Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (965)

Search Parameters:
Keywords = pulsed discharge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4765 KiB  
Article
Ultrasonic EDM for External Cylindrical Surface Machining with Graphite Electrodes: Horn Design and Hybrid NSGA-II–AHP Optimization of MRR and Ra
by Van-Thanh Dinh, Thu-Quy Le, Duc-Binh Vu, Ngoc-Pi Vu and Tat-Loi Mai
Machines 2025, 13(8), 675; https://doi.org/10.3390/machines13080675 (registering DOI) - 1 Aug 2025
Abstract
This study presents the first investigation into the application of ultrasonic vibration-assisted electrical discharge machining (UV-EDM) using graphite electrodes for external cylindrical surface machining—an essential surface in the production of tablet punches and sheet metal-forming dies. A custom ultrasonic horn was designed and [...] Read more.
This study presents the first investigation into the application of ultrasonic vibration-assisted electrical discharge machining (UV-EDM) using graphite electrodes for external cylindrical surface machining—an essential surface in the production of tablet punches and sheet metal-forming dies. A custom ultrasonic horn was designed and fabricated using 90CrSi material to operate effectively at a resonant frequency of 20 kHz, ensuring stable vibration transmission throughout the machining process. A Box–Behnken experimental design was employed to explore the effects of five process parameters—vibration amplitude (A), pulse-on time (Ton), pulse-off time (Toff), discharge current (Ip), and servo voltage (SV)—on two key performance indicators: material removal rate (MRR) and surface roughness (Ra). The optimization process was conducted in two stages: single-objective analysis to maximize MRR while ensuring Ra < 4 µm, followed by a hybrid multi-objective approach combining NSGA-II and the Analytic Hierarchy Process (AHP). The optimal solution achieved a high MRR of 9.28 g/h while maintaining Ra below the critical surface finish threshold, thus meeting the practical requirements for punch surface quality. The findings confirm the effectiveness of the proposed horn design and hybrid optimization strategy, offering a new direction for enhancing productivity and surface integrity in cylindrical EDM applications using graphite electrodes. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

9 pages, 671 KiB  
Article
Comparative Effects of Pulsed Field and Radiofrequency Ablation on Blood Cell Parameters During Pulmonary Vein Isolation
by Lucio Addeo, Federica Di Feo, Mario Vaccariello, Alfonso Varriale, Benedetta Brescia, Davide Bonadies, Stefano Nardi, Luigi Argenziano, Vittoria Marino, Vincenza Abbate, Luigi Cocchiara, Pasquale Guarini, Laura Adelaide Dalla Vecchia and Francesco Donatelli
Biomedicines 2025, 13(8), 1828; https://doi.org/10.3390/biomedicines13081828 - 25 Jul 2025
Viewed by 387
Abstract
Background: Pulsed field ablation (PFA) is a novel non-thermal modality for pulmonary vein isolation (PVI) in atrial fibrillation (AF), offering myocardial selectivity through irreversible electroporation while sparing surrounding structures. However, concerns have emerged regarding potential subclinical hemolysis, reflected by alterations in biochemical markers [...] Read more.
Background: Pulsed field ablation (PFA) is a novel non-thermal modality for pulmonary vein isolation (PVI) in atrial fibrillation (AF), offering myocardial selectivity through irreversible electroporation while sparing surrounding structures. However, concerns have emerged regarding potential subclinical hemolysis, reflected by alterations in biochemical markers such as lactate dehydrogenase (LDH). Methods: We conducted a retrospective, single-center study involving 249 patients undergoing PVI: 121 treated with PFA (PulseSelect or FARAPULSE) and 128 with radiofrequency (RF) ablation (PVAC catheter). Laboratory parameters were assessed at baseline, post-procedure, and at discharge, including hemoglobin, hematocrit, red blood cell (RBC) count, platelet count, creatinine, and LDH. The primary endpoint was the variation in blood cell indices; the secondary endpoint was the evaluation of LDH and hematocrit changes. Statistical analysis included t-tests and chi-square tests. Results: Baseline characteristics and pre-procedural labs did not differ significantly between groups. No significant changes in hemoglobin, hematocrit, RBC count, platelet count, or creatinine were observed post-ablation or at discharge. However, LDH levels significantly increased in the PFA group both post-procedurally and at discharge (p < 0.001), without concurrent changes in other blood cell parameters. Conclusions: PFA and RF ablation yield comparable hematological profiles after PVI, with no significant impact on key blood cell parameters. Nonetheless, the consistent rise in LDH levels in the PFA group suggests mild, subclinical hemolysis or tissue injury due to more extensive lesions. While supporting the hematologic safety of PFA, these findings underscore the need for further studies to assess the clinical significance of these biochemical alterations, particularly in high-risk patients or extensive ablation settings. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

10 pages, 411 KiB  
Case Report
Combination of Dexmedetomidine and Low-Dose Ketamine in 4 Sugar Gliders (Petaurus breviceps) Undergoing Elective Castration
by Elisa Silvia D’Urso, Monia Martorelli, Giulia Bersanetti, Paolo Selleri and Chiara De Gennaro
Vet. Sci. 2025, 12(8), 699; https://doi.org/10.3390/vetsci12080699 - 25 Jul 2025
Viewed by 158
Abstract
Four entire male sugar gliders (Petaurus breviceps) belonging to the same colony were presented for elective orchiectomy. After clinical examination, dexmedetomidine (120 μg/kg) in combination with ketamine (5 mg/kg) were administered subcutaneously (SC). Once righting and pedal withdrawal reflexes were lost, [...] Read more.
Four entire male sugar gliders (Petaurus breviceps) belonging to the same colony were presented for elective orchiectomy. After clinical examination, dexmedetomidine (120 μg/kg) in combination with ketamine (5 mg/kg) were administered subcutaneously (SC). Once righting and pedal withdrawal reflexes were lost, ringer lactate solution, enrofloxacin and meloxicam were administered SC and a bilateral intratesticular block with lidocaine 0.25% was performed. Heart, respiratory rates and pulse oximetry values were recorded every minute. Onset of sedation, additional use of isoflurane, duration of anaesthesia, duration of surgery, time of recovery after atipamezole administration, quality of recovery and time of food intake were recorded. Postoperative assessment (posture, level of activity, vocalisation, response to manipulation, attention to the surgical wound) was performed hourly until discharge, five hours after surgery. Dexmedetomidine in combination with ketamine provided adequate short-lasting anaesthesia for castration in 3 out of 4 sugar gliders. One sugar glider needed additional isoflurane administration to perform orchiectomy. No perioperative additional analgesia was needed in any sugar glider. Full article
Show Figures

Figure 1

14 pages, 3135 KiB  
Article
Selective Gelation Patterning of Solution-Processed Indium Zinc Oxide Films via Photochemical Treatments
by Seullee Lee, Taehui Kim, Ye-Won Lee, Sooyoung Bae, Seungbeen Kim, Min Woo Oh, Doojae Park, Youngjun Yun, Dongwook Kim, Jin-Hyuk Bae and Jaehoon Park
Nanomaterials 2025, 15(15), 1147; https://doi.org/10.3390/nano15151147 - 24 Jul 2025
Viewed by 221
Abstract
This study presents a photoresist-free patterning method for solution-processed indium zinc oxide (IZO) thin films using two photochemical exposure techniques, namely pulsed ultraviolet (UV) light and UV-ozone, and a plasma-based method using oxygen (O2) plasma. Pulsed UV light delivers short, high-intensity [...] Read more.
This study presents a photoresist-free patterning method for solution-processed indium zinc oxide (IZO) thin films using two photochemical exposure techniques, namely pulsed ultraviolet (UV) light and UV-ozone, and a plasma-based method using oxygen (O2) plasma. Pulsed UV light delivers short, high-intensity flashes of light that induce localised photochemical reactions with minimal thermal damage, whereas UV-ozone enables smooth and uniform surface oxidation through continuous low-pressure UV irradiation combined with in situ ozone generation. By contrast, O2 plasma generates ionised oxygen species via radio frequency (RF) discharge, allowing rapid surface activation, although surface damage may occur because of energetic ion bombardment. All three approaches enabled pattern formation without the use of conventional photolithography or chemical developers, and the UV-ozone method produced the most uniform and clearly defined patterns. The patterned IZO films were applied as active layers in bottom-gate top-contact thin-film transistors, all of which exhibited functional operation, with the UV-ozone-patterned devices exhibiting the most favourable electrical performance. This comparative study demonstrates the potential of photochemical and plasma-assisted approaches as eco-friendly and scalable strategies for next-generation IZO patterning in electronic device applications. Full article
Show Figures

Graphical abstract

19 pages, 4782 KiB  
Article
PD Detection and Analysis Triggered by Metal Protrusion in GIS Through Various Methods
by Weifeng Xin, Wei Song, Manling Dong, Xiaochuan Huang, Xiaoshi Kou, Zhenyu Zhan, Xinyue Shi and Xutao Han
Appl. Sci. 2025, 15(14), 8113; https://doi.org/10.3390/app15148113 - 21 Jul 2025
Viewed by 254
Abstract
Defects in GIS can be effectively detected by detecting the partial discharge (PD). The common methods of detecting partial discharge are pulse current, ultrasonic and UHF (ultra-high frequency). However, the results of different methods may be different due to the different physical quantities [...] Read more.
Defects in GIS can be effectively detected by detecting the partial discharge (PD). The common methods of detecting partial discharge are pulse current, ultrasonic and UHF (ultra-high frequency). However, the results of different methods may be different due to the different physical quantities detected. It is important to research the differences between the PD detection methods for the PD detection and analysis. In this study, we designed metal protrusion defects in GIS, including protrusion on the conductor and enclosure. Then, we detected the PD of defects using pulse current, UHF and ultrasonic methods at the same time. The PRPD patterns, maximum discharge amplitude of different defects and PD inception voltage (PDIV) detected by the three methods were analyzed. The PRPD patterns and discharge amplitude of the different methods were very similar to each other, but the PDIVs were different. It can be concluded that the process from the PD inception to breakdown can be divided into four sections based on the PRPD and the maximum discharge amplitude. The similarity between the three methods is because their signals are all related to the pulse current during the PD process, and differences in their PDIVs are caused by the differences in sensitivity. The sensitivity of the pulse current is the lowest among the three methods due to its poor anti-jamming capability. The sensitivity of UHF is higher, and that of ultrasonic is the highest. Full article
(This article belongs to the Special Issue Advances in Monitoring and Fault Diagnosis for Power Equipment)
Show Figures

Figure 1

21 pages, 3527 KiB  
Article
Research on Lithium Iron Phosphate Battery Balancing Strategy for High-Power Energy Storage System
by Ren Zhou, Junyong Lu, Yiting Wu, Hehui Zhang and Kangwei Yan
Energies 2025, 18(14), 3671; https://doi.org/10.3390/en18143671 - 11 Jul 2025
Cited by 1 | Viewed by 306
Abstract
For the problem of consistency decline during the long-term use of battery packs for high-voltage and high-power energy storage systems, a dynamic timing adjustment balancing strategy is proposed based on the charge–discharge topology. Compared with the traditional balancing strategy, the dynamic timing adjustment [...] Read more.
For the problem of consistency decline during the long-term use of battery packs for high-voltage and high-power energy storage systems, a dynamic timing adjustment balancing strategy is proposed based on the charge–discharge topology. Compared with the traditional balancing strategy, the dynamic timing adjustment balance strategy is more suitable for the transient high-frequency pulse and high-rate output of a high-power energy storage system. It gives full play to the pulse output adjustment function of the integrated charge–discharge topology. The advantages of this strategy include improving the balance between battery groups, the operating capacity of the system, and improving the continuous working ability of the system. Combined with the work condition of the high-power energy storage system, a balance control model is established, and a cycle charge–discharge test platform of battery packs is built. The effectiveness and advantages of the balance strategy of dynamic timing adjustment are verified by the experiment and simulations. The balancing time is less than 2 min, and the voltage difference is less than 6 mv. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

14 pages, 2726 KiB  
Article
Streamer Discharge Modeling for Plasma-Assisted Combustion
by Stuart Reyes and Shirshak Kumar Dhali
Plasma 2025, 8(3), 28; https://doi.org/10.3390/plasma8030028 - 10 Jul 2025
Viewed by 277
Abstract
Some of the popular and successful atmospheric pressure fuel/air plasma-assisted combustion methods use repetitive ns pulsed discharges and dielectric-barrier discharges. The transient phase in such discharges is dominated by transport under strong space charge from ionization fronts, which is best characterized by the [...] Read more.
Some of the popular and successful atmospheric pressure fuel/air plasma-assisted combustion methods use repetitive ns pulsed discharges and dielectric-barrier discharges. The transient phase in such discharges is dominated by transport under strong space charge from ionization fronts, which is best characterized by the streamer model. The role of the nonthermal plasma in such discharges is to produce radicals, which accelerates the chemical conversion reaction leading to temperature rise and ignition. Therefore, the characterization of the streamer and its energy partitioning is essential to develop a predictive model. We examine the important characteristics of streamers that influence combustion and develop some macroscopic parameters. Our results show that the radicals’ production efficiency at an applied field is nearly independent of time and the radical density generated depends only on the electrical energy density coupled to the plasma. We compare the results of the streamer model to the zero-dimensional uniform field Townsend-like discharge, and our results show a significant difference. The results concerning the influence of energy density and repetition rate on the ignition of a hydrogen/air fuel mixture are presented. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

15 pages, 2939 KiB  
Article
Optimization of Process Parameters for WEDM Processing SiCp/Al Based on Graphene Working Fluid
by Zhou Sun, Weining Lei, Linglei Kong and Yafeng He
Processes 2025, 13(7), 2156; https://doi.org/10.3390/pr13072156 - 7 Jul 2025
Viewed by 309
Abstract
In the process of machining an aluminum matrix silicon carbide (SiCp/Al) composite material using wire electric discharge machining (WEDM), the thermal conductivity and dielectric properties of working fluid, such as discharge medium and cool carrier, directly determine the material removal rate (MRR) and [...] Read more.
In the process of machining an aluminum matrix silicon carbide (SiCp/Al) composite material using wire electric discharge machining (WEDM), the thermal conductivity and dielectric properties of working fluid, such as discharge medium and cool carrier, directly determine the material removal rate (MRR) and surface roughness (Ra). In this paper, graphene-working fluid is innovatively used as working medium to optimize the discharge process due to its high thermal conductivity and field emission characteristics. The single-factor experiments show that graphene can increase the MRR by 11.16% and decrease the Ra by 29.96% compared with traditional working fluids. In order to analyze the multi-parameter coupling effect, an L16 (44) orthogonal test is further designed, and the effects of the pulse width (Ton), duty cycle (DC), power tube number (PT), and wire speed (WS) on the MRR and Ra are determined using a signal-to-noise analysis. Based on a gray relational grade analysis, a multi-objective optimization model was established, and the priority of the MRR and Ra was determined using an AHP, and finally the optimal parameter combination (Ton = 22 μs, DC = 1:4, PT = 3, WS = 2) was obtained. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

11 pages, 478 KiB  
Article
Peripheral Perfusion Index: An Adjunct for the ED Triage or a Powerful Objective Tool to Predict Patient Outcomes?
by Veysi Siber, Serdal Ateş, Tuba Şafak, Ebru Güney, Aycan Uluçay, Şeyda Gedikaslan, Sinan Özdemir, Muhammed Sezai Bazna, Michal Pruc, Pawel Patrzylas, Lukasz Szarpak, Burak Katipoglu and Ahmet Burak Erdem
J. Clin. Med. 2025, 14(13), 4616; https://doi.org/10.3390/jcm14134616 - 29 Jun 2025
Viewed by 496
Abstract
Background/Objectives: Accurate and timely triage is essential for optimizing clinical outcomes and resource allocation in emergency departments (EDs). The Peripheral Perfusion Index (PPI), a non-invasive and objective parameter derived from pulse oximetry, may offer added value in early risk stratification. This study [...] Read more.
Background/Objectives: Accurate and timely triage is essential for optimizing clinical outcomes and resource allocation in emergency departments (EDs). The Peripheral Perfusion Index (PPI), a non-invasive and objective parameter derived from pulse oximetry, may offer added value in early risk stratification. This study aimed to analyze the correlation between the PPI measured at triage and at Emergency Severity Index (ESI) levels, as well as to determine if the PPI may function as a predictive tool to facilitate early risk identification before patient disposition. Methods: In this prospective cross-sectional study, adult ambulatory patients presenting to a tertiary care ED were enrolled. At triage, PPI and standard vital signs were recorded, and patients were classified using the five-level ESI system. The diagnostic performance of PPI and ESI in predicting ED discharge was assessed using receiver operating characteristic (ROC) curve analysis, with comparative evaluation performed via DeLong’s test. Results: Lower PPI values were consistently associated with higher ESI acuity levels and more intensive care requirements. Patients who were discharged had significantly higher median PPI values (4.0) compared to those admitted to wards (2.1) or intensive care units (1.9). PPI also distinguished survivors from non-survivors (median PPI: 3.60 vs. 1.15). ROC analysis showed that the PPI demonstrated a good discriminative capacity for forecasting ED discharge, equal to the efficacy of ESI (AUC: 0.926 vs. 0.903; p < 0.001). Conclusions: The PPI could improve post-triage risk classification and enhance current triage techniques like ESI, especially in cases of unclear or borderline presentations, but further validation in prospective trials is required. Full article
(This article belongs to the Special Issue Advancements in Emergency Medicine Practices and Protocols)
Show Figures

Figure 1

28 pages, 17221 KiB  
Article
Simulation of Flow Field and Experimental Study on the Electric Discharge Machining of Small Holes in Renewable Dielectrics
by Ruili Wang, Yangjing Zhao, Binghui Dong, Shuo Sun, Na Xiao and Wuyi Ming
Micromachines 2025, 16(7), 767; https://doi.org/10.3390/mi16070767 - 29 Jun 2025
Viewed by 260
Abstract
Vegetable oil is regarded as a medium that can replace kerosene in electrical discharge machining (EDM) hole processing due to its renewability and environmental friendliness. Meanwhile, numerical simulation serves as an effective means to study the behavior of the gap flow field during [...] Read more.
Vegetable oil is regarded as a medium that can replace kerosene in electrical discharge machining (EDM) hole processing due to its renewability and environmental friendliness. Meanwhile, numerical simulation serves as an effective means to study the behavior of the gap flow field during EDM processing. Based on this, this study explored the influence of hole size and different vegetable oil dielectrics (sunflower seed oil, canola oil, and soybean oil) on the movement of electro-corrosion residues in the processing gap. The simulation results demonstrate that the viscosity of the oil affects the escape rate of the particles. In holes of 1 mm and 4 mm of size, the escape rate of canola oil at any time period is superior to that of sunflower seed oil and soybean oil. In a 1 mm hole, its average escape rate reached 19.683%, which was 0.24% and 0.19% higher than that of sunflower seed oil and soybean oil, respectively. Subsequently, experiments were conducted in combination with the simulation results to explore the influence of current, pulse width, and pulse interval on hole processing. This further confirmed the application potential of vegetable oil in electrical discharge micro-hole processing and provided theoretical support and experimental basis for optimizing the green manufacturing process. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

16 pages, 2230 KiB  
Article
The Status of the Early-Stage Fish Resources and Hydrologic Influencing Conditions in the Guiping Section of the Xunjiang River
by Huifeng Li, Weitao Chen, Dapeng Wang, Xiaoyu Lin, Li Yu, Chengdong He, Jie Li and Yuefei Li
Sustainability 2025, 17(13), 5930; https://doi.org/10.3390/su17135930 - 27 Jun 2025
Viewed by 297
Abstract
To investigate the species composition, reproductive dynamics, and hydrological drivers of fish resources in the early stage in the Guiping section of the Xunjiang River, we conducted a two-year survey (2022–2023) downstream of the Datengxia Dam. A total of 22,464 fish eggs and [...] Read more.
To investigate the species composition, reproductive dynamics, and hydrological drivers of fish resources in the early stage in the Guiping section of the Xunjiang River, we conducted a two-year survey (2022–2023) downstream of the Datengxia Dam. A total of 22,464 fish eggs and larvae were collected, representing 6 orders, 17 families, and 67 species, with Cyprinidae (58.2%) as the dominant family. Dominant species included Squaliobarbus curriculus, Gobiidae, Hemiculter leucisculus, and Culter, exhibiting significant interannual variation in abundance. The breeding season peaked from May to September, accounting for 94.6% of annual recruitment. Hydrological conditions strongly influenced reproductive output: the multiple flood pulse periods in 2022 (peak discharge: 29,000 m3/s) yielded 34.997 billion eggs and larvae, whereas reduced flows in 2023 (peak discharge: 12,200 m3/s) led to a 75.4% decline (8.620 billion). Redundancy analysis (RDA) revealed that discharge, water temperature, natural hydrological data, and dissolved oxygen were the primary environmental drivers, explaining 46.11% of variability in larval abundance (p < 0.001). Notably, the proportion of important economic fish, “four major Chinese carps”, plummeted from 4.9% (2022) to less than 0.1% (2023), indicating spawning ground function degradation. Our results demonstrate that flood pulses are essential for sustaining fish recruitment, particularly for pelagic spawning riverine fish like the four major Chinese carps. Their proportion plummeted to less than 0.1% in 2023, highlighting the urgent need for eco-hydrological management in the Xunjiang River. Full article
Show Figures

Figure 1

35 pages, 5219 KiB  
Review
Pulsed Power Plasma Stimulation: A Comprehensive Review and Field Insights
by Son T. Nguyen, Mohamed E.-S. El-Tayeb, Mohamed Adel Gabry and Mohamed Y. Soliman
Energies 2025, 18(13), 3334; https://doi.org/10.3390/en18133334 - 25 Jun 2025
Viewed by 537
Abstract
Pulsed Power Plasma Stimulation (3PS) represents a promising and environmentally favorable alternative to conventional well stimulation techniques for enhancing subsurface permeability. This comprehensive review tracks the evolution of plasma-based rock stimulation, offering insights from key laboratory, numerical, and field-scale studies. The review begins [...] Read more.
Pulsed Power Plasma Stimulation (3PS) represents a promising and environmentally favorable alternative to conventional well stimulation techniques for enhancing subsurface permeability. This comprehensive review tracks the evolution of plasma-based rock stimulation, offering insights from key laboratory, numerical, and field-scale studies. The review begins with foundational electrohydraulic discharge concepts and progresses through the evolution of Pulsed Arc Electrohydraulic Discharge (PAED) and the more advanced 3PS systems. High-voltage, ultrafast plasma discharges generate mechanical shockwaves and localized thermal effects that result in complex fracture networks, particularly in tight and crystalline formations. Compared to conventional well stimulation techniques, 3PS reduces water use, avoids chemical additives, and minimizes induced seismicity. Laboratory studies demonstrate significant improvements in permeability, porosity, and fracture intensity, while field trials show an increase in production from oil, gas, and geothermal wells. However, 3PS faces some limitations such as short stimulation radii and logistical constraints in wireline-based delivery systems. Emerging technologies like plasma-assisted drilling and hybrid PDC–plasma tools offer promising integration pathways. Overall, 3PS provides a practical, scalable, low-impact stimulation approach with broad applicability across energy sectors, especially in environmentally sensitive or water-scarce regions. Full article
(This article belongs to the Special Issue Pulsed Power Science and High Voltage Discharge)
Show Figures

Figure 1

16 pages, 2516 KiB  
Article
Study of the Friction Contact of HIPIMS Magnetron-Sputtered TiB2 Against Aluminium at Temperatures up to 300 °C
by Gonzalo G. Fuentes, Marya Baloch, José Fernández Palacio, Pablo Amezqueta, Rebeca Bueno, Jonathan Fernández de Ara, Herbert Gabriel, Cayetano Hernández, Pilar Prieto and Germán Alcalá
Materials 2025, 18(13), 2975; https://doi.org/10.3390/ma18132975 - 23 Jun 2025
Viewed by 609
Abstract
In this study, we investigated the frictional properties of TiB2 films produced by high-power impulse magnetron sputtering and compared them with those of TiN- and CrN-sputtered coatings also made using high-power pulsed discharges. The films were characterised by scanning electron microscopy, Electron [...] Read more.
In this study, we investigated the frictional properties of TiB2 films produced by high-power impulse magnetron sputtering and compared them with those of TiN- and CrN-sputtered coatings also made using high-power pulsed discharges. The films were characterised by scanning electron microscopy, Electron Probe Micro-Analysis, nanoindentation and friction tests. Sliding friction analyses were performed against aluminium surfaces at different temperatures, ranging from room temperature to 300 °C. The TiB2 coatings exhibited hardness values of about 39 GPa, regardless of the bias potential used between −50 V and −100 V, a low modulus of around 300 GPa and a dense compact columnar microstructure with grain sizes between 51 and 68 nm in diameter. The friction behaviour on aluminium produced the transfer of this element to the films, at rates that depended on the test temperature. The TiN and CrN coatings exhibited low–medium adhesion to aluminium at room temperature and severe transfer during the friction tests at 150 °C. In the case of the TiB2 films, the adhesion of aluminium during friction tests was low for temperatures up to 175 °C. In fact, a clear transition of the mild-to-severe adhesion of aluminium on TiB2 was observed in the temperature range of 175 °C to 200 °C for the testing conditions evaluated in this study, which was concomitant with the evolution observed for the friction coefficients. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

8 pages, 2259 KiB  
Case Report
Successful Management of a Pancreatic Abscess in a Dog with Juvenile Diabetes Mellitus Through Ultrasound-Guided Drainage and Medical Therapy
by Alexandra Daravigka, Stefanos Ninis, Panagiotis Bourdekas, Alexandros O. Konstantinidis, Argyrios Ginoudis, Katerina K. Adamama-Moraitou, Maria Lyraki and Nektarios Soubasis
Vet. Sci. 2025, 12(7), 604; https://doi.org/10.3390/vetsci12070604 - 20 Jun 2025
Viewed by 664
Abstract
A five-month-old female mixed-breed dog presented with a two-week history of polyuria, polydipsia, and vomiting. Clinical examination revealed poor body condition, growth retardation, pale oral mucous membranes, weak pulse, and prolonged capillary refill time. Laboratory findings included neutrophilic leukocytosis with a regenerative left [...] Read more.
A five-month-old female mixed-breed dog presented with a two-week history of polyuria, polydipsia, and vomiting. Clinical examination revealed poor body condition, growth retardation, pale oral mucous membranes, weak pulse, and prolonged capillary refill time. Laboratory findings included neutrophilic leukocytosis with a regenerative left shift, fasting hyperglycemia, elevated fructosamine, glycated hemoglobin, and β-hydroxybutyrate concentrations, while the acid–base balance remained normal. Canine-specific pancreatic lipase and trypsin-like immunoreactivity concentrations ruled out an underlying pancreatitis or exocrine pancreatic insufficiency, respectively. Urinalysis showed glycosuria and ketonuria. Supportive care included antibiotics and regular insulin administration. Abdominal ultrasonography identified a pancreatic cavity with a thick wall and mixed echogenic fluid. Ultrasound-guided drainage was performed without complications. Cytology confirmed a pancreatic abscess with pyogranulomatous inflammation, though the culture results were negative. The dog was discharged with intermediate-acting lente insulin. Follow-up ultrasonographic evaluations at 7, 14, and 21 days and 5 months post-drainage showed no recurrence. The diabetes remained well-controlled one year post-discharge. This case report describes the successful management of a dog with juvenile diabetes mellitus complicated by a pancreatic abscess, highlighting the effectiveness of percutaneous ultrasound-guided drainage combined with medical therapy. Full article
(This article belongs to the Section Veterinary Internal Medicine)
Show Figures

Figure 1

15 pages, 4154 KiB  
Article
Femtosecond Laser-Modulated Oxygen Vacancies in LiFePO4 Thick Electrodes for Rapid Ion Transport
by Xiaowei Han, Lu Chen, Hongshui Wang, Ban Chen, Tai Yang, Donghui Wang and Chunyong Liang
Coatings 2025, 15(7), 738; https://doi.org/10.3390/coatings15070738 - 20 Jun 2025
Viewed by 415
Abstract
Although thick electrodes hold significant potential for enhancing battery energy density, their practical application is limited by restricted ion transport kinetics. Constructing porous structures within thick electrodes is a widely adopted strategy to address this limitation, but it often compromises mass retention and [...] Read more.
Although thick electrodes hold significant potential for enhancing battery energy density, their practical application is limited by restricted ion transport kinetics. Constructing porous structures within thick electrodes is a widely adopted strategy to address this limitation, but it often compromises mass retention and mechanical integrity. In this study, a microchannel structure that balances the electrochemical and mechanical properties of the electrode was identified through simulation and precisely fabricated using femtosecond laser technology. Furthermore, the ultra-short pulse duration and high pulse energy of femtosecond lasers introduce oxygen vacancies into the electrode material, thereby enhancing its electrical conductivity. The obtained electrode exhibited excellent electrochemical performance under high-rate charging and discharging conditions, achieving significantly enhanced cycling stability and capacity retention, with a capacity 1.99 times greater than that of the unstructured electrode after 100 cycles. Meanwhile, the mechanical stability of the laser-processed electrode was maintained. This study provides new insights into the structural design and processing of the thick electrode and contributes to advancements in the field of energy storage. Full article
Show Figures

Graphical abstract

Back to TopTop