Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = pump-lifting technologies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6823 KiB  
Article
Design Optimization of Valve Assemblies in Downhole Rod Pumps to Enhance Operational Reliability in Oil Production
by Seitzhan Zaurbekov, Kadyrzhan Zaurbekov, Doszhan Balgayev, Galina Boiko, Ertis Aksholakov, Roman V. Klyuev and Nikita V. Martyushev
Energies 2025, 18(15), 3976; https://doi.org/10.3390/en18153976 - 25 Jul 2025
Viewed by 273
Abstract
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, [...] Read more.
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, i.e., a problem that accounts for approximately 15% of all failures, as identified in a statistical analysis of the 2022 operational data from the Uzen oilfield in Kazakhstan. The leakage is primarily attributed to the accumulation of mechanical impurities and paraffin deposits between the valve ball and seat, leading to concentrated surface wear and compromised sealing. To mitigate this issue, a novel valve assembly design was developed featuring a flow turbulizer positioned beneath the valve seat. The turbulizer generates controlled vortex motion in the fluid flow, which increases the rotational frequency of the valve ball during operation. This motion promotes more uniform wear across the contact surfaces and reduces the risk of localized degradation. The turbulizers were manufactured using additive FDM technology, and several design variants were tested in a full-scale laboratory setup simulating downhole conditions. Experimental results revealed that the most effective configuration was a spiral plate turbulizer with a 7.5 mm width, installed without axis deviation from the vertical, which achieved the highest ball rotation frequency and enhanced lapping effect between the ball and the seat. Subsequent field trials using valves with duralumin-based turbulizers demonstrated increased operational lifespans compared to standard valves, confirming the viability of the proposed solution. However, cases of abrasive wear were observed under conditions of high mechanical impurity concentration, indicating the need for more durable materials. To address this, the study recommends transitioning to 316 L stainless steel for turbulizer fabrication due to its superior tensile strength, corrosion resistance, and wear resistance. Implementing this design improvement can significantly reduce maintenance intervals, improve pump reliability, and lower operating costs in mature oilfields with high water cut and solid content. The findings of this research contribute to the broader efforts in petroleum engineering to enhance the longevity and performance of artificial lift systems through targeted mechanical design improvements and material innovation. Full article
(This article belongs to the Special Issue Petroleum and Natural Gas Engineering)
Show Figures

Figure 1

10 pages, 915 KiB  
Article
Life Cycle Assessment of Electro-Submersible Pump Systems: Carbon Footprint Mitigation Using Improved Downhole Technology
by Manolo Córdova-Suárez, Juan Córdova-Suárez, Ricardo Teves, Enrique Barreno-Ávila and Fabian Silva-Frey
Energies 2025, 18(11), 2898; https://doi.org/10.3390/en18112898 - 31 May 2025
Viewed by 528
Abstract
Climate change has driven global awareness of environmental issues, leading to the adoption of clean technologies aimed at reducing Greenhouse Gas (GHG) emissions. An effective method to assess environmental mitigation is the quantification of the Product Carbon Footprint (PCF) in the Life Cycle [...] Read more.
Climate change has driven global awareness of environmental issues, leading to the adoption of clean technologies aimed at reducing Greenhouse Gas (GHG) emissions. An effective method to assess environmental mitigation is the quantification of the Product Carbon Footprint (PCF) in the Life Cycle Assessment (LCA) of production processes. In the oil extraction industry, artificial lift systems use electro submersible pumps (ESPs) that can now incorporate new operating principles based on permanent magnet motors (PMMs) and CanSystem (CS) as an alternative to traditional normal induction motors (NIMs) and can help lower the carbon footprint. This study compares the PCF of ESPs equipped with PMMs and CS versus NIMs, using LCA methodologies in accordance with ISO 14067:2018 for defining the Functional Unit (FU) and ISO 14064-1:2019 to calculate the GHG inventory and the amount of CO2 equivalent per year. The analysis spans five key stages and 14 related activities. For ESPs with NIMs, this study calculated 999.9 kg of raw materials, 1491.66 kW/h for manufacturing and storage, and 5.77 × 104 kW/h for use. In contrast, ESPs with PMMs and CS required 656 kg of raw materials and consumed 4.44 × 104 kW/h during use, resulting in an 23% reduction in energy consumption. This contributed to an 21.9% decrease in the PCF. The findings suggest that PMMs and CS offer a sustainable solution for reducing GHG emissions in oil extraction processes globally. Full article
Show Figures

Figure 1

17 pages, 30373 KiB  
Article
Experimental Investigation of Heat Pump Modules Limited to 150 g of Refrigerant R290 and a Dedicated Test Rig
by Stephan Preisinger, Michael Lauermann, Micha Schwarzfurtner, Sebastian Fischer, Stephan Kling, Heinz Moisi and Christoph Reichl
Energies 2025, 18(10), 2455; https://doi.org/10.3390/en18102455 - 10 May 2025
Cited by 1 | Viewed by 411
Abstract
Heat pumps are widely regarded as a key technology for sustainable heating, offering a pathway to significantly reduce fossil fuel dependency and combat the climate crisis. However, replacing individual gas boilers with heat pumps in multi-unit residential buildings remains a substantial challenge despite [...] Read more.
Heat pumps are widely regarded as a key technology for sustainable heating, offering a pathway to significantly reduce fossil fuel dependency and combat the climate crisis. However, replacing individual gas boilers with heat pumps in multi-unit residential buildings remains a substantial challenge despite its immense potential to lower urban greenhouse gas emissions. To address this, the following paper describes the development of a compact, modular heat pump system designed to replace conventional gas boilers, focusing on the building and testing of a prototype for such a modular heat pump system. The prototype supports multiple functionalities, including space heating, cooling, and domestic hot water production. The performance advantages of two different compressor technologies were exploited to optimize the efficiency of the complete system and the pressure lifts associated with applications for heating and domestic hot water production. Thus, measurements were conducted across a range of operating points, comparing different heat pump module types. In the case of the piston compressor module, the Carnot efficiency was in the range of 47.2% to 50.4%. The total isentropic efficiency for floor heating and domestic hot water production was above 0.45 for both piston and rotary compressors. Full article
(This article belongs to the Special Issue Advances in Refrigeration and Heat Pump Technologies)
Show Figures

Figure 1

23 pages, 6493 KiB  
Article
Optimization Analysis of Parameters for Carbon Fiber Composite Sucker Rod Pumping Systems Based on Finite Element Method
by Wenming Zhu, Dong Zhao, Qiang Zhang, Shuai Zhao, Rongjiang Wei and Zhi Xu
Symmetry 2025, 17(3), 343; https://doi.org/10.3390/sym17030343 - 25 Feb 2025
Viewed by 606
Abstract
Carbon fiber composite sucker rods represent a technological innovation in oil production systems, exhibiting excellent performance. This sucker rod not only improves oil production efficiency and reduces accidents, but also saves energy and lowers the operating costs of oil wells. However, the working [...] Read more.
Carbon fiber composite sucker rods represent a technological innovation in oil production systems, exhibiting excellent performance. This sucker rod not only improves oil production efficiency and reduces accidents, but also saves energy and lowers the operating costs of oil wells. However, the working conditions of the carbon fiber composite sucker rod oil extraction system are relatively complex. The carbon fiber composite sucker rod body adopts a symmetrical structure formed by one-time solidification of three layers of fiber (carbon/glass fiber) materials, requiring the use of steel sucker rods in combination, and the impact of various system parameters is not fully understood. This paper focuses on the carbon fiber composite sucker rod as the research object, analyzing the external loads of the carbon fiber composite sucker rod oil extraction system. It also establishes a mechanical model of carbon fiber composite sucker rods, adopts a new finite element modeling method for sucker rod pumping systems, conducts transient dynamic analysis on the lifting motion of carbon fiber composite sucker rods in oil wells, and optimizes system parameters. The example verifies the rationality and feasibility of the finite element model. The results show that the higher the dynamic viscosity of crude oil, the more polished rod dynamometer cars tend to approach a “parallelogram”, and the polished rod load becomes more stable during the lifting process. With larger strokes, the maximum polished rod load increases, the longitudinal vibration amplitude of the carbon fiber composite sucker rod increases, and the load variation becomes more unstable. As the number of strokes increases, the maximum polished rod load and the pump plunger stroke length both increase, leading to higher pump efficiency, but the fluctuation amplitude of the polished rod dynamometer cars also increases, which affects the stability of the sucker rod’s lifting motion. When the carbon fiber sucker rod ratio exceeds 0.5, the difference between the self-weight and polished rod load initially decreases, then increases. As the carbon fiber sucker rod ratio increases, the pump plunger stroke length gradually decreases, and pump efficiency declines. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

26 pages, 14879 KiB  
Article
The Vortex Characteristics and Anti-Vortex Mechanism in a Lateral Agricultural Irrigation Pump Station with a Symmetrical Inlet-Distributed Method
by Zeyu Huang, Can Luo, Yajun Wang, Haojie Liang, Li Cheng, Kangzhu Jing, Rui Zhu and Bowen Zhang
Agriculture 2024, 14(12), 2170; https://doi.org/10.3390/agriculture14122170 - 28 Nov 2024
Viewed by 861
Abstract
Symmetric lateral inlet pumping stations are commonly utilized for water lifting in agricultural multi-crop irrigation districts, but they often share non-ideal flow patterns, which can easily cause pump vibration and sediment deposition. In this paper, a symmetrical lateral pumping station in an irrigation [...] Read more.
Symmetric lateral inlet pumping stations are commonly utilized for water lifting in agricultural multi-crop irrigation districts, but they often share non-ideal flow patterns, which can easily cause pump vibration and sediment deposition. In this paper, a symmetrical lateral pumping station in an irrigation district is taken as the research object, and CFD (Computational Fluid Dynamics) technology is used to study it. The model test used a model scale ratio of λL = 1:18. Results: By comparing the CFD data and test data, the average relative error for the left station is found to be 3.213%, while that for the right station is 5.107%, indicating that the numerical simulation method is reliable. Six different rectification measures are proposed, the cross sectional flow pattern of the pumping station is observed, and the longitudinal profile of axial velocity distribution in the sump is analyzed. The velocity-weighted average angle and hydraulic loss of each case study are also analyzed. The flow operates smoothly in case study 7. The vortex in the approach channel disappears when the columns and bottom sill are finally installed. Compared to the original case study, the velocity-weighted average angle at the 5# station in case study 7 increased by 14%, and it increased by 13.9% at station #9. The flow became more stable, and hydraulic losses were minimized. The simulated hydraulic loss in case study 7 decreased by 14.2%. These findings can serve as a reference for similar pump station projects. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

23 pages, 20317 KiB  
Article
Research on the Unsteady Flow Characteristics of Solid–Liquid Two-Phase Flow in a Deep-Sea Mining Lift Pump and Model Experimental Verification
by Shunjun Hong, Junhong Hu, Pengyun Wei, Haizhong Man, Zihai Yang, Jing Wu and Xiaozhou Hu
J. Mar. Sci. Eng. 2024, 12(9), 1611; https://doi.org/10.3390/jmse12091611 - 10 Sep 2024
Viewed by 1132
Abstract
The deep-sea mining lift pump is one of the pivotal components in deep-sea mineral transportation systems and its internal flow is very complex; consequently, unraveling its unsteady flow behavior pattern holds immense practical value. This study adopts numerical methods to analyze the time-averaged [...] Read more.
The deep-sea mining lift pump is one of the pivotal components in deep-sea mineral transportation systems and its internal flow is very complex; consequently, unraveling its unsteady flow behavior pattern holds immense practical value. This study adopts numerical methods to analyze the time-averaged distribution characteristics of the internal flow field in mining lift pumps, as well as the flow field’s pulsation intensity distribution characteristics, the vortex’s spatiotemporal evolution process in both moving and static cascades, and the time- and frequency-domain pulsation characteristics of internal pressure in each flow passage component under four different flow conditions are also investigated. The hydraulic properties of mining lift pumps under these four different conditions are also evaluated, and the outcomes are benchmarked against those of numerical predictions. Our findings reveal that the interplay between impeller blades and guide vanes significantly influences the pump’s flow characteristics, with the pump’s unsteady flow influencing its hydraulic properties. Experimental validation of this system confirms that the pump under study is in line with design specifications in terms of hydraulic properties. The method validation test on the prototype pump shows that the SST k-ω model is capable of successfully forecasting instability in the flow features of deep-sea mining lift pumps. These results will serve as a theoretical reference for regulating the flow state inside deep-sea mining lift pumps. Full article
(This article belongs to the Special Issue Deep-Sea Mining Technologies: Recent Developments and Challenges)
Show Figures

Figure 1

24 pages, 6311 KiB  
Article
Air-Lift Pumping System for Hybrid Mining of Rare-Earth Elements-Rich Mud and Polymetallic Nodules around Minamitorishima Island
by Yoshiyuki Shimizu, Masatoshi Sugihara, Koichiro Fujinaga, Kentaro Nakamura and Yasuhiro Kato
J. Mar. Sci. Eng. 2024, 12(9), 1470; https://doi.org/10.3390/jmse12091470 - 23 Aug 2024
Cited by 2 | Viewed by 1520
Abstract
REE-rich mud under the seabed at a 5500–5700 m water depth around Minamitorishima island and polymetallic nodules buried in the deep seabed are very promising and attractive to explore and develop. REEs are critical to develop due to the recent paradigm shift to [...] Read more.
REE-rich mud under the seabed at a 5500–5700 m water depth around Minamitorishima island and polymetallic nodules buried in the deep seabed are very promising and attractive to explore and develop. REEs are critical to develop due to the recent paradigm shift to renewable energies based on green technologies. Numerical analysis using a one-dimensional drift–flux model for gas–liquid–solid three-phase flow and gas–liquid two-phase flow was conducted to examine the characteristics of an air-lift pumping system for mining these mineral resources. Empirical equations of REE-rich mud and the physical properties of polymetallic nodules around Minamitorishima island were utilized in the analysis. As a result, the characteristics, i.e., the performance of the system, were clarified in three cases: REE-rich mud, polymetallic nodules, and both. The time transient, i.e., the unsteady characteristics of the system, was also shown, such as the start-up and feeding slurry with REE-rich mud and polymetallic nodules. The findings from the unsteady characteristics will be useful in considering the operation of a real project or a commercial system in the future. Full article
(This article belongs to the Special Issue Deep-Sea Mining Technologies: Recent Developments and Challenges)
Show Figures

Figure 1

15 pages, 10165 KiB  
Article
Experimental Investigation of Film Thickness in Wastewater Airlift Pumps by an Image Processing Method
by Min Jiang, Zhineng Wang and Bingzheng Chen
Water 2024, 16(14), 2010; https://doi.org/10.3390/w16142010 - 15 Jul 2024
Cited by 1 | Viewed by 1253
Abstract
The airlift pump is a key part of wastewater treatment and is employed as an innovative and feasible collection tool. However, as one of the key factors in the lifting capability of airlift pumps, film thickness in the gas–liquid two-phase flow operating in [...] Read more.
The airlift pump is a key part of wastewater treatment and is employed as an innovative and feasible collection tool. However, as one of the key factors in the lifting capability of airlift pumps, film thickness in the gas–liquid two-phase flow operating in pumps is still an unknown topic because it is difficult to measure. This paper proposes a visualization method for measuring film thickness and investigates the film thickness when operating under gas flow with a high rate in airlift pumps using experiments. Firstly, a simulation experiment platform was built, and the images of the film structure were acquired by a high-speed camera. Then, image-processing technology and an image distortion correction were proposed to extract the gas–liquid interface for studying the thickness of the film. The experimental results demonstrated that a large film thickness ranging from 0.15 D to 0.24 D was found in airlift pumps and that its film thickness kept a constant value, even under a high gas superficial velocity, maintaining a large output liquid flow from airlift pumps. As wastewater was carried by wastewater treatment, a larger film thickness of the annular film will benefit the high lifting rate of wastewater. The works in this paper offer valuable insights for the higher performance of working airlift pumps and wastewater treatment efficiency. Full article
(This article belongs to the Special Issue Wastewater Treatment Technologies: Theory, Methods and Applications)
Show Figures

Figure 1

20 pages, 4063 KiB  
Article
Techno-Economic Evaluation of CSP–PV Hybrid Plants with Heat Pump in a Temperature Booster Configuration
by Javier Iñigo-Labairu, Jürgen Dersch, Tobias Hirsch, Stefano Giuliano, Matthias Loevenich and Diego Córdoba
Energies 2024, 17(11), 2634; https://doi.org/10.3390/en17112634 - 29 May 2024
Cited by 3 | Viewed by 1553
Abstract
Concentrated solar power (CSP)—photovoltaic (PV) hybrid power plants allow for the generation of cheap electrical energy with a high capacity factor (CF). A deep integration of both technologies offers synergies, using parts of the PV generated electricity for heating the thermal storage tank [...] Read more.
Concentrated solar power (CSP)—photovoltaic (PV) hybrid power plants allow for the generation of cheap electrical energy with a high capacity factor (CF). A deep integration of both technologies offers synergies, using parts of the PV generated electricity for heating the thermal storage tank of the CSP unit. Such configurations have been previously studied for systems coupled by an electric resistance heater (ERH). In this work, the coupling of a CSP and a PV plant using a heat pump (HP) was analyzed due to the higher efficiency of heat pumps. The heat pump is used as a booster to lift the salt temperature in the storage system from 383 to 565 °C in order to reach higher turbine efficiency. A techno-economic analysis of the system was performed using the levelized cost of electricity (LCOE), the capacity factor and nighttime electricity fraction as variables for the representation. The CSP–PV hybrid with a booster heat pump was compared with other technologies such as a CSP–PV hybrid plant coupled by an electric heater, a standalone parabolic trough plant (PT), a photovoltaic system with battery storage (PV–BESS), and a PV thermal power plant (PVTP) consisting of a PV plant with an electric heater, thermal energy storage (TES) and a power block (PB). Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

16 pages, 5646 KiB  
Article
Pressure Pulsation Characteristics on the Bulb Body of a Submersible Tubular Pump
by Jian Wang, Ze Chen, Linghao Li, Chuan Wang, Kangle Teng, Qiang He, Jiren Zhou, Shanshan Li, Weidong Cao, Xiuli Wang and Hongliang Wang
Water 2024, 16(5), 789; https://doi.org/10.3390/w16050789 - 6 Mar 2024
Cited by 1 | Viewed by 1376
Abstract
Submersible tubular pumps are an ideal choice for pump stations that require high flow rates and low lift. These pumps combine the unique features of submersible motors with axial flow pump technology, making them highly efficient and cost-effective. They have found extensive applications [...] Read more.
Submersible tubular pumps are an ideal choice for pump stations that require high flow rates and low lift. These pumps combine the unique features of submersible motors with axial flow pump technology, making them highly efficient and cost-effective. They have found extensive applications in China’s rapidly developing water conservancy industry. In this research, we focus on investigating the pressure pulsation characteristics of the internal bulb body in a specific pump station project in China. To conduct our analysis, we utilize a model of the submersible tubular pump and strategically position 18 monitoring points. These monitoring points cover various sections, including the impeller inlet and outlet, guide vane outlet, as well as the inlet, middle, and outlet sections of the bulb body segment. To calculate the unsteady flow of the system, we employ numerical simulation techniques. By combining the outcomes of model tests, we determine the pressure pulsation characteristics. The comparison of results reveals a remarkable similarity between the efficiency–head curves obtained from the numerical simulation and the model test. While the model test yields slightly higher head results, the numerical simulation indicates slightly higher efficiency values. This finding lends strong support to the reliability of numerical simulation results, which can provide valuable insights for the design and optimization of submersible tubular pumps. Overall, submersible tubular pumps demonstrate their suitability for pump stations with high flow rates and low lift requirements. The study of pressure pulsation characteristics within the bulb body contributes to a better understanding of their performance and facilitates their further application in the field of water conservancy engineering. Full article
(This article belongs to the Special Issue Hydraulics and Hydrodynamics in Fluid Machinery)
Show Figures

Figure 1

18 pages, 3152 KiB  
Review
A Review of Super-High-Temperature Heat Pumps over 100 °C
by Jian Sun, Yinwu Wang, Yu Qin, Guoshun Wang, Ran Liu and Yongping Yang
Energies 2023, 16(12), 4591; https://doi.org/10.3390/en16124591 - 8 Jun 2023
Cited by 11 | Viewed by 7589
Abstract
The high-temperature heat pump, as a low-carbonization technology, has broad application prospects in replacing boiler heating, reducing carbon dioxide emissions, and improving the energy utilization efficiency. In this paper, the working fluid, cycle process, key equipment (compressor), and application scenarios of high-temperature heat [...] Read more.
The high-temperature heat pump, as a low-carbonization technology, has broad application prospects in replacing boiler heating, reducing carbon dioxide emissions, and improving the energy utilization efficiency. In this paper, the working fluid, cycle process, key equipment (compressor), and application scenarios of high-temperature heat pumps are introduced in detail. Firstly, the research direction of the working fluid is introduced and the existing working fluid substitution is analyzed and summarized. Then, the characteristics of different heat pump cycles such as compression, absorption, and hybrid heat pumps are introduced. In the aspect of key equipment, the application range and research status of different types of compressors are emphatically introduced. Finally, the application scenario of high-temperature heat pumps is prospected. In addition to the application of industrial heating, it is often used for heat storage to improve the regulatory characteristics of the system. The new heat pump electricity storage system has great application potential in the field of renewable energy consumption. Based on the above analysis of high-temperature heat pumps, four development prospects are put forward: low-Global-Warming-Potential (GWP) working fluid; cycles of temperature lift greater than 80 °C; a compressor with better high-temperature performance; and circulation characteristics of heat pump electricity storage. Full article
(This article belongs to the Special Issue Advances in High-Temperature Heat Pumps)
Show Figures

Figure 1

11 pages, 909 KiB  
Article
Assessing the Potential of Heat Pumps to Reduce the Radiator Size on Small Satellites
by Nick S. Bennett and Brian Lim
Energies 2023, 16(10), 4010; https://doi.org/10.3390/en16104010 - 10 May 2023
Cited by 2 | Viewed by 1916
Abstract
Future small satellites will demand high-performance on-board electronics, requiring sophisticated approaches to heat rejection beyond simply increasing the radiator surface area. An interesting alternative approach is to increase the surface temperature of the radiator, using a heat pump. In this study, calculations were [...] Read more.
Future small satellites will demand high-performance on-board electronics, requiring sophisticated approaches to heat rejection beyond simply increasing the radiator surface area. An interesting alternative approach is to increase the surface temperature of the radiator, using a heat pump. In this study, calculations were carried out to compute the theoretical radiator size reduction potential enacted by having a heat pump as part of a satellite’s thermal management system. The practical likelihood of a ‘typical’ vapor compression cycle (VCC) heat pump satisfying theoretical requirements was considered. In agreement with theoretical calculations, employing a ‘typical’ VCC heat pump could either increase or decrease the required radiator surface area. The choice of heat pump and its design is therefore crucial. A heat pump with a large temperature lift is essential for satellite radiator cooling applications, with the coefficient of performance (COP) being less important. Even with a low COP, such as 2.4, a ‘typical’ heat pump providing a large temperature lift, close to 60 °C, could reduce the satellite’s radiator surface area by a factor close to 1.4. This is a significant potential reduction. The decision on whether to pursue this approach compared to alternatives, such as deployable radiators, should consider the relative complexity, cost, weight, size, reliability, etc., of the two options. The focus of this study is VCC heat pumps; however, the results provide performance targets for less mature heat pump technologies, e.g., caloric devices, which could ultimately be applied in space. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

20 pages, 8781 KiB  
Article
Underground Gravity Energy Storage: A Solution for Long-Term Energy Storage
by Julian David Hunt, Behnam Zakeri, Jakub Jurasz, Wenxuan Tong, Paweł B. Dąbek, Roberto Brandão, Epari Ritesh Patro, Bojan Đurin, Walter Leal Filho, Yoshihide Wada, Bas van Ruijven and Keywan Riahi
Energies 2023, 16(2), 825; https://doi.org/10.3390/en16020825 - 11 Jan 2023
Cited by 40 | Viewed by 61181
Abstract
Low-carbon energy transitions taking place worldwide are primarily driven by the integration of renewable energy sources such as wind and solar power. These variable renewable energy (VRE) sources require energy storage options to match energy demand reliably at different time scales. This article [...] Read more.
Low-carbon energy transitions taking place worldwide are primarily driven by the integration of renewable energy sources such as wind and solar power. These variable renewable energy (VRE) sources require energy storage options to match energy demand reliably at different time scales. This article suggests using a gravitational-based energy storage method by making use of decommissioned underground mines as storage reservoirs, using a vertical shaft and electric motor/generators for lifting and dumping large volumes of sand. The proposed technology, called Underground Gravity Energy Storage (UGES), can discharge electricity by lowering large volumes of sand into an underground mine through the mine shaft. When there is excess electrical energy in the grid, UGES can store electricity by elevating sand from the mine and depositing it in upper storage sites on top of the mine. Unlike battery energy storage, the energy storage medium of UGES is sand, which means the self-discharge rate of the system is zero, enabling ultra-long energy storage times. Furthermore, the use of sand as storage media alleviates any risk for contaminating underground water resources as opposed to an underground pumped hydro storage alternative. UGES offers weekly to pluriannual energy storage cycles with energy storage investment costs of about 1 to 10 USD/kWh. The technology is estimated to have a global energy storage potential of 7 to 70 TWh and can support sustainable development, mainly by providing seasonal energy storage services. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

15 pages, 2009 KiB  
Article
Performance Analysis of Two Systems Combining Heat Pump and Water Vapor Compression for Waste Heat Recovery
by Chunwei Zhang, Dongdong Chai, Xi Pan, Junlong Xie and Jianye Chen
Appl. Sci. 2022, 12(24), 12853; https://doi.org/10.3390/app122412853 - 14 Dec 2022
Cited by 3 | Viewed by 2140
Abstract
In the area of the heating industry, a heat pump is an efficient alternative technology to achieve energy saving and carbon emission reduction. The conventional heat pump has gradually been applied to replace the traditional direct electrical heating method while the required temperature [...] Read more.
In the area of the heating industry, a heat pump is an efficient alternative technology to achieve energy saving and carbon emission reduction. The conventional heat pump has gradually been applied to replace the traditional direct electrical heating method while the required temperature is below 100 °C. A heat pump with temperatures between 100–140 °C is in the stage of rapid development. However, a heat pump with temperatures above 150 °C has received relatively little attention. In this paper, two systems combining a heat pump and water vapor compression (CHPVC and HPTVC) have been studied for waste heat recovery from 45 °C to a water vapor supply with a temperature above 150 °C. A thermodynamic model has been proposed to analyze the performance of the two systems, and a twin-screw compressor model has been developed to calculate the isentropic efficiency of the compressor applied in the heat pump. Four different parameters have been used to analyze the energy efficiency. The simulation results show that while the inlet water temperature is 45 °C and the required vapor temperature is 150 °C, the optimal COPs of CHPVC and HPTVC are 2.432 and 2.436, respectively. Moreover, CHPVC is more suitable for the large saturation temperature lift, and HPTVC is more suitable for a relatively small temperature difference between the inlet water and the required vapor. Compared with the direct electrical heating method or the conventional two-stage heat pump, these two systems are remarkably efficient and show good energy-saving potential. Full article
(This article belongs to the Special Issue State-of-the-Art Energy Science and Technology in China)
Show Figures

Figure 1

17 pages, 6736 KiB  
Article
Investigation on the Influence of Flow Passage Structure on the Performance of Bionic Pumps
by Ertian Hua, Haitao Luo, Rongsheng Xie, Wanqian Chen, Shouwei Tang and Dongyang Jin
Processes 2022, 10(12), 2569; https://doi.org/10.3390/pr10122569 - 2 Dec 2022
Cited by 5 | Viewed by 1836
Abstract
The flapping hydrofoil bionic pump drives the hydrofoil to make simple harmonic motion and completes one-way water pumping in the flow passage. As a new pump device that can realize ultra-low head water delivery, the flapping hydrofoil device can effectively enrich the drainage [...] Read more.
The flapping hydrofoil bionic pump drives the hydrofoil to make simple harmonic motion and completes one-way water pumping in the flow passage. As a new pump device that can realize ultra-low head water delivery, the flapping hydrofoil device can effectively enrich the drainage methods of plain rivers and improve water delivery efficiency, and the passage structure is the key factor of ultra-low head devices. In this paper, the two-dimensional flow passage models are established, and the flapping of the airfoil is realized by using the dynamic grid technology. Based on the continuity equation, k-ε turbulence model, and Reynolds time-averaged equation, the flapping hydrofoil device is simulated by transient calculation. The hydraulic performance characteristics of various passages with different widths, such as square passages, micro-arc passages, and convergent–divergent passages, are calculated and simulated. The results show that, under the fixed motion parameters, the narrower the passage width, the higher the outlet velocity, lift, and efficiency of the device, the lower the flow rate. The contraction–expansion pipe can effectively improve the efficiency and flow rate of the device, and, before the wake is stable, the longer the contraction section the better the lifting effect. However, the micro-arc pipeline will affect the formation of a double-row anti-Karman vortex street, resulting in greater energy loss and in its hydraulic performance being inferior to that of the square passage. Full article
Show Figures

Figure 1

Back to TopTop