error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (246)

Search Parameters:
Keywords = pseudovirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 13312 KB  
Article
Precision-Engineered Dermatan Sulfate-Mimetic Glycopolymers for Multi-Targeted SARS-CoV-2 Inhibition
by Lihao Wang, Lei Gao, Chendong Yang, Mengfei Yin, Jiqin Sun, Luyao Yang, Chanjuan Liu, Simon F. R. Hinkley, Guangli Yu and Chao Cai
Mar. Drugs 2025, 23(12), 486; https://doi.org/10.3390/md23120486 - 18 Dec 2025
Viewed by 505
Abstract
The ongoing COVID-19 pandemic, caused by SARS-CoV-2, continues to pose major global health challenges despite extensive vaccination efforts. Variant escape, waning immunity, and reduced vaccine efficacy in immunocompromised populations underscore the urgent need for complementary antiviral therapeutics. Here, we report the design, synthesis, [...] Read more.
The ongoing COVID-19 pandemic, caused by SARS-CoV-2, continues to pose major global health challenges despite extensive vaccination efforts. Variant escape, waning immunity, and reduced vaccine efficacy in immunocompromised populations underscore the urgent need for complementary antiviral therapeutics. Here, we report the design, synthesis, and biological evaluation of precision-engineered dermatan sulfate (DS)-mimetic glycopolymers as multi-targeted inhibitors of SARS-CoV-2. Guided by molecular docking and virtual screening, sulfation at the C2 and C4 positions of iduronic acid was identified as critical for binding to the viral spike protein and inhibiting host and viral enzymes, including heparanase (HPSE) and main protease (Mpro). Chemically synthesized DS disaccharides were covalently grafted onto polymer scaffolds via a post-modification strategy, yielding glycopolymers with well-defined assembly that form uniform nanoparticles under physiological conditions. Surface plasmon resonance and pseudovirus assays revealed strong binding to the viral spike protein (KD ≈ 177 nM), potent viral neutralization, and minimal cytotoxicity. Cellular uptake studies further demonstrated efficient internalization of nanoparticles and intracellular inhibition of HPSE and Mpro. These results establish a modular, non-anticoagulant, and glycosaminoglycan-mimetic platform for the development of broad-spectrum antiviral agents to complement vaccination and enhance preparedness against emerging coronavirus variants. Full article
Show Figures

Figure 1

16 pages, 5604 KB  
Article
Oral Administration of MVA-Vectored Vaccines Induces Robust, Long-Lasting Neutralizing Antibody Responses and Provides Complete Protection Against SARS-CoV-2 in Mice, Minks, and Cats
by Linya Feng, Hong Huo, Yunlei Wang, Lei Shuai, Gongxun Zhong, Zhiyuan Wen, Liyan Peng, Jinying Ge, Jinliang Wang, Chong Wang, Weiye Chen, Xijun He, Xijun Wang and Zhigao Bu
Vaccines 2025, 13(12), 1207; https://doi.org/10.3390/vaccines13121207 - 29 Nov 2025
Viewed by 593
Abstract
Background/Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can naturally infect a broad spectrum of animal species, with cats, minks, and ferrets being highly susceptible. There is a potential risk that infected animals could transmit viruses to humans. Moreover, SARS-CoV-2 continues to evolve [...] Read more.
Background/Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can naturally infect a broad spectrum of animal species, with cats, minks, and ferrets being highly susceptible. There is a potential risk that infected animals could transmit viruses to humans. Moreover, SARS-CoV-2 continues to evolve via mutation and genetic recombination, resulting in the continuous emergence of new variants that have triggered a wave of reinfection. Therefore, safe and effective corona virus disease 2019 (COVID-19) vaccines for animals are still being sought. Methods: We generated three recombinant Modified vaccinia virus Ankara (MVAs) expressing the prefusion-stabilized S proteins, S6P, DS6P, and BA2S6P, targeting the full-length S protein genes of the ancestral, Delta, and Omicron BA.2 strains of SARS-CoV-2. Subsequently, the safety, immunogenicity, and protective efficacy of these MVA-based oral COVID-19 vaccine candidates were assessed in mice, minks, and cats. Results: These recombinant MVAs are safe in mice, minks, and cats. Oral or intramuscular vaccination with rMVA-S6P induced a robust SARS-CoV-2 neutralizing antibody (NA) response and conferred complete protection against the SARS-CoV-2 challenge in mice. Meanwhile, oral or intramuscular administration of these recombinant MVAs in combination induced a potent and durable NA response against homotypic SARS-CoV-2 pseudovirus in mice, minks, and cats, respectively. Conclusions: These findings suggest that the MVA-vectored vaccines are promising oral COVID-19 vaccine candidates for animals, and that the combined vaccination approach is an effective administration strategy for such vaccines. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

17 pages, 3216 KB  
Article
The DNA Vaccines for the Gn and Gc Heterologous Polymer of Severe Fever with Thrombocytopenia Syndrome Virus Induce Potent Immunogenicity in Mice
by Qiuju He, Xiaojuan Liu, Jincheng Tong, Huan Li, Heng Zhang, Jiamin Chen, Mengyi Zhang, Zhihua Li and Qianqian Li
Vaccines 2025, 13(12), 1186; https://doi.org/10.3390/vaccines13121186 - 24 Nov 2025
Viewed by 598
Abstract
Introduction/Background: Severe fever with thrombocytopenia syndrome virus (SFTSV) poses a threat to global public health with a mortality rate of up to 30%. However, there is currently no commercialized SFTSV vaccine. This study focused on the construction of DNA vaccines with different structures [...] Read more.
Introduction/Background: Severe fever with thrombocytopenia syndrome virus (SFTSV) poses a threat to global public health with a mortality rate of up to 30%. However, there is currently no commercialized SFTSV vaccine. This study focused on the construction of DNA vaccines with different structures based on the surface glycoproteins Gn and Gc to identify the immunodominant conformations. Methods: The DNA vaccines encoding secretory proteins including Gn or Gc monomer, heterodimer of Gn and Gc (dimer), two forms of hexamer composed of the Gn and Gc heterodimer (hexamer-1 and hexamer-2) or ferritin nanoparticles of Gn, and non-secretory proteins including Gn (Gn-TM) and Gc (Gc-TM) were constructed. Western blot confirmed the expression level and the specificity of those DNA vaccines. After vaccinating mice with those DNA vaccines, its induced humoral and cellular immunity were comprehensively evaluated. Results: The DNA vaccines were constructed successfully. The DNA vaccines of Gn and polymers including dimer, hexamer-2, and ferritin nanoparticles inducing stronger binding antibody, neutralizing antibody, and antibody-dependent cellular cytotoxicity (ADCC) activity. The neutralizing antibody induced by these constructs was also cross-recognized by other five SFTSV pseudovirus strains. However, the T cell response induced by Gc, dimer or hexamer-2 DNA vaccines were significantly higher than those in most other groups, including Gn. Conclusion: The DNA vaccines encoding dimer or hexamer-2 demonstrated superior immunogenicity over other conformations, after taking the results of humoral and cellular responses into account. This study revealed the advantages of using polymer conformations in SFTSV vaccine design and provided new targets in SFTSV vaccine development. Full article
Show Figures

Figure 1

12 pages, 387 KB  
Article
Immune Responses to SARS-CoV-2 Variants WT and XBB.1.9: Assessing Vulnerabilities and Preparedness
by Limor Kliker, Michal Mandelboim, Menucha Jurkowicz, Neta S. Zuckerman, Enosh Tomer, Yaniv Lustig, Lital Keinan-Boker, Victoria Indenbaum and Ravit Bassal
Vaccines 2025, 13(11), 1167; https://doi.org/10.3390/vaccines13111167 - 16 Nov 2025
Viewed by 945
Abstract
Objectives: The emergence of SARS-CoV-2 variants with enhanced immune evasion capabilities poses ongoing challenges for maintaining population-level immunity. This study aim to evaluate neutralizing antibody responses to the wild-type (WT) strain and the Omicron sublineage XBB.1.9 in the Israeli population using serum samples [...] Read more.
Objectives: The emergence of SARS-CoV-2 variants with enhanced immune evasion capabilities poses ongoing challenges for maintaining population-level immunity. This study aim to evaluate neutralizing antibody responses to the wild-type (WT) strain and the Omicron sublineage XBB.1.9 in the Israeli population using serum samples collected between August 2022 and January 2023, prior to widespread circulation of XBB.1.9. Methods: Pseudovirus-based microneutralization assays incorporating variant-specific spike proteins were employed to measure neutralizing geometric mean titers (GMTs) across subgroups categorized by age, gender, socioeconomic status, and geographic region. Results: Neutralizing titers against XBB.1.9 were significantly lower than those against WT across all demographic groups, with a 29-fold reduction in neutralization activity against XBB.1.9, underscoring the immune escape potential of XBB.1.9. For WT, older adults (≥65 years) exhibited higher titers than younger individuals (p < 0.01), whereas no significant age-related differences were observed for XBB.1.9 (p > 0.05). Regional disparities in WT immunity were identified, with higher titers in Northern Israel compared to Jerusalem and Southern regions. By contrast, XBB.1.9 neutralization showed no significant regional variation. Conclusions: These findings demonstrate substantially reduced neutralization of XBB.1.9 compared to WT and reveal disparities in WT immunity by age and region. The results emphasize the need for updated vaccines targeting immune-evasive variants and for tailored vaccination strategies to address regional and demographic gaps in protection. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

21 pages, 3748 KB  
Article
Pseudovirus-Based Neutralization Assays as Customizable and Scalable Tools for Serological Surveillance and Immune Profiling
by Caio Bidueira Denani, Bruno Pimenta Setatino, Denise Pereira, Ingrid Siciliano Horbach, Adriana Souza Azevedo, Gabriela Coutinho, Clara Lucy Ferroco, Janaína Xavier, Robson Leite, Ewerton Santos, Maria de Lourdes Maia, Waleska Dias Schwarcz and Ivanildo Pedro Sousa
Pathogens 2025, 14(11), 1129; https://doi.org/10.3390/pathogens14111129 - 6 Nov 2025
Viewed by 945
Abstract
Neutralizing antibodies (nAbs) are key indicators of protection against SARS-CoV-2, and their measurement remains essential for monitoring vaccine responses and population immunity. While the plaque reduction neutralization test (PRNT) is the gold standard, it relies on replicative viruses and is not suited for [...] Read more.
Neutralizing antibodies (nAbs) are key indicators of protection against SARS-CoV-2, and their measurement remains essential for monitoring vaccine responses and population immunity. While the plaque reduction neutralization test (PRNT) is the gold standard, it relies on replicative viruses and is not suited for high-throughput applications. Here, both an in-house and a commercial pseudovirus-based neutralization (PBN) assay were standardized and compared with PRNT to assess performance and concordance. The in-house PBN employed a VSV-ΔG pseudovirus encoding NanoLuc and displaying the SARS-CoV-2 Spike from the Wuhan or Omicron BA.1 variants in HEK293T-hACE2 cells, whereas the commercial assay (Integral Molecular, Philadelphia, PA, USA) used a lentiviral backbone with Renilla or GFP reporters and Wuhan or Omicron XBB.1.5/XBB.1.9 Spikes in Vero E6-ACE2-TMPRSS2 cells. Both assays showed strong correlations with PRNT, the commercial assay; moreover, they offered superior reproducibility and scalability, while the in-house version provided a cost-effective alternative suitable for BSL-2 settings. A total of 600 serum samples from vaccinated individuals were analyzed by commercial PBN at collection time points, from pre-vaccination to twelve months post–second dose, enabling large-scale screening, revealing marked differences in neutralization between Wuhan and Omicron XBB.1.5/1.9, and allowing unbiased classification of low, medium, and high responders using k-means clustering. The geometric mean titers (log10 GMT) highlighted a ~1.5 log10 (eightfold) reduction in neutralizing activity against Omicron, reflecting antibody waning and antigenic drift. Altogether, this study integrates assay standardization, PRNT comparison, and large-scale immune profiling, establishing a robust framework for harmonized pseudovirus-based neutralization testing. Full article
Show Figures

Figure 1

19 pages, 2036 KB  
Article
SARS-CoV-2 Serological Surveillance of Both Vaccinated and Unvaccinated Zoo Animals with the Identification of a Sloth Bear and a Tapir with Previous Infection
by Marie Arvidson, Yashaswi Raj Subedi, Sandipty Kayastha, Angel Mitchell, Kami Alvarado, Xufang Deng, Karen Terio, Matthew Allender and Leyi Wang
Viruses 2025, 17(11), 1459; https://doi.org/10.3390/v17111459 - 31 Oct 2025
Viewed by 909
Abstract
Since its discovery in 2019, SARS-CoV-2 has continued to be detected in both humans and animals worldwide. Currently there is limited research focusing on serological surveillance of wildlife under human care. Here we tested 230 serum samples of 134 animals from two zoological [...] Read more.
Since its discovery in 2019, SARS-CoV-2 has continued to be detected in both humans and animals worldwide. Currently there is limited research focusing on serological surveillance of wildlife under human care. Here we tested 230 serum samples of 134 animals from two zoological institutions collected between 2015 and 2024. To assess prior exposure and antibody responses from natural infection or vaccination, we used three serological assays: a nucleocapsid protein-based ELISA (N-ELISA), a surrogate virus neutralization test (sVNT) for spike (S) protein and a neutralization assay with S-pseudotyped viral particles. Among the 114 samples collected from 58 animals at Fort Wayne Zoo in Indiana, 37 samples from 20 vaccinated animals were sVNT-positive, and 2 of the positive animals had 2 samples prior to vaccination that tested positive by N-ELISA. Of the 116 samples from 76 animals at Brookfield Zoo in Illinois, 20 samples of 20 animals were sVNT-positive, and 19 of the positive animals had been vaccinated. Among these 20 sVNT-positive samples, only one sample from a South American Tapir was positive from prior to vaccination and 1 sample from a sloth bear was also positive by N-ELISA, marking the first documented cases of SARS-CoV-2 exposure in both species. Neutralization assays with S-pseudotyped virus revealed that some of the sVNT-positive samples have strong activity against the WH1-S pseudovirus but showed significantly reduced neutralization against the Omicron LP.8.1-S pseudovirus. These results underscore the need for updated vaccines tailored to emerging variants. Overall, our findings highlight the importance of continued serological surveillance across multiple species to detect new SARS-CoV-2 exposures and monitor vaccine-induced immunity in captive animal populations. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

13 pages, 1211 KB  
Article
Establishment of a VSV-Based Pseudovirus Platform for In Vitro and In Vivo Evaluation of Nipah Vaccine-Induced Neutralizing Responses
by Seong Eun Bae, Minhyuk Yoon, Younghye Moon, Min Jung Kim, Jeong-In Kim, Kee-Jong Hong and Jae-Ouk Kim
Viruses 2025, 17(11), 1429; https://doi.org/10.3390/v17111429 - 28 Oct 2025
Viewed by 952
Abstract
The Nipah virus (NiV) is a zoonotic pathogen characterized by high fatality rates and pandemic potential, whereby there is an urgent need for developing safe and effective vaccines. However, the evaluation of NiV vaccine-induced immunity is hindered by the requirement of Biosafety Level-4 [...] Read more.
The Nipah virus (NiV) is a zoonotic pathogen characterized by high fatality rates and pandemic potential, whereby there is an urgent need for developing safe and effective vaccines. However, the evaluation of NiV vaccine-induced immunity is hindered by the requirement of Biosafety Level-4 (BSL-4) containment. In this study, we developed a recombinant vesicular stomatitis virus (rVSV)-based pseudovirus-expressing NiV fusion (F) and attachment (G) glycoproteins using a luciferase reporter gene for bioluminescence detection. This pseudovirus was optimized for production in BHK-21 (WI-2) cells, and simultaneous incorporation of NiV-F and NiV-G onto the surface of the pseudotyped virus was confirmed via immunoprecipitation and Western blotting. We evaluated our pseudovirus-based neutralization assay using NiV-F-immunized mouse sera and a commercial anti-NiV-G antibody, confirming robust neutralization by the latter. To establish a BSL-2-compatible model for evaluating in vivo protective efficacy, we performed in vivo imaging, which revealed a marked reduction in the luminescence signal in NiV-G-immunized mice compared to naïve controls, indicating vaccine-induced protection. Our study established an integrated in vitro and in vivo pseudovirus platform using rVSV that enables safe, quantitative, and BSL-2-compatible evaluation of NiV vaccine candidates. This model offers a valuable tool for preclinical screening of vaccine-induced neutralizing antibody responses and protective efficacy. Full article
Show Figures

Graphical abstract

22 pages, 1862 KB  
Article
Production of Clinical-Grade SARS-CoV-2 Spike Ferritin Nanoparticle Protein Immunogen by Transient Transfection
by Agnes Hajduczki, William C. Chang, Rafael De La Barrera, James F. Wood, Wei-Hung Chen, Elizabeth J. Martinez, Jaime L. Jensen, Rajeshwer S. Sankhala, Clayton Smith, Alexander Anderson, Elaine B. Morrison, Caroline E. Peterson, Phyllis A. Rees, Sandrine Soman, Caitlin Kuklis, Aslaa Ahmed, Jocelyn King, Farooq Nasar, Courtney Corbitt, Misook Choe, Paul V. Thomas, Michelle Zemil, Lindsay Wieczorek, Victoria R. Polonis, Helen M. Dooley, John R. Mascola, Natalie de Val, Gary R. Matyas, Mangala Rao, Gregory D. Gromowski, Kayvon Modjarrad, Sandhya Vasan, Jeffrey W. Froude, Nelson L. Michael, M. Gordon Joyce and Stasya Zarlingadd Show full author list remove Hide full author list
Vaccines 2025, 13(10), 1041; https://doi.org/10.3390/vaccines13101041 - 9 Oct 2025
Viewed by 1604
Abstract
Background/Objectives: In response to the COVID-19 pandemic, we developed a vaccine candidate against SARS-CoV-2. Spike Ferritin Nanoparticle (SpFN) comprises 24 identical prefusion-stabilized spike proteins anchored to a self-assembled nanoparticle. Organized along the three-fold axis of the ferritin particle, eight SARS-CoV-2 spike trimers [...] Read more.
Background/Objectives: In response to the COVID-19 pandemic, we developed a vaccine candidate against SARS-CoV-2. Spike Ferritin Nanoparticle (SpFN) comprises 24 identical prefusion-stabilized spike proteins anchored to a self-assembled nanoparticle. Organized along the three-fold axis of the ferritin particle, eight SARS-CoV-2 spike trimers are presented per nanoparticle. Methods: Here, we describe the CGMP processes for manufacturing SpFN using transient transfection of Expi293F cells. Results: The final yield of SpFN was ~10 mg per liter of media supernatant. The resulting protein is stable in cold storage for two years at −20 °C, as well as for a month at room temperature, and can withstand multiple freeze/thaw cycles. SpFN material produced using the CGMP protocols adjuvanted with Army Liposomal Formulation-QS-21 (ALFQ) elicited potent neutralizing antibodies against WA-1, Alpha, Beta, and Delta variants in mice as measured by a pseudovirus neutralization assay. Conclusions: This work demonstrates rapid development and scaled-up production of clinical-grade SARS-CoV-2 vaccine protein material, allowing permissive storage and transport conditions, and serves as a framework for recombinant protein production for future emergent pathogens. Full article
Show Figures

Figure 1

16 pages, 3898 KB  
Article
Selective Degradation and Inhibition of SARS-CoV-2 3CLpro by MMP14 Reveals a Novel Strategy for COVID-19 Therapeutics
by Hyun Lee, Yunjeong Hwang, Elizabeth J. Mulder, Yuri Song, Calista Choi, Lijun Rong, Dimitri T. Azar and Kyu-Yeon Han
Int. J. Mol. Sci. 2025, 26(19), 9401; https://doi.org/10.3390/ijms26199401 - 26 Sep 2025
Viewed by 1086
Abstract
Novel therapies to treat infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of respiratory coronavirus disease 2019 (COVID-19), would be of great clinical value to combat the current and future pandemics. Two viral proteases, papain-like protease (PLpro) and [...] Read more.
Novel therapies to treat infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of respiratory coronavirus disease 2019 (COVID-19), would be of great clinical value to combat the current and future pandemics. Two viral proteases, papain-like protease (PLpro) and the main protease 3-chymotrypsin-like protease (3CLpro), are vital in processing the SARS-CoV-2 polyproteins (pp1a and pp1ab) and in releasing 16 nonstructural proteins, making them attractive antiviral drug targets. In this study, we investigated the degradation of the SARS-CoV-2 main protease 3CLpro by matrix metalloproteinase-14 (MMP14). MMP14 is known to recognize over 10 distinct substrate cleavage sequences. Through sequence analysis, we identified 17 and 10 putative MMP14 cleavage motifs within the SARS-CoV-2 3CLpro and PLpro proteases, respectively. Despite the presence of potential sites in both proteins, our in vitro proteolysis assays demonstrated that MMP14 selectively binds to and degrades 3CLpro, but not PLpro. This selective proteolysis by MMP14 results in the complete loss of 3CLpro enzymatic activity. In addition, SARS-CoV-2 pseudovirus replication was inhibited in 293 T cells when either full-length MMP14 or its catalytic domain (cat-MMP14) were overexpressed, presumably due to 3CLpro degradation by MMP14. Finally, to prevent MMP14 from degrading off-target proteins, we propose a new recombinant pro-PL-MMP14 construct that can be activated only by another SARS-CoV-2 protease, PLpro. These findings could open the potential of an alternative therapeutic strategy against SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Advances in Metalloproteinase)
Show Figures

Graphical abstract

12 pages, 4204 KB  
Article
Establishment of a Pseudovirus-Based Golden Hamster Model for the Attachment and Entry Stages of Hendra Virus Infection and Evaluation of Protective Immunity
by Tao Li, Binfan Liao, Danfeng Li, Jie Zhang, Chunhui Zhao, Yunfei Pei, Liping Chen, Meng Wang, Yawen Liu, Xi Wu, Weijin Huang and Jianhui Nie
Pathogens 2025, 14(9), 910; https://doi.org/10.3390/pathogens14090910 - 10 Sep 2025
Viewed by 891
Abstract
Objective: Establish an in vivo evaluation model focused on the attachment and entry stages of Hendra virus infection for protective immunity assessment. Methods: A golden hamster infection model based on recombinant Hendra-F/G pseudovirus was developed, and a luciferase luminescence assay was used to [...] Read more.
Objective: Establish an in vivo evaluation model focused on the attachment and entry stages of Hendra virus infection for protective immunity assessment. Methods: A golden hamster infection model based on recombinant Hendra-F/G pseudovirus was developed, and a luciferase luminescence assay was used to assess the optimal pseudoviral challenge in terms of route of infection, dose and detection time. The biodistribution of the pseudovirus in infected organs was evaluated using the IVIS spectral CT system. The protective effect of antibody prophylaxis was evaluated by measuring the luminescence intensity of pseudoviruses. Results: Intraperitoneal injection was identified as the optimal route of infection, and the optimal time of detection was 6 h post-challenge. Our model simulates the infection of the brain and lungs by live viruses, with the strongest infection occurring in the abdomen, especially in the intestinal organs. The dose of pseudovirus was linearly correlated with luminescence intensity. The infection model was able to differentiate the protective effect of monoclonal antibodies, with complete protection in the high-dose group. Conclusions: The recombinant Hendra-F/G pseudovirus hamster model allows the effective evaluation of prophylactic monoclonal antibodies, providing a crucial tool for studying Hendra virus infection and control strategies. Full article
Show Figures

Figure 1

16 pages, 1623 KB  
Article
Glycosylated SARS-CoV-2 RBD Antigens Expressed in Glycoengineered Yeast Induce Strong Immune Responses Through High Antigen–Alum Adsorption
by Ai Li, Tiantian Wang, Bin Zhang, Xuchen Hou, Peng Sun, Hao Wang, Huifang Xu, Min Tan, Xin Gong, Jun Wu and Bo Liu
Biomolecules 2025, 15(8), 1172; https://doi.org/10.3390/biom15081172 - 15 Aug 2025
Viewed by 858
Abstract
Glycosylation plays a pivotal role in regulating the functions and immunogenicity of antigens. Targeting the receptor-binding domain (RBD) of the spike protein (S protein) of SARS-CoV-2, we examined the impact of different glycoforms on RBD antigen immunogenicity and the underlying mechanisms. IgG-specific antibody [...] Read more.
Glycosylation plays a pivotal role in regulating the functions and immunogenicity of antigens. Targeting the receptor-binding domain (RBD) of the spike protein (S protein) of SARS-CoV-2, we examined the impact of different glycoforms on RBD antigen immunogenicity and the underlying mechanisms. IgG-specific antibody titers and pseudovirus neutralization were compared in mice immunized with RBD antigens bearing different glycoforms, which were prepared using glycoengineering-capable Pichia pastoris and mammalian cell expression systems with distinct glycosylation pathways. The glycosylation impacted the surface charges of the RBD antigen, and influenced its adsorption onto alum. This may further lead to variations in the antigen’s immunogenicity. The high-mannose variant of the RBD antigen (H-MAN/RBD) expressed in wild-type Pichia pastoris induced significantly higher IgG-specific antibody titers and pseudovirus neutralization activity compared with the complex RBD variant (Complex/RBD) expressed in mammalian cells (293F) or glycoengineering-capable Pichia pastoris. The rate of H-MAN/RBD adsorption onto aluminum hydroxide (alum) adjuvant was significantly higher than that of Complex/RBD. It was assumed that H-MAN/RBD might carry more negative charges because of its phosphomannose-modified surfaces, leading to a higher rate of adsorption onto the positively charged alum and enhancing the immune response. To assess the impact of phosphomannose modification on antigen immunogenicity, a yeast strain was engineered to prepare a low-mannose RBD antigen (L-MAN/RBD); additionally, a yeast strain was constructed to generate a low-phosphomannose-modified RBD antigen (L-MAN-P/RBD). In conclusion, phosphomannose modification substantially enhanced the immunogenicity of RBD by altering the surface charges of the RBD antigen and facilitating its adsorption onto alum. These findings offer novel insights and strategies for vaccine design and immunotherapeutic approaches. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

19 pages, 4401 KB  
Article
Influence of Sex and 1,25α Dihydroxyvitamin D3 on SARS-CoV-2 Infection and Viral Entry
by Nicole Vercellino, Alessandro Ferrari, José Camilla Sammartino, Mattia Bellan, Elizabeth Iskandar, Daniele Lilleri and Rosalba Minisini
Pathogens 2025, 14(8), 765; https://doi.org/10.3390/pathogens14080765 - 2 Aug 2025
Viewed by 980
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the etiologic agent that causes the coronavirus disease (COVID-19) identified in Wuhan, in 2019. Men are more prone to developing severe manifestations than women, suggesting a possible crucial role of sex hormones. 17,β-Estradiol (E2) and 1,25 [...] Read more.
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the etiologic agent that causes the coronavirus disease (COVID-19) identified in Wuhan, in 2019. Men are more prone to developing severe manifestations than women, suggesting a possible crucial role of sex hormones. 17,β-Estradiol (E2) and 1,25 α dihydroxyvitamin D3 (calcitriol) act upon gene pathways as immunomodulators in several infectious respiratory diseases. In this study, we aimed to evaluate the influence of E2 and calcitriol on the VSV-based pseudovirus SARS-CoV-2 and SARS-CoV-2 infection in vitro. We infected Vero E6 cells with the recombinant VSV-based pseudovirus SARS-CoV-2 and the SARS-CoV-2 viruses according to the pre-treatment and pre–post-treatment models. The Angiotensin-Converting Enzyme 2 (ACE2) and Vitamin D Receptor (VDR) gene expression did not change under different treatments. The VSV-based pseudovirus SARS-CoV-2 infection showed a significant decrease in the focus-forming unit count in the presence of E2 and calcitriol (either alone or in combination) in the pre-treatment model, while in the pre–post-treatment model, the infection was inhibited only in the presence of E2. Th SARS-CoV-2 infection highlighted a decrease in viral titres in the presence of E2 and calcitriol only in the pre–post-treatment model. 17,β-Estradiol and calcitriol can exert an inhibitory effect on SARS-CoV-2 infections, demonstrating their protective role against viral infections. Full article
(This article belongs to the Special Issue Antiviral Strategies Against Human Respiratory Viruses)
Show Figures

Graphical abstract

15 pages, 502 KB  
Review
Pseudovirus as an Emerging Reference Material in Molecular Diagnostics: Advancement and Perspective
by Leiqi Zheng and Sihong Xu
Curr. Issues Mol. Biol. 2025, 47(8), 596; https://doi.org/10.3390/cimb47080596 - 29 Jul 2025
Cited by 1 | Viewed by 1326
Abstract
In recent years, the persistent emergence of novel infectious pathogens (epitomized by the global coronavirus disease-2019 (COVID-2019) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) has propelled nucleic acid testing (NAT) into an unprecedented phase of rapid development. As a key [...] Read more.
In recent years, the persistent emergence of novel infectious pathogens (epitomized by the global coronavirus disease-2019 (COVID-2019) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) has propelled nucleic acid testing (NAT) into an unprecedented phase of rapid development. As a key technology in modern molecular diagnostics, NAT achieves precise pathogen identification through specific nucleic acid sequence recognition, establishing itself as an indispensable diagnostic tool across diverse scenarios, including public health surveillance, clinical decision-making, and food safety control. The reliability of NAT systems fundamentally depends on reference materials (RMs) that authentically mimic the biological characteristics of natural viruses. This critical requirement reveals significant limitations of current RMs in the NAT area: naked nucleic acids lack the structural authenticity of viral particles and exhibit restricted applicability due to stability deficiencies, while inactivated viruses have biosafety risks and inter-batch heterogeneity. Notably, pseudovirus has emerged as a novel RM that integrates non-replicative viral vectors with target nucleic acid sequences. Demonstrating superior performance in mimicking authentic viral structure, biosafety, and stability compared to conventional RMs, the pseudovirus has garnered substantial attention. In this comprehensive review, we critically summarize the engineering strategies of pseudovirus platforms and their emerging role in ensuring the reliability of NAT systems. We also discuss future prospects for standardized pseudovirus RMs, addressing key challenges in scalability, stability, and clinical validation, aiming to provide guidance for optimizing pseudovirus design and practical implementation, thereby facilitating the continuous improvement and innovation of NAT technologies. Full article
(This article belongs to the Special Issue Molecular Research on Virus-Related Infectious Disease)
Show Figures

Figure 1

15 pages, 14919 KB  
Article
Characterization of an mRNA-Encoded Antibody Against Henipavirus
by Zixuan Liu, Bingjie Sun, Ting Fang, Xiaofan Zhao, Yi Ren, Zhenwei Song, Sijun He, Jianmin Li, Pengfei Fan and Changming Yu
Curr. Issues Mol. Biol. 2025, 47(7), 519; https://doi.org/10.3390/cimb47070519 - 4 Jul 2025
Viewed by 973
Abstract
Nipah and Hendra viruses are lethal zoonotic pathogens with no approved vaccines or therapeutics. mRNA produced via in vitro transcription enables endogenous protein expression and cost reduction. Here, we systematically screened natural and artificial untranslated regions (UTRs) and identified an optimal combination for [...] Read more.
Nipah and Hendra viruses are lethal zoonotic pathogens with no approved vaccines or therapeutics. mRNA produced via in vitro transcription enables endogenous protein expression and cost reduction. Here, we systematically screened natural and artificial untranslated regions (UTRs) and identified an optimal combination for expressing henipavirus-neutralizing antibody 1E5. We generated mRNA-1E5 encapsulated in lipid nanoparticles (mRNA-1E5-LNPs). In vitro, mRNA-1E5-LNPs achieved functional antibody expression levels of >1500 ng/mL. In BALB/c mice, intravenous administration of mRNA-1E5-LNPs induced rapid antibody elevation (peak at day 3), without hepatic toxicity or tissue inflammation. We established two Hendra pseudovirus models in biosafety level 2 facilities to evaluate the efficacy of mRNA-1E5-LNPs. Low-dose prophylactic administration effectively blocked entry of the Hendra pseudovirus. Notably, a single 0.5 mg/kg dose of mRNA-1E5-LNPs, stored at 4 °C for two months and administered 7 days prior, provided good protection. Our findings provide a therapeutic strategy for henipaviral infections and a blueprint for the development of mRNA-based antibodies against emerging viruses. Full article
(This article belongs to the Special Issue Molecular Research in Vaccinology and Vaccine Development)
Show Figures

Figure 1

14 pages, 3213 KB  
Article
Disrupting SARS-CoV-2 Spike–ACE2 Interactions via Glycosaminoglycans in a Pseudoviral Study of Heparan Sulfate and Enoxaparin
by Virginia Fuochi, Salvatore Furnari, Filippo Drago and Pio Maria Furneri
Biomolecules 2025, 15(7), 931; https://doi.org/10.3390/biom15070931 - 26 Jun 2025
Viewed by 3271
Abstract
Background: The COVID-19 (coronavirus disease 19) pandemic has underscored the urgent need for effective antiviral agents targeting viral entry mechanisms. This study investigated the inhibitory effects of heparan sulfate (HS) and enoxaparin (EX) on the interaction between the severe acute respiratory syndrome coronavirus [...] Read more.
Background: The COVID-19 (coronavirus disease 19) pandemic has underscored the urgent need for effective antiviral agents targeting viral entry mechanisms. This study investigated the inhibitory effects of heparan sulfate (HS) and enoxaparin (EX) on the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor. Methods: A pseudovirus model was employed to evaluate the efficacy of HS and EX under different treatment strategies: pre-treatment of host cells, pre-treatment of the viral particles, and simultaneous co-treatment. Results: Both compounds significantly inhibited viral entry. EX exhibited a dose-dependent effect under all treatment conditions. In cell pre-treatment, EX achieved the highest levels of inhibition, whereas HS demonstrated consistent inhibitory activity that was largely concentration-independent. Viral pre-treatment revealed that both compounds effectively reduced infectivity by interfering directly with viral particles. In the co-treatment experiments, HS demonstrated superior inhibitory activity at lower concentrations compared to EX. Conclusions: The results suggested that HS and EX inhibit SARS-CoV-2 entry via distinct mechanisms. HS likely acts via competitive inhibition at the host cell surface, while EX may bind directly to the spike protein, thereby preventing engagement with the ACE2 receptor. These findings highlight the therapeutic potential of HS and EX as entry inhibitors targeting the early stages of SARS-CoV-2 infection. Further studies are warranted to evaluate their efficacy against emerging variants and in vivo models. Full article
Show Figures

Graphical abstract

Back to TopTop