diagnostic process or quality of care. The aim of this study was to develop a decision tree (DT) model to guide physicians in minimizing unnecessary repeat blood tests in PEDs. The minimal decision tree (MDT) algorithm was selected for its interpretability and capacity to generate optimally pruned classification trees. Methods: Children aged 3 months to 18 years with community-based complete blood count (CBC), electrolyte (ELE), and C-reactive protein (CRP) measurements obtained between 2016 and 2023 were included. Repeat tests performed in the pediatric emergency department within 12 h were evaluated by comparing paired measurements, with tests considered justified when values transitioned from normal to abnormal ranges or changed by ≥20%. Additionally, sensitivity analyses were conducted for absolute change thresholds of 10% and 30% and for repeat intervals of 6, 18, and 24 h. Results: Among 7813 children visits in this study, 6044, 1941, and 2771 underwent repeated CBC, ELE, and CRP tests, respectively. The mean ages of patients undergoing CRP, ELE, and CBC testing were 6.33 ± 5.38, 7.91 ± 5.71, and 5.08 ± 5.28 years, respectively. The majority were of middle socio-economic class, with 66.61–71.24% living in urban areas. Pain was the predominant presented complaint (83.69–85.99%), and in most cases (83.69–85.99%), the examination was conducted by a pediatrician. The DT model was developed and evaluated on training and validation cohorts, and it demonstrated high accuracy in predicting the need for repeat CBC and ELE tests but not CRP. Performance of the DT model significantly exceeded that of the logistic regression model. Conclusions: The data-driven guide derived from the DT model provides clinicians with a practical, interpretable tool to minimize unnecessary repeat laboratory testing, thereby enhancing patient care and optimizing healthcare resource utilization. Full article
(This article belongs to the Special Issue Artificial Intelligence for Health and Medicine)
Show Figures

Figure 1

15 pages, 2865 KiB  
Article
Mitigation of Alkali–Silica Reactivity of Greywacke Aggregate in Concrete for Sustainable Pavements
by Kinga Dziedzic, Aneta Brachaczek, Dominik Nowicki and Michał A. Glinicki
Sustainability 2025, 17(15), 6825; https://doi.org/10.3390/su17156825 - 27 Jul 2025
Viewed by 371
Abstract
Quality requirements for mineral aggregate for concrete used to construct pavement for busy highways are high because of the fatigue traffic loads and environmental exposure. The use of local aggregate for infrastructure projects could result in important sustainability improvements, provided that the concrete’s [...] Read more.
Quality requirements for mineral aggregate for concrete used to construct pavement for busy highways are high because of the fatigue traffic loads and environmental exposure. The use of local aggregate for infrastructure projects could result in important sustainability improvements, provided that the concrete’s durability is assured. The objective of this study was to identify the potential alkaline reactivity of local greywacke aggregate and select appropriate mitigation measures against the alkali–silica reaction. Experimental tests on concrete specimens were performed using the miniature concrete prism test at 60 °C. Mixtures of coarse greywacke aggregate up to 12.5 mm with natural fine aggregate of different potential reactivity were evaluated in respect to the expansion, compressive strength, and elastic modulus of the concrete. Two preventive measures were studied—the use of metakaolin and slag-blended cement. A moderate reactivity potential of the greywacke aggregate was found, and the influence of reactive quartz sand on the expansion and instability of the mechanical properties of concrete was evaluated. Both crystalline and amorphous alkali–silica reaction products were detected in the cracks of the greywacke aggregate. Efficient expansion mitigation was obtained for the replacement of 15% of Portland cement by metakaolin or the use of CEM III/A cement with the slag content of 52%, even if greywacke aggregate was blended with moderately reactive quartz sand. It resulted in a relative reduction in expansion by 85–96%. The elastic modulus deterioration was less than 10%, confirming an increased stability of the elastic properties of concrete. Full article
(This article belongs to the Special Issue Sustainability of Pavement Engineering and Road Materials)
Show Figures

Figure 1

32 pages, 629 KiB  
Article
Beyond the Guestroom: Financial and Promotional Dimensions of Eco-Friendly Rural Hospitality in Agricultural Landscapes
by Aleksandra Vujko, Dušan Mandić, Aleksa Panić, Maja Obradović, Ana Obradović, Ilija Savić and Ivana Brdar
Agriculture 2025, 15(15), 1610; https://doi.org/10.3390/agriculture15151610 - 25 Jul 2025
Viewed by 222
Abstract
This study explores sustainable rural tourism entrepreneurship within the Urlaub am Bauernhof (UaB) cooperative network in Austria, offering an integrated model that unites financial, social, environmental, institutional, and marketing dimensions. Employing exploratory factor analysis (EFA) and Structural Equation Modeling (SEM) on data from [...] Read more.
This study explores sustainable rural tourism entrepreneurship within the Urlaub am Bauernhof (UaB) cooperative network in Austria, offering an integrated model that unites financial, social, environmental, institutional, and marketing dimensions. Employing exploratory factor analysis (EFA) and Structural Equation Modeling (SEM) on data from 393 farm-based accommodation stakeholders, this research identifies sustainable entrepreneurship as comprising six interconnected dimensions: Economic Resilience and Diversification, Sociocultural Integration, Environmental and Regional Commitment, Market Visibility and Strategic Communication, Quality Assurance and Institutional Support, and Perceived Value and Branding. This multidimensional and hierarchically structured framework reflects the complex yet coherent nature of sustainability-driven entrepreneurship in cooperative tourism networks. The findings confirm the multidimensional nature of sustainable entrepreneurship and support the hypothesized structural relationships. The UaB network is presented as a transferable model that demonstrates how cooperative frameworks can enhance sustainability, regional identity, and rural revitalization, offering valuable insights and practical guidance for rural regions in the Western Balkans, where economic challenges, depopulation, and underdeveloped tourism infrastructure prevail. By illustrating a successful cooperative approach rooted in sustainability and regional identity, this study contributes to policy-making aimed at fostering resilient, culturally rich, and environmentally responsible rural tourism entrepreneurship in transitioning contexts. Full article
Show Figures

Figure 1

16 pages, 1808 KiB  
Article
Chemometric Classification of Feta Cheese Authenticity via ATR-FTIR Spectroscopy
by Lamprini Dimitriou, Michalis Koureas, Christos S. Pappas, Athanasios Manouras, Dimitrios Kantas and Eleni Malissiova
Appl. Sci. 2025, 15(15), 8272; https://doi.org/10.3390/app15158272 - 25 Jul 2025
Viewed by 258
Abstract
The authenticity of Protected Designation of Origin (PDO) Feta cheese is critical for consumer confidence and market integrity, particularly in light of widespread concerns over economically motivated adulteration. This study evaluated the potential of Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) spectroscopy combined with [...] Read more.
The authenticity of Protected Designation of Origin (PDO) Feta cheese is critical for consumer confidence and market integrity, particularly in light of widespread concerns over economically motivated adulteration. This study evaluated the potential of Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) spectroscopy combined with chemometric modeling to differentiate authentic Feta from non-Feta white brined cheeses. A total of 90 cheese samples, consisting of verified Feta and cow milk cheeses, were analyzed in both freeze-dried and fresh forms. Spectral data from raw, first derivative, and second derivative spectra were analyzed using principal component analysis–linear discriminant analysis (PCA-LDA) and Partial Least Squares Discriminant Analysis (PLS-DA) to distinguish authentic Feta from non-Feta cheese samples. Derivative processing significantly improved classification accuracy. All classification models performed relatively well, but the PLS-DA model applied to second derivative spectra of freeze-dried samples achieved the best results, with 95.8% accuracy, 100% sensitivity, and 90.9% specificity. The most consistently highlighted discriminatory regions across models included ~2920 cm−1 (C–H stretching in lipids), ~1650 cm−1 (Amide I band, corresponding to C=O stretching in proteins), and the 1300–900 cm−1 range, which is associated with carbohydrate-related bands. These findings support ATR-FTIR spectroscopy as a rapid, non-destructive tool for routine Feta authentication. The approach offers promise for enhancing traceability and quality assurance in high-value dairy products. Full article
Show Figures

Figure 1

24 pages, 331 KiB  
Perspective
Strategy for the Development of Cartography in Bulgaria with a 10-Year Planning Horizon (2025–2035) in the Context of Industry 4.0 and 5.0
by Temenoujka Bandrova, Davis Dinkov and Stanislav Vasilev
ISPRS Int. J. Geo-Inf. 2025, 14(8), 289; https://doi.org/10.3390/ijgi14080289 - 25 Jul 2025
Viewed by 730
Abstract
This strategic document outlines Bulgaria’s roadmap for modernizing its cartographic sector from 2025 to 2035, addressing the outdated geospatial infrastructure, lack of standardized digital practices, lack of coordinated digital infrastructure, outdated standards, and fragmented data management systems. The strategy was developed in accordance [...] Read more.
This strategic document outlines Bulgaria’s roadmap for modernizing its cartographic sector from 2025 to 2035, addressing the outdated geospatial infrastructure, lack of standardized digital practices, lack of coordinated digital infrastructure, outdated standards, and fragmented data management systems. The strategy was developed in accordance with the national methodology for strategic planning and through preliminary consultations with key stakeholders, including research institutions, business organizations, and public institutions. It aims to build a human-centered, data-driven geospatial framework aligned with global standards such as ISO 19100 and the EU INSPIRE Directive. Core components include: (1) modernization of the national geodetic system, (2) adoption of remote sensing and AI technologies, (3) development of interactive, web-based geospatial platforms, and (4) implementation of quality assurance and certification standards. A SWOT analysis highlights key strengths—such as existing institutional expertise—and critical challenges, including outdated legislation and insufficient coordination. The strategy emphasizes the need for innovation, regulatory reform, inter-institutional collaboration, and sustained investment. It ultimately positions Bulgarian cartography as a strategic contributor to national sustainable development and digital transformation. Full article
19 pages, 2311 KiB  
Article
Stochastic Optimization of Quality Assurance Systems in Manufacturing: Integrating Robust and Probabilistic Models for Enhanced Process Performance and Product Reliability
by Kehinde Afolabi, Busola Akintayo, Olubayo Babatunde, Uthman Abiola Kareem, John Ogbemhe, Desmond Ighravwe and Olanrewaju Oludolapo
J. Manuf. Mater. Process. 2025, 9(8), 250; https://doi.org/10.3390/jmmp9080250 - 23 Jul 2025
Viewed by 379
Abstract
This research integrates stochastic optimization techniques with robust modeling and probabilistic modeling approaches to enhance photovoltaic cell manufacturing processes and product reliability. The study employed an adapted genetic algorithm to tackle uncertainties in the manufacturing process, resulting in improved operational efficiency. It consistently [...] Read more.
This research integrates stochastic optimization techniques with robust modeling and probabilistic modeling approaches to enhance photovoltaic cell manufacturing processes and product reliability. The study employed an adapted genetic algorithm to tackle uncertainties in the manufacturing process, resulting in improved operational efficiency. It consistently achieved optimal fitness, with values remaining at 1.0 over 100 generations. The model displayed a dynamic convergence rate, demonstrating its ability to adjust performance in response to process fluctuations. The system preserved resource efficiency by utilizing approximately 2600 units per generation, while minimizing machine downtime to 0.03%. Product reliability reached an average level of 0.98, with a maximum value of 1.02, indicating enhanced consistency. The manufacturing process achieved better optimization through a significant reduction in defect rates, which fell to 0.04. The objective function value fluctuated between 0.86 and 0.96, illustrating how the model effectively managed conflicting variables. Sensitivity analysis revealed that changes in sigma material and lambda failure had a minimal effect on average reliability, which stayed above 0.99, while average defect rates remained below 0.05. This research exemplifies how stochastic, robust, and probabilistic optimization methods can collaborate to enhance manufacturing system quality assurance and product reliability under uncertain conditions. Full article
Show Figures

Figure 1

15 pages, 1006 KiB  
Article
Framework for a Modular Emergency Departments Registry: A Case Study of the Tasmanian Emergency Care Outcomes Registry (TECOR)
by Viet Tran, Lauren Thurlow, Simone Page and Giles Barrington
Hospitals 2025, 2(3), 18; https://doi.org/10.3390/hospitals2030018 - 23 Jul 2025
Viewed by 247
Abstract
Background: The emergency department (ED) often represents the entry point to care for patients that require urgent medical attention or have no alternative for medical treatment. This has implications on scope of practice and how quality of care is measured. A diverse [...] Read more.
Background: The emergency department (ED) often represents the entry point to care for patients that require urgent medical attention or have no alternative for medical treatment. This has implications on scope of practice and how quality of care is measured. A diverse array of methodologies has been developed to evaluate the quality of clinical care and broadly includes quality improvement (QI), quality assurance (QA), observational research (OR) and clinical quality registries (CQRs). Considering the overlap between QI, QA, OR and CQRs, we conceptualized a modular framework for TECOR to effectively and efficiently streamline clinical quality evaluations. Streamlining is both appropriate and justified as it reduces redundancy, enhances clarity and optimizes resource utilization, thereby allowing clinicians to focus on delivering high-quality patient care without being overwhelmed by excessive data and procedural complexities. The objective of this study is to describe the process for designing a modular framework for ED CQRs using TECOR as a case study. Methods: We performed a scoping audit of all quality projects performed in our ED over a 1-year period (1 January 2021 to 31 December 2021) as well as data mapping and categorical formulation of key themes from the TECOR dataset with clinical data sources. Both these processes then informed the design of TECOR. Results: For the audit of quality projects, we identified 29 projects. The quality evaluation methodologies for these projects included 12 QI projects, 5 CQRs and 12 OR projects. Data mapping identified that clinical information was fragmented across 11 distinct data sources. Through thematic analysis during data mapping, we identified three extraction techniques: self-extractable, manual entry and on request. Conclusions: The modular framework for TECOR aims to enable an efficient streamlined approach that caters to all aspects of clinical quality evaluation to enable higher throughput of clinician-led quality evaluations and improvements. TECOR is also an essential component in the development of a learning health system to drive evidence-based practice and the subject of future research. Full article
Show Figures

Figure 1

Back to TopTop