Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,606)

Search Parameters:
Keywords = pyramidal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2466 KiB  
Article
Improved of YOLOv8-n Algorithm for Steel Surface Defect Detection
by Qingqing Xiang, Gang Wu, Zhiqiang Liu and Xudong Zeng
Metals 2025, 15(8), 843; https://doi.org/10.3390/met15080843 - 28 Jul 2025
Abstract
To address the limitations in multi-scale feature processing and illumination sensitivity of existing steel surface defect detection algorithms, we proposed ADP-YOLOv8-n, enhancing accuracy and computational efficiency through advanced feature fusion and optimized network architecture. Firstly, an adaptive weighted down-sampling (ADSConv) module was proposed, [...] Read more.
To address the limitations in multi-scale feature processing and illumination sensitivity of existing steel surface defect detection algorithms, we proposed ADP-YOLOv8-n, enhancing accuracy and computational efficiency through advanced feature fusion and optimized network architecture. Firstly, an adaptive weighted down-sampling (ADSConv) module was proposed, which improves detector adaptability to diverse defects via the weighted fusion of down-sampled feature maps. Next, the C2f_DWR module was proposed, integrating optimized C2F architecture with a streamlined DWR design to enhance feature extraction efficiency while reducing computational complexity. Then, a Multi-Scale-Focus Diffusion Pyramid was designed to adaptively handle multi-scale object detection by dynamically adjusting feature fusion, thus reducing feature redundancy and information loss while maintaining a balance between detailed and global information. Experiments demonstrate that the proposed ADP-YOLOv8-n detection algorithm achieves superior performance, effectively balancing detection accuracy, inference speed, and model compactness. Full article
(This article belongs to the Special Issue Nondestructive Testing Methods for Metallic Material)
19 pages, 2698 KiB  
Article
Orga-Dete: An Improved Lightweight Deep Learning Model for Lung Organoid Detection and Classification
by Xuan Huang, Qin Gao, Hanwen Zhang, Fuhong Min, Dong Li and Gangyin Luo
Appl. Sci. 2025, 15(15), 8377; https://doi.org/10.3390/app15158377 - 28 Jul 2025
Abstract
Lung organoids play a crucial role in modeling drug responses in pulmonary diseases. However, their morphological analysis remains hindered by manual detection inefficiencies and the high computational cost of existing algorithms. To overcome these challenges, this study proposes Orga-Dete—a lightweight, high-precision detection model [...] Read more.
Lung organoids play a crucial role in modeling drug responses in pulmonary diseases. However, their morphological analysis remains hindered by manual detection inefficiencies and the high computational cost of existing algorithms. To overcome these challenges, this study proposes Orga-Dete—a lightweight, high-precision detection model based on YOLOv11n—which first employs data augmentation to mitigate the small-scale dataset and class imbalance issues, then optimizes via a triple co-optimization strategy: a bi-directional feature pyramid network for enhanced multi-scale feature fusion, MPCA for stronger micro-organoid feature response, and EMASlideLoss to address class imbalance. Validated on a lung organoid microscopy dataset, Orga-Dete achieves 81.4% mAP@0.5 with only 2.25 M parameters and 6.3 GFLOPs, surpassing the baseline model YOLOv11n by 3.5%. Ablation experiments confirm the synergistic effects of these modules in enhancing morphological feature extraction. With its balance of precision and efficiency, Orga-Dete offers a scalable solution for high-throughput organoid analysis, underscoring its potential for personalized medicine and drug screening. Full article
Show Figures

Figure 1

27 pages, 11177 KiB  
Article
Robust Segmentation of Lung Proton and Hyperpolarized Gas MRI with Vision Transformers and CNNs: A Comparative Analysis of Performance Under Artificial Noise
by Ramtin Babaeipour, Matthew S. Fox, Grace Parraga and Alexei Ouriadov
Bioengineering 2025, 12(8), 808; https://doi.org/10.3390/bioengineering12080808 - 28 Jul 2025
Abstract
Accurate segmentation in medical imaging is essential for disease diagnosis and monitoring, particularly in lung imaging using proton and hyperpolarized gas MRI. However, image degradation due to noise and artifacts—especially in hyperpolarized gas MRI, where scans are acquired during breath-holds—poses challenges for conventional [...] Read more.
Accurate segmentation in medical imaging is essential for disease diagnosis and monitoring, particularly in lung imaging using proton and hyperpolarized gas MRI. However, image degradation due to noise and artifacts—especially in hyperpolarized gas MRI, where scans are acquired during breath-holds—poses challenges for conventional segmentation algorithms. This study evaluates the robustness of deep learning segmentation models under varying Gaussian noise levels, comparing traditional convolutional neural networks (CNNs) with modern Vision Transformer (ViT)-based models. Using a dataset of proton and hyperpolarized gas MRI slices from 56 participants, we trained and tested Feature Pyramid Network (FPN) and U-Net architectures with both CNN (VGG16, VGG19, ResNet152) and ViT (MiT-B0, B3, B5) backbones. Results showed that ViT-based models, particularly those using the SegFormer backbone, consistently outperformed CNN-based counterparts across all metrics and noise levels. The performance gap was especially pronounced in high-noise conditions, where transformer models retained higher Dice scores and lower boundary errors. These findings highlight the potential of ViT-based architectures for deployment in clinically realistic, low-SNR environments such as hyperpolarized gas MRI, where segmentation reliability is critical. Full article
Show Figures

Figure 1

27 pages, 3868 KiB  
Article
Swin-ReshoUnet: A Seismic Profile Signal Reconstruction Method Integrating Hierarchical Convolution, ORCA Attention, and Residual Channel Attention Mechanism
by Jie Rao, Mingju Chen, Xiaofei Song, Chen Xie, Xueyang Duan, Xiao Hu, Senyuan Li and Xingyue Zhang
Appl. Sci. 2025, 15(15), 8332; https://doi.org/10.3390/app15158332 - 26 Jul 2025
Viewed by 57
Abstract
This study proposes a Swin-ReshoUnet architecture with a three-level enhancement mechanism to address inefficiencies in multi-scale feature extraction and gradient degradation in deep networks for high-precision seismic exploration. The encoder uses a hierarchical convolution module to build a multi-scale feature pyramid, enhancing cross-scale [...] Read more.
This study proposes a Swin-ReshoUnet architecture with a three-level enhancement mechanism to address inefficiencies in multi-scale feature extraction and gradient degradation in deep networks for high-precision seismic exploration. The encoder uses a hierarchical convolution module to build a multi-scale feature pyramid, enhancing cross-scale geological signal representation. The decoder replaces traditional self-attention with ORCA attention to enable global context modeling with lower computational cost. Skip connections integrate a residual channel attention module, mitigating gradient degradation via dual-pooling feature fusion and activation optimization, forming a full-link optimization from low-level feature enhancement to high-level semantic integration. Simulated and real dataset experiments show that at decimation ratios of 0.1–0.5, the method significantly outperforms SwinUnet, TransUnet, etc., in reconstruction performance. Residual signals and F-K spectra verify high-fidelity reconstruction. Despite increased difficulty with higher sparsity, it maintains optimal performance with notable margins, demonstrating strong robustness. The proposed hierarchical feature enhancement and cross-scale attention strategies offer an efficient seismic profile signal reconstruction solution and show generality for migration to complex visual tasks, advancing geophysics-computer vision interdisciplinary innovation. Full article
20 pages, 77932 KiB  
Article
Image Alignment Based on Deep Learning to Extract Deep Feature Information from Images
by Lin Zhu, Yuxing Mao and Jianyu Pan
Sensors 2025, 25(15), 4628; https://doi.org/10.3390/s25154628 - 26 Jul 2025
Viewed by 93
Abstract
To overcome the limitations of traditional image alignment methods in capturing deep semantic features, a deep feature information image alignment network (DFA-Net) is proposed. This network aims to enhance image alignment performance through multi-level feature learning. DFA-Net is based on the deep residual [...] Read more.
To overcome the limitations of traditional image alignment methods in capturing deep semantic features, a deep feature information image alignment network (DFA-Net) is proposed. This network aims to enhance image alignment performance through multi-level feature learning. DFA-Net is based on the deep residual architecture and introduces spatial pyramid pooling to achieve cross-scalar feature fusion, effectively enhancing the feature’s adaptability to scale. A feature enhancement module based on the self-attention mechanism is designed, with key features that exhibit geometric invariance and high discriminative power, achieved through a dynamic weight allocation strategy. This improves the network’s robustness to multimodal image deformation. Experiments on two public datasets, MSRS and RoadScene, show that the method performs well in terms of alignment accuracy, with the RMSE metrics being reduced by 0.661 and 0.473, and the SSIM, MI, and NCC improved by 0.155, 0.163, and 0.211; and 0.108, 0.226, and 0.114, respectively, compared with the benchmark model. The visualization results validate the significant improvement in the features’ visual quality and confirm the method’s advantages in terms of stability and discriminative properties of deep feature extraction. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Graphical abstract

26 pages, 6528 KiB  
Article
Lightweight Sheep Face Recognition Model Combining Grouped Convolution and Parameter Fusion
by Gaochao Liu, Lijun Kang and Yongqiang Dai
Sensors 2025, 25(15), 4610; https://doi.org/10.3390/s25154610 - 25 Jul 2025
Viewed by 80
Abstract
Sheep face recognition technology is critical in key areas such as individual sheep identification and behavior monitoring. Existing sheep face recognition models typically require high computational resources. When these models are deployed on mobile or embedded devices, problems such as reduced model recognition [...] Read more.
Sheep face recognition technology is critical in key areas such as individual sheep identification and behavior monitoring. Existing sheep face recognition models typically require high computational resources. When these models are deployed on mobile or embedded devices, problems such as reduced model recognition accuracy and increased recognition time arise. To address these problems, an improved Parameter Fusion Lightweight You Only Look Once (PFL-YOLO) sheep face recognition model based on YOLOv8n is proposed. In this study, the Efficient Hybrid Conv (EHConv) module is first integrated to enhance the extraction capability of the model for sheep face features. At the same time, the Residual C2f (RC2f) module is introduced to facilitate the effective fusion of multi-scale feature information and improve the information processing capability of the model; furthermore, the Efficient Spatial Pyramid Pooling Fast (ESPPF) module was used to fuse features of different scales. Finally, parameter fusion optimization work was carried out for the detection head, and the construction of the Parameter Fusion Detection (PFDetect) module was achieved, which significantly reduced the number of model parameters and computational complexity. The experimental results show that the PFL-YOLO model exhibits an excellent performance–efficiency balance in sheep face recognition tasks: mAP@50 and mAP@50:95 reach 99.5% and 87.4%, respectively, and the accuracy is close to or equal to the mainstream benchmark model. At the same time, the number of parameters is only 1.01 M, which is reduced by 45.1%, 83.7%, 66.6%, 71.4%, and 61.2% compared to YOLOv5n, YOLOv7-tiny, YOLOv8n, YOLOv9-t, and YOLO11n, respectively. The size of the model was compressed to 2.1 MB, which was reduced by 44.7%, 82.5%, 65%, 72%, and 59.6%, respectively, compared to similar lightweight models. The experimental results confirm that the PFL-YOLO model maintains high accuracy recognition performance while being lightweight and can provide a new solution for sheep face recognition models on resource-constrained devices. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

19 pages, 744 KiB  
Article
The Epidemiology of Mobility Difficulty in Saudi Arabia: National Estimates, Severity Levels, and Sociodemographic Differentials
by Ahmed Alduais, Hind Alfadda and Hessah Saad Alarifi
Healthcare 2025, 13(15), 1804; https://doi.org/10.3390/healthcare13151804 - 25 Jul 2025
Viewed by 328
Abstract
Background: Mobility limitation is a pivotal but under-documented dimension of disability in Saudi Arabia. Leveraging the 2017 National Disability Survey, this cross-sectional study provides a population-wide profile of mobility-related physical difficulty. Objectives: Five research aims were pursued: (1) estimate national prevalence and severity [...] Read more.
Background: Mobility limitation is a pivotal but under-documented dimension of disability in Saudi Arabia. Leveraging the 2017 National Disability Survey, this cross-sectional study provides a population-wide profile of mobility-related physical difficulty. Objectives: Five research aims were pursued: (1) estimate national prevalence and severity by sex; (2) map regional differentials; (3) examine educational and marital correlates; (4) characterize cause, duration, and familial context among those with multiple limitations; and (5) describe patterns of assistive-aid and social-service use. Methods: Publicly available aggregate data covering 20,408,362 Saudi citizens were cleaned and analyzed across 14 mobility indicators and three baseline files. Prevalence ratios and χ2 tests assessed associations. Results: Overall, 1,445,723 Saudis (7.1%) reported at least one functional difficulty; 833,136 (4.1%) had mobility difficulty, of whom 305,867 (36.7%) had mobility-only impairment. Severity was chiefly mild (35% of cases), with moderate (16%) and severe (7%) forms forming a descending pyramid. Prevalence varied more than threefold across the thirteen regions, peaking in Aseer (9.4%) and bottoming in Najran (2.9%). Mobility difficulty clustered among adults with no schooling (36.1%) and widowed status (18.5%), with sharper female disadvantage in both domains (p < 0.001). Among those with additional limitations, chronic disease dominated etiology (56.3%), and 90.1% had lived with disability for ≥25 years; women were overrepresented in the longest-duration band. Aid utilization was led by crutches (47.7%), personal assistance (25.3%), and wheelchairs (22.6%), while 83.8% accessed Ministry rehabilitation services, yet fewer than 4% used home or daycare support. Conclusions: These findings highlight sizeable, regionally concentrated, and gender-patterned mobility burdens, underscoring the need for education-sensitive prevention, chronic-care management, investment in advanced assistive technology, and distributed community services to achieve Vision 2030 inclusion goals. Full article
(This article belongs to the Section Health Informatics and Big Data)
Show Figures

Figure 1

12 pages, 1017 KiB  
Article
Forebrain-Specific B-raf Deficiency Reduces NMDA Current and Enhances Small-Conductance Ca2+-Activated K+ (SK) Current
by Cornelia Ruxanda, Christian Alzheimer and Fang Zheng
Int. J. Mol. Sci. 2025, 26(15), 7172; https://doi.org/10.3390/ijms26157172 - 25 Jul 2025
Viewed by 156
Abstract
B-raf (rapidly accelerated fibrosarcoma) is a crucial player within the ERK/MAPK signaling pathway. In the CNS, B-raf has been implicated in neuronal differentiation, long-term memory, and major depression. Mice with forebrain neuron-specific B-raf knockout show behavioral deficits in spatial learning tasks and impaired [...] Read more.
B-raf (rapidly accelerated fibrosarcoma) is a crucial player within the ERK/MAPK signaling pathway. In the CNS, B-raf has been implicated in neuronal differentiation, long-term memory, and major depression. Mice with forebrain neuron-specific B-raf knockout show behavioral deficits in spatial learning tasks and impaired hippocampal long-term potentiation (LTP). To elucidate the mechanism(s) underlying diminished synaptic plasticity in B-raf-deficient mice, we performed whole-cell recordings from CA1 pyramidal cells in hippocampal slices of control and B-raf mutant mice. We found that the NMDA/AMPA ratio of excitatory postsynaptic currents (EPSCs) at the Schaffer collateral—CA1 pyramidal cell synapses was significantly reduced in B-raf mutants, which would at least partially account for their impaired LTP. Interestingly, the reduced NMDA component of field postsynaptic potentials in mutant preparations was partially reinstated by blocking the apamin-sensitive small-conductance Ca2+-activated K+ (SK) channels, which have also been reported to modulate hippocampal LTP and learning tasks. To determine the impact of B-raf-dependent signaling on SK current, we isolated the apamin-sensitive tail current after a strong depolarizing event and found indeed a significantly bigger SK current in B-raf-deficient cells compared to controls, which is consistent with the reduced action potential firing and the stronger facilitating effect of apamin on CA1 somatic excitability in B-raf-mutant hippocampus. Our data suggest that B-raf signaling readjusts the delicate balance between NMDA receptors and SK channels to promote synaptic plasticity and facilitate hippocampal learning and memory. Full article
(This article belongs to the Special Issue Advances in Synaptic Transmission and Plasticity)
Show Figures

Figure 1

22 pages, 16984 KiB  
Article
Small Ship Detection Based on Improved Neural Network Algorithm and SAR Images
by Jiaqi Li, Hongyuan Huo, Li Guo, De Zhang, Wei Feng, Yi Lian and Long He
Remote Sens. 2025, 17(15), 2586; https://doi.org/10.3390/rs17152586 - 24 Jul 2025
Viewed by 182
Abstract
Synthetic aperture radar images can be used for ship target detection. However, due to the unclear ship outline in SAR images, noise and land background factors affect the difficulty and accuracy of ship (especially small target ship) detection. Therefore, based on the YOLOv5s [...] Read more.
Synthetic aperture radar images can be used for ship target detection. However, due to the unclear ship outline in SAR images, noise and land background factors affect the difficulty and accuracy of ship (especially small target ship) detection. Therefore, based on the YOLOv5s model, this paper improves its backbone network and feature fusion network algorithm to improve the accuracy of ship detection target recognition. First, the LSKModule is used to improve the backbone network of YOLOv5s. By adaptively aggregating the features extracted by large-size convolution kernels to fully obtain context information, at the same time, key features are enhanced and noise interference is suppressed. Secondly, multiple Depthwise Separable Convolution layers are added to the SPPF (Spatial Pyramid Pooling-Fast) structure. Although a small number of parameters and calculations are introduced, features of different receptive fields can be extracted. Third, the feature fusion network of YOLOv5s is improved based on BIFPN, and the shallow feature map is used to optimize the small target detection performance. Finally, the CoordConv module is added before the detect head of YOLOv5, and two coordinate channels are added during the convolution operation to further improve the accuracy of target detection. The map50 of this method for the SSDD dataset and HRSID dataset reached 97.6% and 91.7%, respectively, and was compared with a variety of advanced target detection models. The results show that the detection accuracy of this method is higher than other similar target detection algorithms. Full article
Show Figures

Figure 1

18 pages, 1941 KiB  
Article
Design of Virtual Sensors for a Pyramidal Weathervaning Floating Wind Turbine
by Hector del Pozo Gonzalez, Magnus Daniel Kallinger, Tolga Yalcin, José Ignacio Rapha and Jose Luis Domínguez-García
J. Mar. Sci. Eng. 2025, 13(8), 1411; https://doi.org/10.3390/jmse13081411 - 24 Jul 2025
Viewed by 102
Abstract
This study explores virtual sensing techniques for the Eolink floating offshore wind turbine (FOWT), which features a pyramidal platform and a single-point mooring system that enables weathervaning to maximize power production and reduce structural loads. To address the challenges and costs associated with [...] Read more.
This study explores virtual sensing techniques for the Eolink floating offshore wind turbine (FOWT), which features a pyramidal platform and a single-point mooring system that enables weathervaning to maximize power production and reduce structural loads. To address the challenges and costs associated with monitoring submerged components, virtual sensors are investigated as an alternative to physical instrumentation. The main objective is to design a virtual sensor of mooring hawser loads using a reduced set of input features from GPS, anemometer, and inertial measurement unit (IMU) data. A virtual sensor is also proposed to estimate the bending moment at the joint of the pyramid masts. The FOWT is modeled in OrcaFlex, and a range of load cases is simulated for training and testing. Under defined sensor sampling conditions, both supervised and physics-informed machine learning algorithms are evaluated. The models are tested under aligned and misaligned environmental conditions, as well as across operating regimes below- and above-rated conditions. Results show that mooring tensions can be estimated with high accuracy, while bending moment predictions also perform well, though with lower precision. These findings support the use of virtual sensing to reduce instrumentation requirements in critical areas of the floating wind platform. Full article
Show Figures

Figure 1

25 pages, 9119 KiB  
Article
An Improved YOLOv8n-Based Method for Detecting Rice Shelling Rate and Brown Rice Breakage Rate
by Zhaoyun Wu, Yehao Zhang, Zhongwei Zhang, Fasheng Shen, Li Li, Xuewu He, Hongyu Zhong and Yufei Zhou
Agriculture 2025, 15(15), 1595; https://doi.org/10.3390/agriculture15151595 - 24 Jul 2025
Viewed by 185
Abstract
Accurate and real-time detection of rice shelling rate (SR) and brown rice breakage rate (BR) is crucial for intelligent hulling sorting but remains challenging because of small grain size, dense adhesion, and uneven illumination causing missed detections and blurred boundaries in traditional YOLOv8n. [...] Read more.
Accurate and real-time detection of rice shelling rate (SR) and brown rice breakage rate (BR) is crucial for intelligent hulling sorting but remains challenging because of small grain size, dense adhesion, and uneven illumination causing missed detections and blurred boundaries in traditional YOLOv8n. This paper proposes a high-precision, lightweight solution based on an enhanced YOLOv8n with improvements in network architecture, feature fusion, and attention mechanism. The backbone’s C2f module is replaced with C2f-Faster-CGLU, integrating partial convolution (PConv) local convolution and convolutional gated linear unit (CGLU) gating to reduce computational redundancy via sparse interaction and enhance small-target feature extraction. A bidirectional feature pyramid network (BiFPN) weights multiscale feature fusion to improve edge positioning accuracy of dense grains. Attention mechanism for fine-grained classification (AFGC) is embedded to focus on texture and damage details, enhancing adaptability to light fluctuations. The Detect_Rice lightweight head compresses parameters via group normalization and dynamic convolution sharing, optimizing small-target response. The improved model achieved 96.8% precision and 96.2% mAP. Combined with a quantity–mass model, SR/BR detection errors reduced to 1.11% and 1.24%, meeting national standard (GB/T 29898-2013) requirements, providing an effective real-time solution for intelligent hulling sorting. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

20 pages, 7280 KiB  
Article
UAV-DETR: An Enhanced RT-DETR Architecture for Efficient Small Object Detection in UAV Imagery
by Yu Zhou and Yan Wei
Sensors 2025, 25(15), 4582; https://doi.org/10.3390/s25154582 - 24 Jul 2025
Viewed by 254
Abstract
To mitigate the technical challenges associated with small-object detection, feature degradation, and spatial-contextual misalignment in UAV-acquired imagery, this paper proposes UAV-DETR, an enhanced Transformer-based object detection model designed for aerial scenarios. Specifically, UAV imagery often suffers from feature degradation due to low resolution [...] Read more.
To mitigate the technical challenges associated with small-object detection, feature degradation, and spatial-contextual misalignment in UAV-acquired imagery, this paper proposes UAV-DETR, an enhanced Transformer-based object detection model designed for aerial scenarios. Specifically, UAV imagery often suffers from feature degradation due to low resolution and complex backgrounds and from semantic-spatial misalignment caused by dynamic shooting conditions. This work addresses these challenges by enhancing feature perception, semantic representation, and spatial alignment. Architecturally extending the RT-DETR framework, UAV-DETR incorporates three novel modules: the Channel-Aware Sensing Module (CAS), the Scale-Optimized Enhancement Pyramid Module (SOEP), and the newly designed Context-Spatial Alignment Module (CSAM), which integrates the functionalities of contextual and spatial calibration. These components collaboratively strengthen multi-scale feature extraction, semantic representation, and spatial-contextual alignment. The CAS module refines the backbone to improve multi-scale feature perception, while SOEP enhances semantic richness in shallow layers through lightweight channel-weighted fusion. CSAM further optimizes the hybrid encoder by simultaneously correcting contextual inconsistencies and spatial misalignments during feature fusion, enabling more precise cross-scale integration. Comprehensive comparisons with mainstream detectors, including Faster R-CNN and YOLOv5, demonstrate that UAV-DETR achieves superior small-object detection performance in complex aerial scenarios. The performance is thoroughly evaluated in terms of mAP@0.5, parameter count, and computational complexity (GFLOPs). Experiments on the VisDrone2019 dataset benchmark demonstrate that UAV-DETR achieves an mAP@0.5 of 51.6%, surpassing RT-DETR by 3.5% while reducing the number of model parameters from 19.8 million to 16.8 million. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

26 pages, 15535 KiB  
Article
BCA-MVSNet: Integrating BIFPN and CA for Enhanced Detail Texture in Multi-View Stereo Reconstruction
by Ning Long, Zhengxu Duan, Xiao Hu and Mingju Chen
Electronics 2025, 14(15), 2958; https://doi.org/10.3390/electronics14152958 - 24 Jul 2025
Viewed by 89
Abstract
The 3D point cloud generated by MVSNet has good scene integrity but lacks sensitivity to details, causing holes and non-dense areas in flat and weak-texture regions. To address this problem and enhance the point cloud information of weak-texture areas, the BCA-MVSNet network is [...] Read more.
The 3D point cloud generated by MVSNet has good scene integrity but lacks sensitivity to details, causing holes and non-dense areas in flat and weak-texture regions. To address this problem and enhance the point cloud information of weak-texture areas, the BCA-MVSNet network is proposed in this paper. The network integrates the Bidirectional Feature Pyramid Network (BIFPN) into the feature processing of the MVSNet backbone network to accurately extract the features of weak-texture regions. In the feature map fusion stage, the Coordinate Attention (CA) mechanism is introduced into 3DU-Net to obtain the position information on the channel dimension related to the direction, improve the detail feature extraction, optimize the depth map and improve the depth accuracy. The experimental results show that BCA-MVSNet not only improves the accuracy of detail texture reconstruction, but also effectively controls the computational overhead. In the DTU dataset, the Overall and Comp metrics of BCA-MVSNet are reduced by 10.2% and 2.6%, respectively; in the Tanksand Temples dataset, the Mean metrics of the eight scenarios are improved by 6.51%. Three scenes are shot by binocular camera, and the reconstruction quality is excellent in the weak-texture area by combining the camera parameters and the BCA-MVSNet model. Full article
Show Figures

Figure 1

22 pages, 4611 KiB  
Article
MMC-YOLO: A Lightweight Model for Real-Time Detection of Geometric Symmetry-Breaking Defects in Wind Turbine Blades
by Caiye Liu, Chao Zhang, Xinyu Ge, Xunmeng An and Nan Xue
Symmetry 2025, 17(8), 1183; https://doi.org/10.3390/sym17081183 - 24 Jul 2025
Viewed by 190
Abstract
Performance degradation of wind turbine blades often stems from geometric asymmetry induced by damage. Existing methods for assessing damage face challenges in balancing accuracy and efficiency due to their limited ability to capture fine-grained geometric asymmetries associated with multi-scale damage under complex background [...] Read more.
Performance degradation of wind turbine blades often stems from geometric asymmetry induced by damage. Existing methods for assessing damage face challenges in balancing accuracy and efficiency due to their limited ability to capture fine-grained geometric asymmetries associated with multi-scale damage under complex background interference. To address this, based on the high-speed detection model YOLOv10-N, this paper proposes a novel detection model named MMC-YOLO. First, the Multi-Scale Perception Gated Convolution (MSGConv) Module was designed, which constructs a full-scale receptive field through multi-branch fusion and channel rearrangement to enhance the extraction of geometric asymmetry features. Second, the Multi-Scale Enhanced Feature Pyramid Network (MSEFPN) was developed, integrating dynamic path aggregation and an SENetv2 attention mechanism to suppress background interference and amplify damage response. Finally, the Channel-Compensated Filtering (CCF) module was constructed to preserve critical channel information using a dynamic buffering mechanism. Evaluated on a dataset of 4818 wind turbine blade damage images, MMC-YOLO achieves an 82.4% mAP [0.5:0.95], representing a 4.4% improvement over the baseline YOLOv10-N model, and a 91.1% recall rate, an 8.7% increase, while maintaining a lightweight parameter count of 4.2 million. This framework significantly enhances geometric asymmetry defect detection accuracy while ensuring real-time performance, meeting engineering requirements for high efficiency and precision. Full article
(This article belongs to the Special Issue Symmetry and Its Applications in Image Processing)
Show Figures

Figure 1

22 pages, 2420 KiB  
Article
BiEHFFNet: A Water Body Detection Network for SAR Images Based on Bi-Encoder and Hybrid Feature Fusion
by Bin Han, Xin Huang and Feng Xue
Mathematics 2025, 13(15), 2347; https://doi.org/10.3390/math13152347 - 23 Jul 2025
Viewed by 135
Abstract
Water body detection in synthetic aperture radar (SAR) imagery plays a critical role in applications such as disaster response, water resource management, and environmental monitoring. However, it remains challenging due to complex background interference in SAR images. To address this issue, a bi-encoder [...] Read more.
Water body detection in synthetic aperture radar (SAR) imagery plays a critical role in applications such as disaster response, water resource management, and environmental monitoring. However, it remains challenging due to complex background interference in SAR images. To address this issue, a bi-encoder and hybrid feature fuse network (BiEHFFNet) is proposed for achieving accurate water body detection. First, a bi-encoder structure based on ResNet and Swin Transformer is used to jointly extract local spatial details and global contextual information, enhancing feature representation in complex scenarios. Additionally, the convolutional block attention module (CBAM) is employed to suppress irrelevant information of the output features of each ResNet stage. Second, a cross-attention-based hybrid feature fusion (CABHFF) module is designed to interactively integrate local and global features through cross-attention, followed by channel attention to achieve effective hybrid feature fusion, thus improving the model’s ability to capture water structures. Third, a multi-scale content-aware upsampling (MSCAU) module is designed by integrating atrous spatial pyramid pooling (ASPP) with the Content-Aware ReAssembly of FEatures (CARAFE), aiming to enhance multi-scale contextual learning while alleviating feature distortion caused by upsampling. Finally, a composite loss function combining Dice loss and Active Contour loss is used to provide stronger boundary supervision. Experiments conducted on the ALOS PALSAR dataset demonstrate that the proposed BiEHFFNet outperforms existing methods across multiple evaluation metrics, achieving more accurate water body detection. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods in Remote Sensing)
Show Figures

Figure 1

Back to TopTop