Symbolic Framework for Evaluation of NOMA Modulation Impairments Based on Irregular Constellation Diagrams
Abstract
1. Introduction
1.1. Related Works
1.2. Main Contributions and Orgamization
2. Processing Blocks in SDR Transmitter
2.1. Quadrature Complex Signal Generation
M = 4 spKonv = Partition[inputbitStream,Log2[M]] (*S/P converter*) lut4I = AssociationThread[{{0,0},{0,1},{1,0},{1,1}}→{1,−1,1,−1}]; (*LUTs definition*) lut4Q = AssociationThread[{{0,0},{0,1},{1,0},{1,1}}→{−1,−1,1,1}]; (*LUTs definition*) a4I = Lookup[lut4I,spKonv]; (*Process of mapping bits to symbols*) a4Q = Lookup[lut4Q,spKonv]; |
ListStepPlot[{a4I1,a4Q1},Center, Mesh->Full,PlotRange->{{1,10},{−2,2}}, ImageSize ->{500,200},Filling->Axis,AspectRatio->1/3,AxesLabel->{“symbol”, “aI,aQ”}, Ticks->{Automatic,{{−2,”−2A”},{−1,”-A”},{1,”A”},{2,”2A”}}}, PlotLegends->Placed[{“aI”,”aQ”},Below]] |
scInTs = Upsample[scI,L]; scQnTs = Upsample[scQ,L]; |
2.2. Sample-Wise Pulse Shaping
2.3. Mixing
3. Simulation Results
3.1. Transmitting Constellation Constitution
3.2. Receiver Constellation and Error Vector Magnitude
3.3. Synchronization Effects on Modulation Impairments
4. Conclusions and Future Work
4.1. Pros and Cons of the Proposed Symbolic Model
4.2. Further Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A/D | Analog to digital |
BER | Bit error rate |
CSI | Channel state information |
D/A | Digital to analog |
EVM | Error vector magnitude |
FPGA | Field programmable gate array |
IoT | Internet-of-things |
IQ | In-phase and quadrature |
LO | Local oscillator |
LUT | Look-up table |
MCS | Modulation and coding scheme |
NOMA | Non-orthogonal multiple access |
ppm | Parts per million |
QAM | Quadrature amplitude modulation |
QPSK | Quadrature phase shift keying |
RC | Raised cosine |
RF | Radio frequency |
RSSI | Received signal strength indicator |
SDR | Software-defined radio |
SIC | Successive interference cancellation |
S/P | Serial to parallel |
SQRC | Square-root raised cosine |
TP | Test point |
References
- Yuan, Y.; Yuan, Z. 5G New Radio Non-Orthogonal Multiple Access; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Boca Raton, FL, USA, 2023. [Google Scholar]
- Dai, L.; Wang, B.; Ding, Z.; Wang, Z.; Chen, S.; Hanzo, L. A survey on non-orthogonal multiple access for 5G. IEEE Commun. Surv.Tutor. 2018, 20, 2294–2323. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Yuan, Y.; Han, S.; Chih-Lin, I.; Wang, Z. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 2015, 53, 74–81. [Google Scholar] [CrossRef]
- Collins, T.F.; Getz, R.; Pu, D.; Wyglinski, A.M. Software-Defined Radio for Engineers; Artech House: Boston, MA, USA, 2018. [Google Scholar]
- Zielinski, T.P. Starting Digital Signal Processing in Telecommunications Engineering: A Laboratory-Based Course; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Rayland, J. Software Defined Radio: Theory and Practice; Artech House: Norwood, MA, USA, 2023. [Google Scholar]
- Chaudhari, Q. Wireless Communications from the Ground Up: An SDR Perspective; Self-published; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2018. [Google Scholar]
- Reddy BS, K.; Mannem, K.; Jamal, K. Software defined radio based non-orthogonal multiple access (NOMA) systems. Wireless Pers. Commun. 2021, 119, 1251–1273. [Google Scholar] [CrossRef]
- Garnier, J.-R.; Fabre, A.; Farès, H.; Bonnefoi, R. On the performance of QPSK modulation over downlink NOMA: From error probability derivation to SDR-based validation. IEEE Access 2020, 8, 66495–66507. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Mahmmod, K.F.; Azeez, M.M. On the performance of non-orthogonal multiple access (NOMA) using FPGA. Int. J. Electr. Comput. Eng. (IJECE) 2020, 10, 2151–2163. [Google Scholar] [CrossRef]
- Khan, A.; Usman, M.A.; Usman, M.R.; Ahmad, M.; Shin, S.-Y. Link and system-level NOMA simulator: The reproducibility of research. Electronics 2021, 10, 2388. [Google Scholar] [CrossRef]
- Reddy, B.S.K. Experimental validation of non-orthogonal multiple access (NOMA) technique using software defined radio. Wireless Pers Commun. 2021, 116, 3599–3612. [Google Scholar] [CrossRef]
- Ding, Z.; Dai, X.; Poor, H.V. MIMO-NOMA design for small packet transmission in the internet of things. IEEE Access 2017, 4, 1393–1405. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.; Elkashlan, M.; Ding, Z.; Nallanathan, A.; Hanzo, L. Non-orthogonal multiple access for 5G and beyond. Proc. IEEE 2017, 105, 2347–2381. [Google Scholar] [CrossRef]
- Awan, D.A.; Cavalcante, R.L.G.; Yukawa, M.; Stanczak, S. Detection for 5G-NOMA: An online adaptive machine learning approach. In Proceedings of the IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Mayama, K.; Akimoto, K.; Kameda, S.; Suematsu, N. Evaluation of link-level performance considering EVM of transmit signal for downlink NOMA. In Proceedings of the Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 774–776. [Google Scholar] [CrossRef]
- Wulich, D.; Dabora, R.; Tsouri, G.R. On Increasing Spectral Efficiency of Frequency Division Multiple Access Using Synchronized Superposition-Modulation. In Proceedings of the IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (COMCAS), Tel-Aviv, Israel, 9–11 November 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Shlezinger, N.; Whang, J.; Eldar, Y.C.; Dimakis, A.G. Model-based deep learning: Key approaches and design guidelines. In Proceedings of the IEEE Data Science and Learning Workshop (DSLW), Toronto, ON, Canada, 5–6 June 2021. [Google Scholar] [CrossRef]
- Eldar, Y.C.; Goldsmith, A.; Gunduz, D.; Poor, H.V. Machine Learning and Wireless Communications; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Alter, T.; Shlezinger, N. Deep unfolded superposition coding optimization for two-hop NOMA MANETs. In Proceedings of the IEEE Military Communications Conference (MILCOM), Boston, MA, USA, 30 October–3 November 2023; pp. 286–291. [Google Scholar] [CrossRef]
- Scholl, S. RF signal classification with synthetic training data and its real-world performance. arXiv 2022, arXiv:2206.12967. [Google Scholar]
- Balaraman, A.; Shioda, S.; Kim, Y.; Kim, Y.; Kim, T. Efficient User Pairing and Resource Optimization for NOMA-OMA Switching Enabled Dynamic Urban Vehicular Networks. Electronics 2024, 13, 4834. [Google Scholar] [CrossRef]
- Annapurna, H.S.; Devi, S. Machine Learning-Based Adaptive Equalization with Software-Dened Radio Experimental Setup. ECTI Trans. Comput. Inf. Technol. (ECTI-CIT) 2025, 19, 271–281. [Google Scholar]
- Gkonis, P.; Trakadas, P.; Sarakis, L.; Giannopoulos, A.; Spantideas, S.; Capsalis, N. On the Performance Evaluation of 5G MIMO Networks employing NOMA via System-Link Level Simulations. In Proceedings of the IEEE 9th International Conference on Information, Communication and Networks (ICICN), Xi’an, China, 25–28 November 2021; pp. 264–268. [Google Scholar] [CrossRef]
Pros | Cons |
---|---|
Intuitive representation of irregular NOMA constellations and symbol decision regions | Symbolic computations can be slower for large-scale system-level simulations |
Enables generation of synthetic training datasets for machine learning models | Requires symbolic math expertise for effective customization |
Easily modifiable for testing different modulation, synchronization, and pulse shaping schemes | Limited support for real-time testing without external SDR integration |
Provides analytical insight into signal behavior under modulation impairments | May not capture full non-linear effects of analog RF front-ends without additional modeling |
Supports rapid prototyping and algorithm validation in Wolfram language | Wolfram environment may not be as widely adopted in communication system prototyping |
Facilitates SDR implementation by bridging high-level theory and practical system behavior | Less suited for integration with traditional SDR toolchains (e.g., GNU Radio) without export |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanovic, N.; Mladenovic, V.; Jovanovic, B.; Dabora, R.; Kar, A. Symbolic Framework for Evaluation of NOMA Modulation Impairments Based on Irregular Constellation Diagrams. Information 2025, 16, 468. https://doi.org/10.3390/info16060468
Stefanovic N, Mladenovic V, Jovanovic B, Dabora R, Kar A. Symbolic Framework for Evaluation of NOMA Modulation Impairments Based on Irregular Constellation Diagrams. Information. 2025; 16(6):468. https://doi.org/10.3390/info16060468
Chicago/Turabian StyleStefanovic, Nenad, Vladimir Mladenovic, Borisa Jovanovic, Ron Dabora, and Asutosh Kar. 2025. "Symbolic Framework for Evaluation of NOMA Modulation Impairments Based on Irregular Constellation Diagrams" Information 16, no. 6: 468. https://doi.org/10.3390/info16060468
APA StyleStefanovic, N., Mladenovic, V., Jovanovic, B., Dabora, R., & Kar, A. (2025). Symbolic Framework for Evaluation of NOMA Modulation Impairments Based on Irregular Constellation Diagrams. Information, 16(6), 468. https://doi.org/10.3390/info16060468