Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (144)

Search Parameters:
Keywords = quadrature amplitude modulation (qam)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 6761 KiB  
Article
Improved Modulation Classification Based on Hough Transforms of Constellation Diagrams Using CNN for the UWA-OFDM Communication System
by Mohamed A. Abdel-Moneim, Mohamed K. M. Gerwash, El-Sayed M. El-Rabaie, Fathi E. Abd El-Samie, Khalil F. Ramadan and Nariman Abdel-Salam
Eng 2025, 6(6), 127; https://doi.org/10.3390/eng6060127 - 14 Jun 2025
Viewed by 430
Abstract
The Automatic Modulation Classification (AMC) for underwater acoustic signals enables more efficient utilization of the acoustic spectrum. Deep learning techniques significantly improve classification performance. Hence, they can be applied in AMC work to improve the underwater acoustic (UWA) communication. This paper is based [...] Read more.
The Automatic Modulation Classification (AMC) for underwater acoustic signals enables more efficient utilization of the acoustic spectrum. Deep learning techniques significantly improve classification performance. Hence, they can be applied in AMC work to improve the underwater acoustic (UWA) communication. This paper is based on the adoption of Hough Transform (HT) and Edge Detection (ED) to enhance modulation classification, especially for a small dataset. Deep neural models based on basic Convolutional Neural Network (CNN), Visual Geometry Group-16 (VGG-16), and VGG-19 trained on constellation diagrams transformed using HT are adopted. The objective is to extract features from constellation diagrams projected onto the Hough space. In addition, we use Orthogonal Frequency Division Multiplexing (OFDM) technology, which is frequently utilized in UWA systems because of its ability to avoid multipath fading and enhance spectrum utilization. We use an OFDM system with the Discrete Cosine Transform (DCT), Cyclic Prefix (CP), and equalization over the UWA communication channel under the effect of estimation errors. Seven modulation types are considered for classification, including Phase Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM) (2/8/16-PSK and 4/8/16/32-QAM), with a Signal-to-Noise Ratio (SNR) ranging from −5 to 25 dB. Simulation results indicate that our CNN model with HT and ED at perfect channel estimation, achieves a 94% classification accuracy at 10 dB SNR, outperforming benchmark models by approximately 40%. Full article
Show Figures

Figure 1

14 pages, 5764 KiB  
Article
First Real-Time 267.8 Tb/S 2 × 70.76 Km Integrated Communication and Sensing Field Trial over Deployed Seven-Core Fiber Cable Using 130 Gbaud PCS-64QAM 1.2 Tb/S OTN Transponders
by Jian Cui, Leimin Zhang, Yu Deng, Zhuo Liu, Chao Wu, Bin Hao, Ting Zhang, Yuxiao Wang, Bin Wu, Chengxing Zhang, Yong Chen, Lei Shen, Jie Luo, Yan Sun, Qi Wan, Cheng Chang, Bing Yan and Ninglun Gu
Photonics 2025, 12(6), 577; https://doi.org/10.3390/photonics12060577 - 6 Jun 2025
Viewed by 413
Abstract
Ultra-high-speed integrated communication and sensing (ICS) transmission techniques are highly desired for next-generation highly reliable optical transport networks (OTNs). The inherent multiple-channel advantage of uncoupled multi-core fibers (MCFs) empowers the evolution of ICS techniques. In this paper, we demonstrate an ultra-high-speed ICS OTN [...] Read more.
Ultra-high-speed integrated communication and sensing (ICS) transmission techniques are highly desired for next-generation highly reliable optical transport networks (OTNs). The inherent multiple-channel advantage of uncoupled multi-core fibers (MCFs) empowers the evolution of ICS techniques. In this paper, we demonstrate an ultra-high-speed ICS OTN system utilizing 130 Gbaud probability constellation shaping 64-ary quadrature amplitude modulation (PCS-64QAM) 1.2 Tb/s OTN transponders and polarization-based sensing technique over a field-deployed seven-core MCF cable for the first time. A real-time 267.8 Tb/s 2 × 70.76 km transmission is achieved by only utilizing C-band signals thanks to the high-performance 1.2 Tb/s OTN transponders. Moreover, the ICS system can sense environmental impacts on the MCF cable such as shaking, striking, etc., in real time. The capacity of the transmission system can also be further enhanced by using signals in the L-band. Our work demonstrates the feasibility of simultaneously achieving ultra-high-speed data transmission and the real-time sensing of environmental disturbances over a field-deployed MCF cable, which we believe is a crucial milestone for next-generation ultra-high-speed highly reliable optical transmission networks. Full article
(This article belongs to the Special Issue Optical Networking Technologies for High-Speed Data Transmission)
Show Figures

Figure 1

18 pages, 5468 KiB  
Article
Symbolic Framework for Evaluation of NOMA Modulation Impairments Based on Irregular Constellation Diagrams
by Nenad Stefanovic, Vladimir Mladenovic, Borisa Jovanovic, Ron Dabora and Asutosh Kar
Information 2025, 16(6), 468; https://doi.org/10.3390/info16060468 - 31 May 2025
Viewed by 408
Abstract
Complexity of non-orthogonal multiple access (NOMA) digital signal processing schemes is particularly relevant in mobile environments because of the varying channel conditions of every single user. In contrast to legacy modulation and coding schemes (MCSs), NOMA MCSs typically have irregular symbol constellations with [...] Read more.
Complexity of non-orthogonal multiple access (NOMA) digital signal processing schemes is particularly relevant in mobile environments because of the varying channel conditions of every single user. In contrast to legacy modulation and coding schemes (MCSs), NOMA MCSs typically have irregular symbol constellations with asymmetric symbol decision regions affecting synchronization at the receiver. Research papers investigating signal processing in this emerging field usually lack sufficient details for facilitating software-defined radio (SDR) implementation. This work presents a new symbolic framework approach for simulating signal processing functions in SDR transmit–receive paths in a dynamic NOMA downlink use case. The proposed framework facilitates simple and intuitive implementation and testing of NOMA schemes and can be easily expanded and implemented on commercially available SDR hardware. We explicitly address several important design and measurement parameters and their relationship to different tasks, including variable constellation processing, carrier and symbol synchronization, and pulse shaping, focusing on quadrature amplitude modulation (QAM). The advantages of the proposed approach include intuitive symbolic modeling in a dynamic framework for NOMA signals; efficient, more accurate, and less time-consuming design flow; and generation of synthetic training data for machine-learning models that could be used for system optimization in real-world use cases. Full article
(This article belongs to the Special Issue Second Edition of Advances in Wireless Communications Systems)
Show Figures

Figure 1

15 pages, 15113 KiB  
Article
Performance Evaluation of GaAs and InGaAs Schottky Mixers at 0.3 THz: A Comparative Analysis Between Optical and Electrical Pumping in THz Wireless Communication Systems
by Javier Martinez-Gil, Iñigo Belio-Apaolaza, Jonas Tebart, Jose Luis Fernández Estévez, Diego Moro-Melgar, Cyril C. Renaud, Andreas Stöhr and Oleg Cojocari
Electronics 2025, 14(10), 1957; https://doi.org/10.3390/electronics14101957 - 11 May 2025
Viewed by 653
Abstract
Gallium Arsenide (GaAs) Schottky technology stands out for its superior performance in terms of conversion loss for terahertz mixers at room temperatures, which establishes it as a dominant solution in receivers for high-data-rate wireless communications. However, Indium Gallium Arsenide (InGaAs) Schottky mixers offer [...] Read more.
Gallium Arsenide (GaAs) Schottky technology stands out for its superior performance in terms of conversion loss for terahertz mixers at room temperatures, which establishes it as a dominant solution in receivers for high-data-rate wireless communications. However, Indium Gallium Arsenide (InGaAs) Schottky mixers offer a notable advantage in terms of reduced power requirements due to their lower barrier height, enabling optical pumping with the incorporation of photodiodes acting as photonic local oscillators (LOs). In this study, we present the first comparative analysis of GaAs and InGaAs diode technologies under both electrical and optical pumping, which are also being compared for the first time, particularly in the context of a wireless communication system, transmitting up to 80 Gbps at 0.3 THz using 16-quadrature amplitude modulation (QAM). The terahertz transmitter and the optical receiver’s LO are based on modified uni-traveling-carrier photodiodes (MUTC-PDs) driven by free-running lasers. The investigation covers a total of two mixers, including narrow-band GaAs and InGaAs. The results reveal that, despite InGaAs mixers exhibiting higher conversion loss, the bit error rate (BER) can be as low as that with GaAs. This is attributed to the purity of optically generated LO signals in the receiver. This work positions InGaAs Schottky technology as a compelling candidate for terahertz reception in the context of optical wireless communication systems. Full article
(This article belongs to the Section Optoelectronics)
Show Figures

Figure 1

32 pages, 2964 KiB  
Article
Enhancement of Optical Wireless Discrete Multitone Channel Capacity Based on Li-Fi Using Sparse Coded Mask Modeling
by Yong-Yuk Won, Heetae Han, Dongmin Choi and Sang Min Yoon
Photonics 2025, 12(4), 395; https://doi.org/10.3390/photonics12040395 - 18 Apr 2025
Viewed by 385
Abstract
A sparse coded mask modeling technique is proposed to increase the transmission capacity of an optical wireless link based on Li-Fi. The learning model for the discrete multitone (DMT) signal waveform is implemented using the proposed technique, which is designed based on a [...] Read more.
A sparse coded mask modeling technique is proposed to increase the transmission capacity of an optical wireless link based on Li-Fi. The learning model for the discrete multitone (DMT) signal waveform is implemented using the proposed technique, which is designed based on a masked auto-encoder. The entire length of the DMT signal waveform, encoded using quadrature phase shift keying (QPSK) or 16-quadrature amplitude modulation (16-QAM) symbols, is divided into equal intervals to generate DMT patches, which are subsequently compressed based on the specified masking ratio. After 1-m optical wireless transmission, the DMT signal waveform is reconstructed from the received DMT patch through a decoding process and then QPSK or 16-QAM symbols are recovered. Using the proposed technique, we demonstrate that we can increase the transmission capacity by up to 1.85 times for a 10 MHz physical bandwidth. Additionally, we verify that the proposed technique is feasible in Li-Fi networks with illumination environments above 240 lux. Full article
(This article belongs to the Special Issue Optical Signal Processing for Advanced Communication Systems)
Show Figures

Figure 1

13 pages, 3649 KiB  
Article
Real-Time Unrepeated Long-Span Field Trial over Deployed 4-Core Fiber Cable Using Commercial 130-Gbaud PCS-16QAM 800 Gb/s OTN Transceivers
by Jian Cui, Chao Wu, Zhuo Liu, Yu Deng, Bin Hao, Leimin Zhang, Ting Zhang, Yuxiao Wang, Bin Wu, Chengxing Zhang, Jiabin Wang, Baoluo Yan, Li Zhang, Yong Chen, Xuechuan Chen, Hu Shi, Lei Shen, Lei Zhang, Jie Luo, Yan Sun, Qi Wan, Cheng Chang, Bing Yan and Ninglun Guadd Show full author list remove Hide full author list
Photonics 2025, 12(4), 319; https://doi.org/10.3390/photonics12040319 - 29 Mar 2025
Viewed by 437
Abstract
The space-division multiplexed (SDM) transmission technique based on uncoupled multi-core fibers (MCF) shows great implementation potential due to its huge transmission capacity and compatibility with existing transceivers. In this paper, we demonstrate a real-time single-span 106 km field trial over deployed 4-core MCF [...] Read more.
The space-division multiplexed (SDM) transmission technique based on uncoupled multi-core fibers (MCF) shows great implementation potential due to its huge transmission capacity and compatibility with existing transceivers. In this paper, we demonstrate a real-time single-span 106 km field trial over deployed 4-core MCF cable using commercial 800 Gb/s optical transport network (OTN) transceivers. The transceivers achieved a modulation rate of 130 Gbaud with the optoelectronic multiple-chip module (OE-MCM) packaging technique, which enabled the adoption of a highly noise-tolerant probability constellation shaping a 16-array quadrature amplitude modulation (PCS-16QAM) modulation format for 800 Gb/s OTN transceivers, and could realize unrepeated long-span transmission. The 4-core 800 Gb/s transmission systems achieved a real-time transmission capacity of 256 Tb/s with fully loaded 80-wavelength channels over the C+L band. The performance of different kinds of 800 G OTN transceivers with different modulation formats under this long-span unrepeated optical transmission system is also estimated and discussed. This field trial demonstrates the feasibility of applying uncoupled MCF with 800 Gb/s OTN transceivers in unrepeated long-span transmission scenarios and promotes its field implementation in next-generation high-speed optical interconnection systems. Full article
(This article belongs to the Special Issue Optical Networking Technologies for High-Speed Data Transmission)
Show Figures

Figure 1

25 pages, 4128 KiB  
Article
Enhancing the Communication Bandwidth of FH-MIMO DFRC Systems Through Constellation Rotation Modulation
by Jiangtao Liu, Weibin Jiang, Wentie Yang, Tao Su and Jianzhong Chen
Remote Sens. 2025, 17(6), 1058; https://doi.org/10.3390/rs17061058 - 17 Mar 2025
Viewed by 524
Abstract
This paper presents a technique based on Constellation Rotation Modulation (CRM) to enhance the communication bandwidth of Frequency-Hopping Multiple-Input Multiple-Output Dual-Function Radar and Communication (FH-MIMO DFRC) systems. The technique introduces the dimension of constellation diagram rotation without increasing the system bandwidth or power [...] Read more.
This paper presents a technique based on Constellation Rotation Modulation (CRM) to enhance the communication bandwidth of Frequency-Hopping Multiple-Input Multiple-Output Dual-Function Radar and Communication (FH-MIMO DFRC) systems. The technique introduces the dimension of constellation diagram rotation without increasing the system bandwidth or power consumption, significantly improving communication efficiency. Specifically, CRM, by rotating the constellation diagram, combines with traditional Frequency-Hopping Code Selection (FHCS) and Quadrature Amplitude Modulation (QAM) to achieve higher data transmission rates. Through theoretical analysis and experimental verification, we demonstrate the specific modulation and demodulation principles of CRM, and we compare the differences between the minimum Euclidean distance-based and constellation diagram folding projection fast demodulation methods. The impact of the proposed modulation on radar detection range and detection performance was analyzed in conjunction with radar equations and ambiguity functions. Finally, achieved through simulation analysis of radar and communication systems, as well as actual system testing on an SDR platform, the simulation and experimental results indicate that CRM modulation can significantly enhance communication bandwidth while maintaining radar detection performance, thereby validating the accuracy and reliability of the theory. Full article
Show Figures

Figure 1

16 pages, 10023 KiB  
Article
Convolutional Neural Network-Based Fiber Optic Channel Emulator and Its Application to Fiber-Longitudinal Power Profile Estimation
by Daobin Wang, Kun Wen, Tiantian Bai, Ruiyang Xia, Zanshan Zhao and Guanjun Gao
Photonics 2025, 12(3), 271; https://doi.org/10.3390/photonics12030271 - 15 Mar 2025
Viewed by 750
Abstract
This paper proposes an accuracy enhancement method for fiber-longitudinal power profile estimation (PPE) based on convolutional neural networks (CNN). Two types of CNNs are designed. The first network treats different polarization streams identically and is denoted as CNN. The second network considers the [...] Read more.
This paper proposes an accuracy enhancement method for fiber-longitudinal power profile estimation (PPE) based on convolutional neural networks (CNN). Two types of CNNs are designed. The first network treats different polarization streams identically and is denoted as CNN. The second network considers the difference between the contributions of different polarization streams to the nonlinear phase shift and is denoted as enhanced CNN (ECNN). The numerical simulation results confirm the effectiveness of the method for a 64 Gbaud/s quadrature phase-shift keying (QPSK) polarization-division-multiplexed (PDM) coherent optical communication system with a fiber length of 320 km. The effects of finite impulse response (FIR) filter length, power into the fiber, and polarization mode dispersion on the PPE accuracy are examined. Finally, the results of the proposed method are monitored in the presence of several simultaneous power attenuation anomalies in the fiber optic link. It is found that the accuracy of the PPE substantially improves after using the proposed method, achieving a relative gain of up to 71%. When the modulation format is changed from QPSK to 16-ary quadrature amplitude modulation (16-QAM), and the fiber length is increased from 360 km to 480 km, the proposed method is still effective. This work provides a feasible solution for implementing fiber-longitudinal PPE, enabling significantly improved estimation accuracy in practical applications. Full article
(This article belongs to the Special Issue Advancements in Optical Sensing and Communication Technologies)
Show Figures

Figure 1

10 pages, 4044 KiB  
Article
Non-Orthogonality of QAM and Sunflower-like Modulated Coherent-State Signals
by Kentaro Kato
Entropy 2025, 27(1), 30; https://doi.org/10.3390/e27010030 - 1 Jan 2025
Viewed by 1006
Abstract
The limitations of cloning and discriminating quantum states are related to the non-orthogonality of the states. Hence, understanding the collective features of quantum states is essential for the future development of quantum communications technology. This paper investigates the non-orthogonality of different coherent-state signal [...] Read more.
The limitations of cloning and discriminating quantum states are related to the non-orthogonality of the states. Hence, understanding the collective features of quantum states is essential for the future development of quantum communications technology. This paper investigates the non-orthogonality of different coherent-state signal constellations used in quantum communications, namely phase-shift keying (PSK), quadrature-amplitude modulation (QAM), and a newly defined signal named the sunflower-like (SUN) coherent-state signal. The non-orthogonality index (NOI) and the average probability of correct detection (detection probability) are numerically computed. Results show that PSK NOI increases faster than QAM and SUN as the number of signals increases for a given number of signal photons. QAM and SUN exhibit similar NOI and detection probability, behaving similarly to randomly generated signals for a larger number of signals. Approximation formulas are provided for the detection probability as a function of NOI for each signal type. While similar to QAM, SUN signal offers potential advantages for applications requiring uniform signal-space distribution. The findings provide valuable insights for designing useful quantum signal constellations. Full article
(This article belongs to the Special Issue Quantum Communication, Quantum Radar, and Quantum Cipher, 2nd Edition)
Show Figures

Figure 1

18 pages, 2093 KiB  
Article
A Hybrid Genetic Algorithm with Tabu Search Using a Layered Process for High-Order QAM in MIMO Detection
by Taehyoung Kim and Gyuyeol Kong
Mathematics 2025, 13(1), 2; https://doi.org/10.3390/math13010002 - 24 Dec 2024
Viewed by 760
Abstract
In this paper, we propose a hybrid genetic algorithm (HGA) that embeds the tabu search mechanism into the genetic algorithm (GA) for multiple-input multiple-output (MIMO) detection. We modified the selection and crossover operation to maintain the diverse and wide exploration areas, which is [...] Read more.
In this paper, we propose a hybrid genetic algorithm (HGA) that embeds the tabu search mechanism into the genetic algorithm (GA) for multiple-input multiple-output (MIMO) detection. We modified the selection and crossover operation to maintain the diverse and wide exploration areas, which is an advantage of the GA, and the mutation operation to perform a local search for a specific region. In the mutation process, the ’tabu’ concept is also employed to prevent the repeated search of the same area. In addition, a layered detection process is applied simultaneously with the proposed algorithm, which not only improves the bit error rate performance but also reduces the computational complexity. We apply the layered HGA (LHGA) to the MIMO system with very high modulation order such as 64-quadrature amplitude modulation (QAM), 256-QAM, and 1024-QAM. Simulation results show that the LHGA outperforms conventional detection approaches. Especially, in the 1024-QAM MIMO system, the LHGA has less than 10% of computational complexity but a 6 dB signal-to-noise ratio (SNR) gain compared to the conventional GA-based MIMO detection scheme. Full article
Show Figures

Figure 1

37 pages, 1824 KiB  
Article
Carrier Frequency Offset Impact on Universal Filtered Multicarrier/Non-Uniform Constellations Performance: A Digital Video Broadcasting—Terrestrial, Second Generation Case Study
by Sonia Zannou, Anne-Carole Honfoga, Michel Dossou and Véronique Moeyaert
Telecom 2024, 5(4), 1205-1241; https://doi.org/10.3390/telecom5040061 - 4 Dec 2024
Cited by 1 | Viewed by 1058
Abstract
Digital terrestrial television is now implemented in many countries worldwide and is now mature. Digital Video Broadcasting-Terrestrial, second generation (DVB-T2) is the European standard adopted or deployed by European and African countries which uses Orthogonal Frequency-Division Multiplexing (OFDM) modulation to achieve good throughput [...] Read more.
Digital terrestrial television is now implemented in many countries worldwide and is now mature. Digital Video Broadcasting-Terrestrial, second generation (DVB-T2) is the European standard adopted or deployed by European and African countries which uses Orthogonal Frequency-Division Multiplexing (OFDM) modulation to achieve good throughput performance. However, its main particularity is the number of subcarriers operated for OFDM modulation which varies from 1024 to 32,768 subcarriers. Also, mobile reception is planned in DVB-T2 in addition to rooftop antenna and portable receptions planned in DVB-T. However, the main challenge of DVB-T2 for mobile reception is the presence of a carrier frequency offset (CFO) which degrades the system performance by inducing an Intercarrier Interference (ICI) on the DVB-T2 signal. This paper evaluates the system performance in the presence of the CFO when Gaussian noise and a TU6 channel are applied. Universal Filtered Multicarrier (UFMC) and non-uniform constellations (NUCs) have previously demonstrated good performance in comparison with OFDM and Quadrature Amplitude Modulation (QAM) in DVB-T2. The impact of CFO on the UFMC- and NUC-based DVB-T2 system is additionally investigated in this work. The results demonstrate that the penalties induced by CFO insertion in UFMC- and NUC-based DVB-T2 are highly reduced in comparison to those for the native DVB-T2. At a bit error rate (BER) of 103, the CFO penalties induced by the native DVB-T2 are 0.96dB and 4 dB, respectively, when only Additive White Gaussian Noise (AWGN) is used and when TU6 is additionally considered. The penalties are equal to 0.84dB and 0.2dB for UFMC/NUC-based DVB-T2. Full article
(This article belongs to the Topic Advances in Wireless and Mobile Networking)
Show Figures

Figure 1

16 pages, 5588 KiB  
Article
Enhanced Carrier Phase Recovery Using Dual Pilot Tones in Faster-than-Nyquist Optical Transmission Systems
by Jialin You, Tao Yang, Yuchen Zhang and Xue Chen
Photonics 2024, 11(11), 1048; https://doi.org/10.3390/photonics11111048 - 7 Nov 2024
Cited by 1 | Viewed by 1167
Abstract
Compared with high spectrum efficiency faster-than-Nyquist (FTN) backbone network, an enhanced carrier phase recovery based on dual pilot tones is more sensitive to capital cost in FTN metropolitan areas as well as inter-datacenter optical networks. The use of distributed feedback (DFB) lasers is [...] Read more.
Compared with high spectrum efficiency faster-than-Nyquist (FTN) backbone network, an enhanced carrier phase recovery based on dual pilot tones is more sensitive to capital cost in FTN metropolitan areas as well as inter-datacenter optical networks. The use of distributed feedback (DFB) lasers is a way to effectively reduce the cost. However, under high symbol rate FTN systems, equalization-enhanced phase noise (EEPN) induced by a DFB laser with large linewidth will significantly deteriorate the system performance. What is worse, in FTN systems, tight filtering introduces inter-symbol interference so severe that the carrier phase estimation (CPE) algorithm of the FTN systems is more sensitive to EEPN, thus it will lead to a more serious cycle slip problem. In this paper, an enhanced carrier phase recovery based on dual pilot tones is proposed to mitigate EEPN and suppress cycle slip, in which the chromatic dispersion (CD)-aware Tx and LO laser phase noise is estimated, respectively. Offline experiments results under 40 Gbaud polarization multiplexing (PM) 16-quadrature amplitude modulation (QAM) FTN wavelength division multiplexing (FTN-WDM) systems at 0.9 acceleration factor, 5 MHz laser linewidth, and 500 km transmission demonstrate that the proposed algorithm could bring about 0.65 dB improvement of the required SNR for the normalized generalized mutual information of 0.9 compared with the training sequence-based cycle slip suppression carrier phase estimation (TS-CSS) algorithm. Full article
Show Figures

Figure 1

32 pages, 28323 KiB  
Article
FPGA Realization of an Image Encryption System Using a 16-CPSK Modulation Technique
by Jose-Cruz Nuñez-Perez, Miguel-Angel Estudillo-Valdez, Yuma Sandoval-Ibarra and Vincent-Ademola Adeyemi
Electronics 2024, 13(22), 4337; https://doi.org/10.3390/electronics13224337 - 5 Nov 2024
Cited by 1 | Viewed by 1738
Abstract
Nowadays, M-Quadrature Amplitude Modulation (M-QAM) techniques are widely used to modulate information by bit packets due to their ability to increase transfer rates. These techniques require more power when increasing the modulation index M to avoid interference between symbols. This article proposes a [...] Read more.
Nowadays, M-Quadrature Amplitude Modulation (M-QAM) techniques are widely used to modulate information by bit packets due to their ability to increase transfer rates. These techniques require more power when increasing the modulation index M to avoid interference between symbols. This article proposes a technique that does not suffer from interference between symbols, but instead uses memory elements to store the modulation symbols. In addition, the aim of this paper is to implement a four-dimensional reconfigurable chaotic oscillator that generates 16-Chaotic Phase Shift Keying (16-CPSK) modulation–demodulation carriers. An encryption and modulation transmitter module, a reception module, and a master–slave Hamiltonian synchronization module make up the system. A 16-CPSK modulation scheme implemented in Field Programmable Gate Array (FPGA) and applied to a red-green-blue (RGB) and grayscale image encryption system are the main contributions of this work. Matlab and Vivado were used to verify the modulation–demodulation scheme and synchronization. This proposal achieved excellent correlation coefficients according to various investigations, the lowest being 15.9×106 and 0.13×103 for RGB and grayscale format images, respectively. The FPGA implementation of the 16-CPSK modulation–demodulation system was carried out using a manufacturer’s card, Xilinx’s Artix-7 AC701 (XC7A200TFBG676-2). Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

9 pages, 2494 KiB  
Article
Utilization of Optical OFDM Modulation on Blue LED VLC Datacom Without Equalization for 4 m Wireless Link
by Yuan-Zeng Lin, Chien-Hung Yeh, Wen-Piao Lin and Chi-Wai Chow
Micromachines 2024, 15(11), 1322; https://doi.org/10.3390/mi15111322 - 30 Oct 2024
Viewed by 1069
Abstract
To achieve higher visible light communication (VLC) traffic capacity, using the wide bandwidth light-emitting diode (LED) and spectral efficiency modulation signal, is currently the most commonly used method. In this demonstration, we apply the orthogonal frequency division multiplexing quadrature amplitude modulation (OFDM-QAM) with [...] Read more.
To achieve higher visible light communication (VLC) traffic capacity, using the wide bandwidth light-emitting diode (LED) and spectral efficiency modulation signal, is currently the most commonly used method. In this demonstration, we apply the orthogonal frequency division multiplexing quadrature amplitude modulation (OFDM-QAM) with bit- and power-loading algorithm on single blue LED to achieve >1 Gbit/s VLC capacity, when a 400 MHz bandwidth avalanche photodiode (APD)-based receiver (Rx) is exploited for decoding. Here, the higher sensitivity APD can be applied to compensate for the wireless VLC link length in the proposed LED VLC system, and due to the lower LED illumination (255 to 40 lux), is used for the indoor access network after passing the wireless link length of 1 to 4 m. As a result, using single blue LED can achieve 0.962 to 1.057 Gbit/s OFDM rate with available 400 MHz bandwidth APD in poorly illuminated condition indoors without applying analogy equalization. Full article
Show Figures

Figure 1

14 pages, 3284 KiB  
Article
Low Complexity Parallel Carrier Frequency Offset Estimation Based on Time-Tagged QPSK Partitioning for Coherent Free-Space Optical Communication
by Siqi Zhang, Liqian Wang, Kunfeng Liu and Shuang Ding
Photonics 2024, 11(9), 885; https://doi.org/10.3390/photonics11090885 - 20 Sep 2024
Cited by 1 | Viewed by 1338
Abstract
To effectively mitigate the effects of atmospheric turbulence in free space optical (FSO) communication, we propose a parallel carrier frequency offset estimation (FOE) scheme based on time-tagged QPSK partitioning (TTQP). This scheme can be applied to spatial diversity polarization multiplexing (PM) coherent FSO [...] Read more.
To effectively mitigate the effects of atmospheric turbulence in free space optical (FSO) communication, we propose a parallel carrier frequency offset estimation (FOE) scheme based on time-tagged QPSK partitioning (TTQP). This scheme can be applied to spatial diversity polarization multiplexing (PM) coherent FSO communication systems. Specifically, the TTQP scheme performs QPSK partitioning by time-tagging signal points, accurately recording the time intervals between signals, and significantly reducing implementation complexity through a modified Mth power algorithm. The simulation results for the PM 16-quadrature amplitude modulation (QAM) validate the effectiveness of the proposed scheme. Compared to traditional QPSK partitioning algorithms, the TTQP algorithm achieves high accuracy, low complexity, and multi-format versatility in high-speed coherent FSO communication. Full article
(This article belongs to the Special Issue Challenges and Opportunities in Free Space Optical Communication)
Show Figures

Figure 1

Back to TopTop