Underground Gravity Energy Storage: A Solution for Long-Term Energy Storage
Abstract
:1. Introduction
2. Materials and Methods
Underground Gravity Energy Storage (UGES)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Global Challenges Abandoned Mines: The Scars of the Past. Available online: https://globalchallenges.ch/issue/6/abandoned-mines-the-scars-of-the-past/ (accessed on 1 January 2023).
- Wikipedia List of Deepest Mines. Available online: https://en.wikipedia.org/wiki/List_of_deepest_mines (accessed on 1 January 2023).
- Centre of Disease Control and Prevention Number of Active Underground Mines by Sector and Year, 1983-2020. 2021. Available online: https://wwwn.cdc.gov/niosh-mining/MMWC/Mine (accessed on 1 January 2023).
- ABCO Elevator Traction Elevators 101. Available online: https://abcoelevator.com/elevator-types-components/traction-elevators-101/ (accessed on 1 January 2023).
- Hwang, J.; Liu, C.; Chen, P. Design of Permanent-Magnet Synchronous Gear Motor with High Efficiency for Elevators. In Proceedings of the 2012 IEEE Third International Conference on Sustainable Energy Technologies (ICSET), Kathmandu, Nepal, 24–27 September 2012; pp. 205–210. [Google Scholar]
- Al-Kodmany, K. Tall Buildings and Elevators: A Review of Recent Technological Advances. Buildings 2015, 5, 1070–1104. [Google Scholar] [CrossRef] [Green Version]
- Mohaney, S.; Shah, M. Emerging Trends in Vertical Elevating System. Int. J. Eng. Manag. Res. IJEMR 2015, 5, 51–56. [Google Scholar]
- Groppi, D.; Garcia, D.; Basso, G.; Cumo, F.; De Santoli, L. Analysing Economic and Environmental Sustainability Related to the Use of Battery and Hydrogen Energy Storages for Increasing the Energy Independence of Small Islands. Energy Convers. Manag. 2018, 177, 64–76. [Google Scholar] [CrossRef]
- Hunt, J.D.; Zakeri, B.; Leal Filho, W.; Schneider, P.S.; de Assis Brasil Weber, N.; Vieira, L.W.; Ermel, C.; de Castro, N.J.; Barbosa, P.S.F.; Nascimento, A.; et al. Swimming Pool Thermal Energy Storage, an Alternative for Distributed Cooling Energy Storage. Energy Convers. Manag. 2021, 230, 113796. [Google Scholar] [CrossRef]
- Hunt, J.D.; Weber, N.d.A.B.; Zakeri, B.; Diaby, A.T.; Byrne, P.; Filho, W.L.; Schneider, P.S. Deep Seawater Cooling and Desalination: Combining Seawater Air Conditioning and Desalination. Sustain. Cities Soc. 2021, 74, 103257. [Google Scholar] [CrossRef]
- Hunt, J.D.; Zakeri, B.; Nascimento, A.; Garnier, B.; Pereira, M.G.; Bellezoni, R.A.; de Assis Brasil Weber, N.; Schneider, P.S.; Machado, P.P.B.; Ramos, D.S. High Velocity Seawater Air-Conditioning with Thermal Energy Storage and Its Operation with Intermittent Renewable Energies. Energy Effic. 2020, 13, 1825–1840. [Google Scholar] [CrossRef]
- Schmidt, O.; Melchior, S.; Hawkes, A.; Staffell, I. Projecting the Future Levelized Cost of Electricity Storage Technologies. Joule 2019, 3, 81–100. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Bremner, S.; Menictas, C.; Kay, M. Battery Energy Storage System Size Determination in Renewable Energy Systems: A Review. Renew. Sustain. Energy Rev. 2018, 91, 109–125. [Google Scholar] [CrossRef]
- Lorenzi, G.; da Silva Vieira, R.; Silva, C.; Martin, A. Techno-Economic Analysis of Utility-Scale Energy Storage in Island Settings. J. Energy Storage 2019, 21, 691–705. [Google Scholar] [CrossRef]
- Lazaroiu, G.; Ciupageanu, D. Multi-Criteria Decision Making in Sustainable Renewable Energy Systems. In Proceedings of the International Multidisciplinary Scientific GeoConference SGEM2019, Albena, Bulgaria, 28 June–6 July 2019. [Google Scholar]
- Ferreira, H.L.; Garde, R.; Fulli, G.; Kling, W.; Lopes, J.P. Characterisation of Electrical Energy Storage Technologies. Energy 2013, 53, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Hajiaghasi, S.; Salemnia, A.; Hamzeh, M. Hybrid Energy Storage System for Microgrids Applications: A Review. J. Energy Storage 2019, 21, 543–570. [Google Scholar] [CrossRef]
- Wadia, C.; Albertus, P.; Srinivasan, V. Resource Constraints on the Battery Energy Storage Potential for Grid and Transportation Applications. J. Power Sources 2011, 196, 1593–1598. [Google Scholar] [CrossRef] [Green Version]
- Taibi, E.; del Valle, C.; Howells, M. Strategies for Solar and Wind Integration by Leveraging Flexibility from Electric Vehicles: The Barbados Case Study. Energy 2018, 164, 65–78. [Google Scholar] [CrossRef]
- Hunt, J.D.; Freitas, M.A.V.D.; Pereira Junior, A.O. A Review of Seasonal Pumped-Storage Combined with Dams in Cascade in Brazil. Renew. Sustain. Energy Rev. 2017, 70, 385–398. [Google Scholar] [CrossRef]
- Hunt, J.D.; Falchetta, G.; Parkinson, S.; Vinca, A.; Zakeri, B.; Byers, E.; Jurasz, J.; Quaranta, E.; Grenier, E.; Pereira Junior, A.O.; et al. Hydropower and Seasonal Pumped Hydropower Storage in the Indus Basin:Pros and Cons. J. Energy Storage 2021, 41, 102916. [Google Scholar] [CrossRef]
- Hunt, J.; Byers, E.; Wada, Y.; Parkinson, S.; Gernaat, D.; Langan, S.; Vuuren, D.; Riahi, K. Global Resource Potential of Seasonal Pumped-Storage for Energy and Water Storage. Nat. Commun. 2020, 11, 947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, J.D.; Freitas, M.A.V.; Pereira Junior, A.O. Enhanced-Pumped-Storage: Combining Pumped-Storage in a Yearly Storage Cycle with Dams in Cascade in Brazil. Energy 2014, 78, 513–523. [Google Scholar] [CrossRef]
- Hunt, J.D.; Guillot, V.; de Freitas, M.A.V.; Solari, R.S.E. Energy Crop Storage: An Alternative to Resolve the Problem of Unpredictable Hydropower Generation in Brazil. Energy 2016, 101, 91–99. [Google Scholar] [CrossRef]
- Zakeri, B.; Syri, S. Electrical Energy Storage Systems: A Comparative Life Cycle Cost Analysis. Renew. Sustain. Energy Rev. 2015, 42, 569–596. [Google Scholar] [CrossRef]
- Jülch, V. Comparison of Electricity Storage Options Using Levelized Cost of Storage (LCOS) Method. Appl. Energy 2016, 183, 1594–1606. [Google Scholar] [CrossRef]
- Hunt, J.D.; Zakeri, B.; Lopes, R.; Barbosa, P.S.F.; Nascimento, A.; de Castro, N.J.; Brandão, R.; Schneider, P.S.; Wada, Y. Existing and New Arrangements of Pumped-Hydro Storage Plants. Renew. Sustain. Energy Rev. 2020, 129, 109914. [Google Scholar] [CrossRef]
- Hunt, J.D.; Zakeri, B.; Nascimento, A.; Brandão, R. 3-Pumped Hydro Storage (PHS). In Storing Energy, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 37–65. ISBN 978-0-12-824510-1. [Google Scholar]
- Kapila, S.; Oni, A.; Kumar, A. The Development of Techno-Economic Models for Large-Scale Energy Storage Systems. Energy 2017, 140, 656–672. [Google Scholar] [CrossRef]
- Stocks, M.; Stocks, R.; Lu, B.; Cheng, C.; Blakers, A. Global Atlas of Closed-Loop Pumped Hydro Energy Storage. Joule 2021, 5, 270–284. [Google Scholar] [CrossRef]
- Lukkari, E. Pyhäjärven Pumppuvesivoiman Demolaitos Tekeille. Available online: https://www.ostologistiikka.fi/kategoriat/teknologia/pyhajarven-pumppuvesivoiman-demolaitos-tekeille (accessed on 1 January 2023).
- Hakulinen, A. A Pump Storage Station for Pyhäsalmi Mine. Available online: https://www.epv.fi/en/project/a-pump-storage-station-for-pyhasalmi-mine/ (accessed on 1 January 2023).
- Jiang, D.; Chen, S.; Liu, W.; Ren, Y.; Guo, P.; Li, Z. Underground Hydro-Pumped Energy Storage Using Coal Mine Goafs: System Performance Analysis and a Case Study for China. Front. Earth Sci. 2021, 9, 760464. [Google Scholar] [CrossRef]
- Brücker, C.; Preuße, A. The Future of Underground Spatial Planning and the Resulting Potential Risks from the Point of View of Mining Subsidence Engineering. Int. J. Min. Sci. Technol. 2020, 30, 93–98. [Google Scholar] [CrossRef]
- Tong, W.; Lu, Z.; Chen, W.; Han, M.; Zhao, G.; Wang, X.; Deng, Z. Solid Gravity Energy Storage: A Review. J. Energy Storage 2022, 53, 105226. [Google Scholar] [CrossRef]
- Energy Vault. Energy Vault. Available online: https://www.energyvault.com/ (accessed on 1 January 2023).
- Rodrigues, E.M.G.; Godina, R.; Santos, S.F.; Bizuayehu, A.W.; Contreras, J.; Catalão, J.P.S. Energy Storage Systems Supporting Increased Penetration of Renewables in Islanded Systems. Energy 2014, 75, 265–280. [Google Scholar] [CrossRef]
- Powell, J.; Danby, G.; Coullahan, R.; Griffis, F.H.; Jordan, J. Maglev Energy Storage and the Grid. In Proceedings of the Advanced Energy Conference, New York, NY, USA; 2010. [Google Scholar]
- Bottenfield, G.; Hatipoglu, K.; Panta, Y. Advanced Rail Energy and Storage: A Analysis of Potential Implementations for the State of West Virginia. In Proceedings of the 2018 North American Power Symposium, NAPS 2018, Fargo, ND, USA, 9–11 September 2018. [Google Scholar]
- Cava, F.; Kelly, J.; Peitzke, W.; Brown, M.; Sullivan, S. Chapter 4—Advanced Rail Energy Storage: Green Energy Storage for Green Energy. In Storing Energy; Letcher, T.M., Ed.; Elsevier: Oxford, UK, 2016; pp. 69–86. ISBN 978-0-12-803440-8. [Google Scholar]
- Moazzami, M.; Moradi, J.; Shahinzadeh, H.; Gharehpetian, G.B.; Mogoei, H. Optimal Economic Operation of Microgrids Integrating Wind Farms and Advanced Rail Energy Storage System. Int. J. Renew. Energy Res. 2018, 8, 1155–1164. [Google Scholar]
- Newbery, D. Shifting Demand and Supply over Time and Space to Manage Intermittent Generation: The Economics of Electrical Storage. Energy Policy 2018, 113, 711–720. [Google Scholar] [CrossRef]
- Hunt, J.; Jurasz, J.; Zakeri, B.; Nascimento, A.; Cross, S.; Caten, C.; Pacheco, D.; Pongpairoj, P.; Leal Filho, W.; Tomé, F.; et al. Electric Truck Hydropower, a Flexible Solution to Hydropower in Mountainous Regions. Energy 2022, 248, 123495. [Google Scholar] [CrossRef]
- Gravitricity. Gravitricity: Fast, Long-Life Energy Storage. Available online: https://gravitricity.com/ (accessed on 1 January 2023).
- Gravity Power. Gravity Power: Low-Cost Energy Storage with Minimal Environmental Impact. Available online: https://www.gravitypower.net/ (accessed on 1 January 2023).
- Berrada, A.; Loudiyi, K.; Zorkani, I. System Design and Economic Performance of Gravity Energy Storage. J. Clean. Prod. 2017, 156, 317–326. [Google Scholar] [CrossRef]
- Heindl-Energy. Gravity Storage. Available online: https://heindl-energy.com/ (accessed on 1 January 2023).
- Tarigheh, A. Gravity Power Module. Mater’s Thesis, Delft University of Technology, Delft, The Netherlands, 2014. [Google Scholar]
- Morstyn, T.; Chilcott, M.; McCulloch, M.D. Gravity Energy Storage with Suspended Weights for Abandoned Mine Shafts. Appl. Energy 2019, 239, 201–206. [Google Scholar] [CrossRef]
- Sandru, O. Gravel Energy Storage System Funded by Bill Gates. Available online: https://www.greenoptimistic.com/gravel-energy-storage/ (accessed on 1 January 2023).
- Hunt, J.D.; Zakeri, B.; de Barros, A.G.; Filho, W.L.; Marques, A.D.; Barbosa, P.S.F.; Schneider, P.S.; Farenzena, M. Buoyancy Energy Storage Technology: An Energy Storage Solution for Islands, Coastal Regions, Offshore Wind Power and Hydrogen Compression. J. Energy Storage 2021, 40, 102746. [Google Scholar] [CrossRef]
- Aneke, M.; Wang, M. Energy Storage Technologies and Real Life Applications—A State of the Art Review. Appl. Energy 2016, 179, 350–377. [Google Scholar] [CrossRef] [Green Version]
- Nipkow, J.; Schalcher, M. Energy Consumption and Efficiency Potentials of Lifts; ARENA: Zurich, Switzerland, 2006. [Google Scholar]
- Kremer, G.; Chiu, M.-C.; Lin, C.-Y.; Gupta, S.; Claudio, D.; Thevenot, H. Application of Axiomatic Design, TRIZ, and Mixed Integer Programming to Develop Innovative Designs: A Locomotive Ballast Arrangement Case Study. Int. J. Adv. Manuf. Technol. 2012, 61, 827–842. [Google Scholar] [CrossRef]
- Almubarak, A.; Abuhaimed, W.; Almazrouee, A. Corrosion Behavior of the Stressed Sensitized Austenitic Stainless Steels of High Nitrogen Content in Seawater. Int. J. Electrochem. 2013, 2013, 970835. [Google Scholar] [CrossRef] [Green Version]
- Wuxi Zhonglian Yongsheng Special Steel Co., Ltd. Factory Bulk Purchase Cast Iron Ms 40mn2 Round Steel Bar. 2022. Available online: Purchase_1600349507806.html?spm=a2700.7735675.normal_offer.d_image.4ca24daddkvfoT&s=p (accessed on 1 January 2023).
- Shandong Haihengxin Metal Material Co., Ltd. Factory Supply 8Pb 99.994% Purity Lead Sheet Lead Plate China Wholesale; Shandong Haihengxin Metal Material Co., Ltd.: Liaocheng, China, 2022. [Google Scholar]
- Cairo Fresh for Import & Export. River Sand. Alibaba. Available online: https://cairominerals.trustpass.alibaba.com/ (accessed on 1 January 2023).
- Tanvir, S.; Un-Noor, F.; Boriboonsomsin, K.; Gao, Z. Feasibility of Operating a Heavy-Duty Battery Electric Truck Fleet for Drayage Applications. Transp. Res. Rec. 2020, 2675, 258–268. [Google Scholar] [CrossRef]
- Trading Economics South Africa Electricity Production. Available online: https://tradingeconomics.com/south-africa/electricity-production (accessed on 1 January 2023).
- Renewables.ninja Welcome to Renewables. Ninja. 2022. Available online: https://www.renewables.ninja/ (accessed on 1 January 2023).
- Wijayanta, A.T.; Oda, T.; Purnomo, C.W.; Kashiwagi, T.; Aziz, M. Liquid Hydrogen, Methylcyclohexane, and Ammonia as Potential Hydrogen Storage: Comparison Review. Int. J. Hydrogen Energy 2019, 44, 15026–15044. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. Electrical Energy Storage: White Paper; International Electrotechnical Commission: Geneva, Switzerland, 2011. [Google Scholar]
- Renewable Energy Association. Energy Storage in the UK: An Overview; Renewable Energy Association: London, UK, 2016. [Google Scholar]
- Akhil, A.; Huff, G.; Currier, A.; Kaun, B.; Rastler, D.; Chen, S.; Cotter, A.; Bradshaw, D.; Gauntlett, W. DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA; Sandia National Laboratories: Albuquerque, NM, USA, 2013. [Google Scholar]
- World Energy Council. World Energy Resources: E-Storage; World Energy Council: London, UK, 2016. [Google Scholar]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency. Technology Roadmap: Hydrogen and Fuel Cells; International Energy Agency: Paris, France, 2015. [Google Scholar]
- Hunt, J.; Byers, E.; Riahi, K.; Langan, S. Comparison between Seasonal Pumped-Storage and Conventional Reservoir Dams from the Water, Energy and Land Nexus Perspective. Energy Convers. Manag. 2018, 166, 385–401. [Google Scholar] [CrossRef]
- Hamdy, S.; Morosuk, T.; Tsatsaronis, G. Exergoeconomic Optimization of an Adiabatic Cryogenics-Based Energy Storage System. Energy 2019, 183, 812–824. [Google Scholar] [CrossRef]
- Global Energy Monitor. Global Coal Mine Tracker. Available online: https://globalenergymonitor.org/projects/global-coal-mine-tracker/ (accessed on 1 January 2023).
- Bārdule, A.; Liepiņš, J.; Liepiņš, K.; Stola, J.; Butlers, A.; Lazdiņš, A. Variation in Carbon Content among the Major Tree Species in Hemiboreal Forests in Latvia. Forests 2021, 12, 1292. [Google Scholar] [CrossRef]
- Seral-Ascaso, A.; Garriga, R.; Sanjuán, M.; Razal, J.; Lahoz, R.; Laguna, M.; de la Fuente, G.; Muñoz, E. ‘Laser Chemistry’ Synthesis, Physicochemical Properties, and Chemical Processing of Nanostructured Carbon Foams. Nanoscale Res. Lett. 2013, 8, 233. [Google Scholar] [CrossRef] [Green Version]
- Hunt, J.D.; Zakeri, B.; Falchetta, G.; Nascimento, A.; Wada, Y.; Riahi, K. Mountain Gravity Energy Storage: A New Solution for Closing the Gap between Existing Short- and Long-Term Storage Technologies. Energy 2020, 190, 116419. [Google Scholar] [CrossRef]
- Hunt, J.D.; Jurasz, J.; Zakeri, B.; Nascimento, A.; Dąbek, P.; Brandão, R.; Castro, N.J.; Schneider, P.S.; Leal Filho, W.; Riahi, K. Electric Truck Gravity Energy Storage, a Solution for Long-Term Energy Storage. SSRN Electron. J. 2022, 1, 1. [Google Scholar] [CrossRef]
Sand (tons) | Average Height Difference (m) | Long-Term Energy Storage (GWh) | Storage Cycle (Days) |
---|---|---|---|
4,000,000 | 200 | 1.74 | 7.27 |
500 | 4.36 | 18.17 | |
1000 | 8.72 | 36.33 | |
40,000,000 | 200 | 17.44 | 72.67 |
500 | 43.60 | 181.67 | |
1000 | 87.20 | 363.33 |
Shaft Depth (m) | Container Dimensions (m × m) | Speed (m/s) | Power (MW) |
---|---|---|---|
200 | 1 × 1 | 0.25 | 0.64 |
0.5 | 1.27 | ||
1 | 2.54 | ||
2 × 2 | 0.25 | 2.54 | |
0.5 | 5.09 | ||
1 | 10.17 | ||
4 × 4 | 0.25 | 10.17 | |
0.5 | 20.34 | ||
1 | 40.68 | ||
500 | 1 × 1 | 0.25 | 1.59 |
0.5 | 3.18 | ||
1 | 6.36 | ||
2 × 2 | 0.25 | 6.36 | |
0.5 | 12.71 | ||
1 | 25.43 | ||
4 × 4 | 0.25 | 25.43 | |
0.5 | 50.86 | ||
1 | 101.71 | ||
1000 | 1 × 1 | 0.25 | 3.18 |
0.5 | 6.36 | ||
1 | 12.71 | ||
2 × 2 | 0.25 | 12.71 | |
0.5 | 25.43 | ||
1 | 50.86 | ||
4 × 4 | 0.25 | 50.86 | |
0.5 | 101.71 | ||
1 | 203.42 |
Type | Description | Cost |
---|---|---|
Material | Desert sand and water, costing $1 per ton, are the materials chosen for energy storage [58]. The amount of sand required is 40,000,000 tons. The lifetime of the sand is considered to be 100 years. | 40 million USD |
Mining equipment | The mining equipment consists of dump trucks, conveyor booms, excavators, bucket-wheel excavators, and soil compactors. The lifetime of the mining equipment is ten years. | 60 million USD |
Power generation | This item includes the cables, the motor/generators, and the electrical equipment to increase the voltage of the electricity. The power is estimated to have a cost of 2000 USD/kW. The plant has a speed of 0.5 m/s and a power capacity of 30 MW. The lifetime of the power generation system is 20 years. | 60 million USD |
Total cost | The UGES energy storage system assumes 40,000,000 tons of sand with an average generation head of 1000 m. | 160 million USD |
Energy storage costs | The plant’s storage capacity is 98 GWh, and the energy storage investment costs USD $160,000,000. | 1.6 USD/kWh |
Average Height Difference (m) | Energy Storage Costs (USD/kWh) | Power Capacity (MW) |
---|---|---|
200 | 8.2 | 6 |
500 | 3.3 | 15 |
1000 | 1.6 | 30 |
1500 | 1.1 | 45 |
Installed Capacity Cost (USD/kW) | Energy Storage Cost (USD/kWh) | Capacity (MW) | Components Lifetime (Years) | |
---|---|---|---|---|
Seasonal pumped hydro storage (SPHS) | 400–1000 | 2–50 | 30–10,000 | 100 (dam), 30 (turbine) |
Batteries (Lithium-ion) | 250 | 150–200 | 0.001–1000 | 3–6 (battery) |
UGES | 2000–4000 | 1–10 | 1–100 | 100 (mine), 10 (trucks), 20 (motor) |
Wood (tons) | Carbon Dioxide Captured (tones) | Average Height Difference (m) | Energy Storage (GWh) |
---|---|---|---|
72,000,000 | 264,000,000 | 200 | 31.392 |
500 | 78.48 | ||
1000 | 156.96 | ||
1500 | 235.44 |
Technologies | Advantage | Disadvantage |
---|---|---|
Energy Vault | It can be implemented in any location. It does not require an existing exhaust mine to operate. | The energy storage costs are significantly higher because concrete blocks are more expensive than sand and because the average height of the tower is significantly smaller than in UGES projects. |
Gravitricity | Does not require upper and lower storage sites. The electricity generation and energy storage are continuous and do not require to be combined with ultra-capacitors or batteries. | UGES stores 100 to 10,000 times more energy than Gravitricity, significantly lowering energy storage costs. Gravitricity is limited to one block of mass going up and down. |
Lift Energy Storage Technology (LEST) | Provides decentralized energy storage services close to the demand for energy storage. There are already building with regenerative braking systems. | High-rise buildings are some of the most valuable locations in a city. Filling a building with containers might not be a viable alternative. The building has restrictive ceiling bearing capacity, which restricts the weight a building can support. |
Mountain Gravity Energy Storage (MGES) [74] | Has potential in locations with high mountains. MGES can also be used to generate hydropower, increasing the overall returns of the project. | UGES lower storage site uses a decommissioned mine. MGES upper and lower storage sites can be located a considerable horizontal distance apart, which increases costs and lowers the system’s efficiency. |
Electric Truck Gravity Energy Storage (ETGES) [75] | Has potential in locations with high mountains. ETGES can also be used to generate hydropower, increasing the overall returns of the project. | UGES lower storage site uses a decommissioned mine. ETGES upper and lower storage sites are located at large horizontal distances apart, which increases costs and lowers the system’s efficiency. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hunt, J.D.; Zakeri, B.; Jurasz, J.; Tong, W.; Dąbek, P.B.; Brandão, R.; Patro, E.R.; Đurin, B.; Filho, W.L.; Wada, Y.; et al. Underground Gravity Energy Storage: A Solution for Long-Term Energy Storage. Energies 2023, 16, 825. https://doi.org/10.3390/en16020825
Hunt JD, Zakeri B, Jurasz J, Tong W, Dąbek PB, Brandão R, Patro ER, Đurin B, Filho WL, Wada Y, et al. Underground Gravity Energy Storage: A Solution for Long-Term Energy Storage. Energies. 2023; 16(2):825. https://doi.org/10.3390/en16020825
Chicago/Turabian StyleHunt, Julian David, Behnam Zakeri, Jakub Jurasz, Wenxuan Tong, Paweł B. Dąbek, Roberto Brandão, Epari Ritesh Patro, Bojan Đurin, Walter Leal Filho, Yoshihide Wada, and et al. 2023. "Underground Gravity Energy Storage: A Solution for Long-Term Energy Storage" Energies 16, no. 2: 825. https://doi.org/10.3390/en16020825