Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = proton therapy with radiosensitizers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 543 KiB  
Communication
Assessment of Tumor Relative Biological Effectiveness in Low-LET Proton Irradiation
by Ying-Chun Lin, Jiamin Mo and Yuan-Hao Lee
Biomedicines 2025, 13(8), 1823; https://doi.org/10.3390/biomedicines13081823 - 25 Jul 2025
Viewed by 239
Abstract
Background/Objectives: Within the range of spread-out Bragg peak (SOBP), LET (linear energy transfer) gradually increases from proton beam entrance point toward the beam exit direction. While it is expected that the change in LET would lead to correspondent change in RBE (relative [...] Read more.
Background/Objectives: Within the range of spread-out Bragg peak (SOBP), LET (linear energy transfer) gradually increases from proton beam entrance point toward the beam exit direction. While it is expected that the change in LET would lead to correspondent change in RBE (relative biological effectiveness) on many human cell lines, the incomplete cell killing due to low LET can result in tumor recurrence. Hence, this study aimed to assess the RBE on different cancer cell lines along low-LET proton SOBP. Methods: The clonogenicity of A549 and Panc-1 cells after irradiation was evaluated for investigating cell radiosensitivity in response to different types of radiation. The isoeffect doses of 6-MV photon and low-LET proton beams that resulted in equivalent cell surviving fractions at proton dose of 2 or 4 Gy were compared. Results: Ratios of α/β of A549 and Panc-1 cells from photon irradiation are 51.69 and −0.7747, respectively; RBE (2 Gy proton SOBP) on A549 and Panc-1 cells are 0.7403 ± 0.3324 and 1.0986 ± 0.3984, respectively. In addition, the change in RBE with proton LET was in a cell-specific and dose-dependent manner (LET-RBE linear correlations: A549 cells [r = 0.4673, p = 0.2430] vs. Panc-1 cells at 4 Gy [r = 0.7085, p = 0.0492]; Panc-1 cells at 2 Gy [r = −0.4123, p = 0.3100] vs. 4 Gy [r = 0.7085, p = 0.0492]). Conclusions: Compared with A549 cells, Panc-1 cells present greater resistance to low-LET proton beams. In addition, currently employed generic RBE value at 1.1 for proton therapy neglected the variation in cell-/tumor-specific radiobiological responses toward different dose levels of proton beams. Full article
(This article belongs to the Special Issue New Insights in Radiotherapy: Bridging Radiobiology and Oncology)
Show Figures

Figure 1

23 pages, 3351 KiB  
Article
Targeting DAMPs by Aspirin Inhibits Head and Neck Cancer Stem Cells and Stimulates Radio-Sensitization to Proton Therapy
by Tea Vasiljevic, Emilija Zapletal, Marko Tarle, Iva Bozicevic Mihalic, Sabrina Gouasmia, Georgios Provatas, Kristina Vukovic Djerfi, Danko Müller, Koraljka Hat, Ivica Luksic and Tanja Matijevic Glavan
Cancers 2025, 17(13), 2157; https://doi.org/10.3390/cancers17132157 - 26 Jun 2025
Viewed by 420
Abstract
Background: Cancer stem cells (CSCs) are a subpopulation of cancer cells known for their self-renewal capacity, tumorigenicity, and resistance to treatment. Toll-like receptor 3 (TLR3) plays a complex role in cancer, exhibiting both pro-apoptotic and pro-tumorigenic effects. This study investigates the pro-tumorigenic role [...] Read more.
Background: Cancer stem cells (CSCs) are a subpopulation of cancer cells known for their self-renewal capacity, tumorigenicity, and resistance to treatment. Toll-like receptor 3 (TLR3) plays a complex role in cancer, exhibiting both pro-apoptotic and pro-tumorigenic effects. This study investigates the pro-tumorigenic role of TLR3, specifically its impact on CSCs in head and neck cancer. Methods: We have investigated Detroit 562, FaDu and SQ20B cell lines, the latter being stably transfected with a plasmid containing inducible shRNA for TLR3, by cultivating them to form tumor spheres in order to study CSCs. Results: Our findings demonstrate that TLR3 activation promotes stemness in head and neck cancer cell lines. This is evidenced by increased tumor sphere formation, promotion of epithelial-to-mesenchymal transition (EMT), upregulated stemness gene expression, and elevated aldehyde dehydrogenase (ALDH) activity. Conditional TLR3 knockdown abolished tumor sphere formation, confirming its important role. Furthermore, TLR3 activation triggers the secretion of damage-associated molecular patterns (DAMPs) into the tumor microenvironment, leading to increased cancer cell migration. This was inhibited by DAMP inhibitors. In patient tissue samples, we observed co-localization of TLR3 with stemness markers CD133 and ALDH1, as well as with heat shock protein 70 (HSP70) and receptor for advanced glycation end products (RAGE). We then explored potential CSC-targeted therapies, initially combining the apoptosis inducer poly (I:C) with DAMP inhibitors and γ-irradiation. While this combination proved effective in adherent cells, it failed to eliminate tumor spheres. Nevertheless, we discovered that proton radiotherapy, particularly when combined with aspirin (HMGB1 inhibitor) and poly (I:C), effectively eliminates CSCs. Conclusions: This novel combination holds promise for the development of new therapeutic strategies for head and neck cancers, particularly given the promising results of proton therapy in treating this disease. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

31 pages, 1101 KiB  
Review
Particle Therapy to Overcome Cancer Radiation Resistance: “ARCHADE” Consortium Updates in Radiation Biology
by Samuel Valable, Mathieu Césaire, Kilian Lecrosnier, Antoine Gilbert, Mihaela Tudor, Guillaume Vares, Dounia Houria Hamdi, Ousseynou Ben Diouf, Thao Nguyen Pham, Julie Coupey, Juliette Thariat, Paul Lesueur, Elodie Anne Pérès, Juliette Aury-Landas, Zacharenia Nikitaki, Siamak Haghdoost, Carine Laurent, Jean-Christophe Poully, Jacques Balosso, Myriam Bernaudin, Diana I. Savu and François Chevalieradd Show full author list remove Hide full author list
Cancers 2025, 17(9), 1580; https://doi.org/10.3390/cancers17091580 - 6 May 2025
Viewed by 978
Abstract
Radiation therapy is a medical treatment that uses high doses of radiation to kill or damage cancer cells. It works by damaging the DNA within the cancer cells, ultimately causing cell death. Radiotherapy can be used as a primary treatment, adjuvant treatment in [...] Read more.
Radiation therapy is a medical treatment that uses high doses of radiation to kill or damage cancer cells. It works by damaging the DNA within the cancer cells, ultimately causing cell death. Radiotherapy can be used as a primary treatment, adjuvant treatment in combination with surgery or chemotherapy or palliative treatment to relieve symptoms in advanced cancer stages. Radiation therapy is constantly improving in order to enhance the effect on cancer cells and reduce the side effects on healthy tissues. Our results clearly demonstrate that proton therapy and, even more, carbon ion therapy appear as promising alternatives to overcome the radioresistance of various tumors thanks to less dependency on oxygen and a better ability to kill cancer stem cells. Interestingly, hadrons also retain the advantages of radiosensitization approaches. These data confirm the great ability of hadrons to spare healthy tissue near the tumor via various mechanisms (reduced lymphopenia, bystander effect, etc.). Technology and machine improvements such as image-guided radiotherapy or particle therapies can improve treatment quality and efficacy (dose deposition and biological effect) in tumors while increasingly sparing healthy tissues. Radiation biology can help to understand how cancer cells resist radiation (hypoxia, DNA repair mechanisms, stem cell status, cell cycle position, etc.), how normal tissues may display sensitivity to radiation and how radiation effects can be increased with either radiosensitizers or accelerated particles. All these research topics are under investigation within the ARCHADE research community in France. By focusing on these areas, radiotherapy can become more effective, targeted and safe, enhancing the overall treatment experience and outcomes for cancer patients. Our goal is to provide biological evidence of the therapeutic advantages of hadrontherapy, according to the tumor characteristics. This article aims to give an updated view of our research in radiation biology within the frame of the French “ARCHADE association” and new perspectives on research and treatment with the C400 multi-ions accelerator prototype. Full article
Show Figures

Graphical abstract

26 pages, 7920 KiB  
Article
Polyacrylic Acid-Coated LaB6 Nanoparticles as Efficient Sensitizers for Binary Proton Therapy
by Mariya S. Ryabtseva, Marina V. Filimonova, Alexander S. Filimonov, Olga V. Soldatova, Anna A. Shitova, Vitaly A. Rybachuk, Irina K. Volkova, Kirill A. Nikolaev, Alexander O. Kosachenko, Sergei N. Koryakin, Dmitry S. Petrunya, Polina A. Kotelnikova, Alexander E. Shemyakov, Danil D. Kolmanovich, Anton L. Popov, Gleb V. Tikhonowski, Anton A. Popov, Anna A. Timakova, Andrey V. Kolobov, Sergey M. Deyev, Andrei V. Kabashin and Irina N. Zavestovskayaadd Show full author list remove Hide full author list
Pharmaceutics 2025, 17(4), 515; https://doi.org/10.3390/pharmaceutics17040515 - 15 Apr 2025
Viewed by 2718
Abstract
Proton beam therapy (PBT) is a rapidly advancing modality of hadron therapy. The primary advantage of proton therapy lies in a unique depth-dose distribution characterized by the Bragg peak, which enables a highly targeted irradiation of the area limited to the tumor, while [...] Read more.
Proton beam therapy (PBT) is a rapidly advancing modality of hadron therapy. The primary advantage of proton therapy lies in a unique depth-dose distribution characterized by the Bragg peak, which enables a highly targeted irradiation of the area limited to the tumor, while minimizing the impact on healthy tissues. However, a broader clinical adoption of the ion beam therapy is limited by both economic and radiobiological constraints. One of the possible ways to increase the relative biological effectiveness (RBE) of proton therapy involves the use of radiosensitizers. Background/Objectives: In this work, we investigated the efficacy of using colloidal solutions of lanthanum hexaboride (LaB6) nanoparticles (NPs) coated with polyacrylic acid (PAA) as sensitizers to increase the antitumor biological effectiveness of proton irradiation. This material has not yet been studied extensively so far, despite its promising physical and chemical properties and several reports on its biocompatibility. Methods: LaB6 NPs were synthesized by femtosecond pulsed laser ablation, functionalized with PAA and characterized. The safety of NPs was evaluated in vitro using a Live/Dead assay on cell cultures: EMT6/P, BT-474, and in vivo in Balb/c mice after intravenous (i.v.) administration. The efficacy of binary proton therapy was evaluated in vitro on cell cultures: EMT6/P, BT-474, and in vivo in the model of human ductal carcinoma of the mammary gland BT-474 in female Nu/j mice after intratumoral (i.t.) administration at a dose of 2.0 mg/mouse and local proton irradiation (fractional exposure of 31 Gy + 15 Gy). The biodistribution of LaB6-PAA NPs in the animal body was also evaluated. Results: Significant enhancement in cancer cell death following proton beam irradiation was demonstrated in vitro on EMT6/P, BT-474 cell lines. Although the antitumor efficacy observed in vivo was comparatively lower—likely due to the high sensitivity of the BT-474 xenografts—both proton monotherapy and binary treatment were well tolerated. Conclusions: LaB6-PAA NPs show promise as efficient sensitizers capable of enhancing the biological efficacy of proton therapy, offering a potential path forward for improving therapeutic outcomes. Full article
(This article belongs to the Special Issue Advances in Radiopharmaceuticals for Disease Diagnoses and Therapy)
Show Figures

Figure 1

18 pages, 809 KiB  
Review
Nanomedicine-Enhanced Radiotherapy for Glioblastoma: Advances in Targeted Therapy and Adaptive Treatment Strategies
by Kamila Rawojć, Mansoor M. Ahmed, Ayesha Mukhtiar, Magdalena Łukowiak and Kamil Kisielewicz
Pharmaceutics 2025, 17(4), 508; https://doi.org/10.3390/pharmaceutics17040508 - 11 Apr 2025
Cited by 1 | Viewed by 1248
Abstract
Glioblastoma multiforme remains one of the most aggressive and treatment-resistant brain tumors that necessitate innovative therapeutic approaches. Nanomedicine has emerged as a promising strategy to enhance radiation therapy by improving drug delivery, radiosensitization, and real-time treatment monitoring. Stimuli-responsive nanoparticles can overcome limitations of [...] Read more.
Glioblastoma multiforme remains one of the most aggressive and treatment-resistant brain tumors that necessitate innovative therapeutic approaches. Nanomedicine has emerged as a promising strategy to enhance radiation therapy by improving drug delivery, radiosensitization, and real-time treatment monitoring. Stimuli-responsive nanoparticles can overcome limitations of the blood–brain barrier, modulate tumor microenvironment, and facilitate targeted therapeutic interventions. The integration of nanotechnology with proton and X-ray radiotherapy offers improved dose precision, enhanced radiosensitization, and adaptive treatment strategies. Furthermore, Artificial Intelligence-driven nanoparticle designs are optimizing therapeutic outcomes by tailoring formulations to tumor-specific characteristics. While promising, clinical translation remains a challenge that requires rigorous validation to ensure safety and efficacy. This review highlights advancements in nanomedicine-enhanced radiotherapy and future directions for glioblastoma multiforme treatment. Full article
(This article belongs to the Special Issue Smart Nanomedicine for Cancer Diagnosis and Therapy)
Show Figures

Figure 1

33 pages, 4150 KiB  
Review
Exploring the Potential of Gold Nanoparticles in Proton Therapy: Mechanisms, Advances, and Clinical Horizons
by Giorgio Giuseppe Carbone, Stefania Mariano, Alessandra Gabriele, Sabrina Cennamo, Vitantonio Primiceri, Muhammad Rizwan Aziz, Elisa Panzarini and Lucio Calcagnile
Pharmaceutics 2025, 17(2), 176; https://doi.org/10.3390/pharmaceutics17020176 - 30 Jan 2025
Cited by 4 | Viewed by 1948
Abstract
Proton therapy represents a groundbreaking advancement in cancer radiotherapy, leveraging the unique spatial energy distribution of protons to deliver precise, high-dose radiation to tumors while sparing surrounding healthy tissues. Despite its clinical success, proton therapy faces challenges in optimizing its therapeutic precision and [...] Read more.
Proton therapy represents a groundbreaking advancement in cancer radiotherapy, leveraging the unique spatial energy distribution of protons to deliver precise, high-dose radiation to tumors while sparing surrounding healthy tissues. Despite its clinical success, proton therapy faces challenges in optimizing its therapeutic precision and efficacy. Recent research has highlighted the potential of gold nanoparticles to enhance proton therapy outcomes. Due to their high atomic number and favorable biological properties, gold nanoparticles act as radiosensitizers by amplifying the generation of secondary electrons and reactive oxygen species upon proton irradiation. This enhances DNA damage in tumor cells while preserving healthy tissues. Additionally, functionalization of gold nanoparticles with tumor-targeting ligands offers improved precision, making proton therapy more effective against a broader range of cancers. This review synthesizes current knowledge on the mechanisms of gold nanoparticle radiosensitization, preclinical evidence, and the technological hurdles that must be addressed to integrate this promising approach into clinical practice, aiming to advance the efficacy and accessibility of proton therapy in cancer therapy. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

21 pages, 2459 KiB  
Review
Enhancing Proton Therapy Efficacy Through Nanoparticle-Mediated Radiosensitization
by Jie Ma, Hao Shen and Zhaohong Mi
Cells 2024, 13(22), 1841; https://doi.org/10.3390/cells13221841 - 7 Nov 2024
Cited by 6 | Viewed by 1962
Abstract
Proton therapy, characterized by its unique Bragg peak, offers the potential to optimize the destruction of cancer cells while sparing healthy tissues, positioning it as one of the most advanced cancer treatment modalities currently available. However, in comparison to heavy ions, protons exhibit [...] Read more.
Proton therapy, characterized by its unique Bragg peak, offers the potential to optimize the destruction of cancer cells while sparing healthy tissues, positioning it as one of the most advanced cancer treatment modalities currently available. However, in comparison to heavy ions, protons exhibit a relatively lower relative biological effectiveness (RBE), which limits the efficacy of proton therapy. The incorporation of nanoparticles for radiosensitization presents a novel approach to enhance the RBE of protons. This review provides a comprehensive discussion of the recent advancements in augmenting the biological effects of proton therapy through the use of nanoparticles. It examines the various types of nanoparticles that have been the focus of extensive research, elucidates their mechanisms of radiation sensitization, and evaluates the factors influencing the efficiency of this sensitization process. Furthermore, this review discusses the latest synergistic therapeutic strategies that integrate nanoparticle-mediated radiosensitization and outlines prospective directions for the future application of nanoparticles in conjunction with proton therapy. Full article
Show Figures

Figure 1

15 pages, 4387 KiB  
Article
Enhancing Proton Radiosensitivity of Chondrosarcoma Using Nanoparticle-Based Drug Delivery Approaches: A Comparative Study of High- and Low-Energy Protons
by Mihaela Tudor, Roxana Cristina Popescu, Ionela N. Irimescu, Ann Rzyanina, Nicolae Tarba, Anca Dinischiotu, Liviu Craciun, Tiberiu Relu Esanu, Eugeniu Vasile, Andrei Theodor Hotnog, Mihai Radu, Gennady Mytsin, Mona Mihailescu and Diana Iulia Savu
Int. J. Mol. Sci. 2024, 25(21), 11481; https://doi.org/10.3390/ijms252111481 - 25 Oct 2024
Cited by 2 | Viewed by 1255
Abstract
To overcome chondrosarcoma’s (CHS) high chemo- and radioresistance, we used polyethylene glycol-encapsulated iron oxide nanoparticles (IONPs) for the controlled delivery of the chemotherapeutic doxorubicin (IONPDOX) to amplify the cytotoxicity of proton radiation therapy. Human 2D CHS SW1353 cells were treated with [...] Read more.
To overcome chondrosarcoma’s (CHS) high chemo- and radioresistance, we used polyethylene glycol-encapsulated iron oxide nanoparticles (IONPs) for the controlled delivery of the chemotherapeutic doxorubicin (IONPDOX) to amplify the cytotoxicity of proton radiation therapy. Human 2D CHS SW1353 cells were treated with protons (linear energy transfer (LET): 1.6 and 12.6 keV/µm) with and without IONPDOX. Cell survival was assayed using a clonogenic test, and genotoxicity was tested through the formation of micronuclei (MN) and γH2AX foci, respectively. Morphology together with spectral fingerprints of nuclei were measured using enhanced dark-field microscopy (EDFM) assembled with a hyperspectral imaging (HI) module and an axial scanning fluorescence module, as well as scanning electron microscopy (SEM) coupled with energy-dispersive X-Ray spectroscopy (EDX). Cell survival was also determined in 3D SW3153 spheroids following treatment with low-LET protons with/without the IONPDOX compound. IONPDOX increased radiosensitivity following proton irradiation at both LETs in correlation with DNA damage expressed as MN or γH2AX. The IONPDOX–low-LET proton combination caused a more lethal effect compared to IONPDOX–high-LET protons. CHS cell biological alterations were reflected by the modifications in the hyperspectral images and spectral profiles, emphasizing new possible spectroscopic markers of cancer therapy effects. Our findings show that the proposed treatment combination has the potential to improve the management of CHS. Full article
(This article belongs to the Special Issue Implication of Nanoparticles in Cancer Therapy Research, 2nd Edition)
Show Figures

Figure 1

14 pages, 501 KiB  
Article
Microdosimetric Simulation of Gold-Nanoparticle-Enhanced Radiotherapy
by Maxim Azarkin, Martin Kirakosyan and Vladimir Ryabov
Int. J. Mol. Sci. 2024, 25(17), 9525; https://doi.org/10.3390/ijms25179525 - 2 Sep 2024
Cited by 3 | Viewed by 1498
Abstract
Conventional X-ray therapy (XRT) is commonly applied to suppress cancerous tumors; however, it often inflicts collateral damage to nearby healthy tissue. In order to provide a better conformity of the dose distribution in the irradiated tumor, proton therapy (PT) is increasingly being used [...] Read more.
Conventional X-ray therapy (XRT) is commonly applied to suppress cancerous tumors; however, it often inflicts collateral damage to nearby healthy tissue. In order to provide a better conformity of the dose distribution in the irradiated tumor, proton therapy (PT) is increasingly being used to treat solid tumors. Furthermore, radiosensitization with gold nanoparticles (GNPs) has been extensively studied to increase the therapeutic ratio. The mechanism of radiosensitization is assumed to be connected to an enhancement of the absorbed dose due to huge photoelectric cross-sections with gold. Nevertheless, numerous theoretical studies, mostly based on Monte Carlo (MC) simulations, did not provide a consistent and thorough picture of dose enhancement and, therefore, the radiosensitization effect. Radiosensitization by nanoparticles in PT is even less studied than in XRT. Therefore, we investigate the physics picture of GNP-enhanced RT using an MC simulation with Geant4 equipped with the most recent physics models, taking into account a wide range of physics processes relevant for realistic PT and XRT. Namely, we measured dose enhancement factors in the vicinity of GNP, with diameters ranging from 10 nm to 80 nm. The dose enhancement in the vicinity of GNP reaches high values for XRT, while it is very modest for PT. The macroscopic dose enhancement factors for realistic therapeutic GNP concentrations are rather low for all RT scenarios; therefore, other physico-chemical and biological mechanisms should be additionally invoked for an explanation of the radiosensitization effect observed in many experiments. Full article
(This article belongs to the Special Issue Nanoparticles in Nanobiotechnology and Nanomedicine: 2nd Edition)
Show Figures

Figure 1

15 pages, 2855 KiB  
Article
Boron Nanoparticle-Enhanced Proton Therapy: Molecular Mechanisms of Tumor Cell Sensitization
by Anton L. Popov, Danil D. Kolmanovich, Nikita N. Chukavin, Ivan V. Zelepukin, Gleb V. Tikhonowski, Andrei I. Pastukhov, Anton A. Popov, Alexander E. Shemyakov, Sergey M. Klimentov, Vladimir A. Ryabov, Sergey M. Deyev, Irina N. Zavestovskaya and Andrei V. Kabashin
Molecules 2024, 29(16), 3936; https://doi.org/10.3390/molecules29163936 - 21 Aug 2024
Cited by 5 | Viewed by 2150
Abstract
Boron-enhanced proton therapy has recently appeared as a promising approach to increase the efficiency of proton therapy on tumor cells, and this modality can further be improved by the use of boron nanoparticles (B NPs) as local sensitizers to achieve enhanced and targeted [...] Read more.
Boron-enhanced proton therapy has recently appeared as a promising approach to increase the efficiency of proton therapy on tumor cells, and this modality can further be improved by the use of boron nanoparticles (B NPs) as local sensitizers to achieve enhanced and targeted therapeutic outcomes. However, the mechanisms of tumor cell elimination under boron-enhanced proton therapy still require clarification. Here, we explore possible molecular mechanisms responsible for the enhancement of therapeutic outcomes under boron NP-enhanced proton therapy. Spherical B NPs with a mode size of 25 nm were prepared by methods of pulsed laser ablation in water, followed by their coating by polyethylene glycol to improve their colloidal stability in buffers. Then, we assessed the efficiency of B NPs as sensitizers of cancer cell killing under irradiation with a 160.5 MeV proton beam. Our experiments showed that the combined effect of B NPs and proton irradiation induces an increased level of superoxide anion radical generation, which leads to the depolarization of mitochondria, a drop in their membrane mitochondrial potential, and the development of apoptosis. A comprehensive gene expression analysis (via RT-PCR) confirmed increased overexpression of 52 genes (out of 87 studied) involved in the cell redox status and oxidative stress, compared to 12 genes in the cells irradiated without B NPs. Other possible mechanisms responsible for the B NPs-induced radiosensitizing effect, including one related to the generation of alpha particles, are discussed. The obtained results give a better insight into the processes involved in the boron-induced enhancement of proton therapy and enable one to optimize parameters of proton therapy in order to maximize therapeutic outcomes. Full article
(This article belongs to the Special Issue Nanoparticle-Based Drug Delivery Systems)
Show Figures

Figure 1

17 pages, 929 KiB  
Review
Potential Benefits of Combining Proton or Carbon Ion Therapy with DNA Damage Repair Inhibitors
by Gro Elise Rødland, Mihaela Temelie, Adrian Eek Mariampillai, Sissel Hauge, Antoine Gilbert, François Chevalier, Diana I. Savu and Randi G. Syljuåsen
Cells 2024, 13(12), 1058; https://doi.org/10.3390/cells13121058 - 19 Jun 2024
Cited by 8 | Viewed by 2722
Abstract
The use of charged particle radiotherapy is currently increasing, but combination therapy with DNA repair inhibitors remains to be exploited in the clinic. The high-linear energy transfer (LET) radiation delivered by charged particles causes clustered DNA damage, which is particularly effective in destroying [...] Read more.
The use of charged particle radiotherapy is currently increasing, but combination therapy with DNA repair inhibitors remains to be exploited in the clinic. The high-linear energy transfer (LET) radiation delivered by charged particles causes clustered DNA damage, which is particularly effective in destroying cancer cells. Whether the DNA damage response to this type of damage is different from that elicited in response to low-LET radiation, and if and how it can be targeted to increase treatment efficacy, is not fully understood. Although several preclinical studies have reported radiosensitizing effects when proton or carbon ion irradiation is combined with inhibitors of, e.g., PARP, ATR, ATM, or DNA-PKcs, further exploration is required to determine the most effective treatments. Here, we examine what is known about repair pathway choice in response to high- versus low-LET irradiation, and we discuss the effects of inhibitors of these pathways when combined with protons and carbon ions. Additionally, we explore the potential effects of DNA repair inhibitors on antitumor immune signaling upon proton and carbon ion irradiation. Due to the reduced effect on healthy tissue and better immune preservation, particle therapy may be particularly well suited for combination with DNA repair inhibitors. Full article
(This article belongs to the Topic Innovative Radiation Therapies)
Show Figures

Figure 1

16 pages, 3270 KiB  
Article
Radiosensitizing Effect of Dextran-Coated Iron Oxide Nanoparticles on Malignant Glioma Cells
by Nhan Hau Tran, Vyacheslav Ryzhov, Andrey Volnitskiy, Dmitry Amerkanov, Fedor Pack, Aleksander M. Golubev, Alexandr Arutyunyan, Anastasiia Spitsyna, Vladimir Burdakov, Dmitry Lebedev, Andrey L. Konevega, Tatiana Shtam and Yaroslav Marchenko
Int. J. Mol. Sci. 2023, 24(20), 15150; https://doi.org/10.3390/ijms242015150 - 13 Oct 2023
Cited by 5 | Viewed by 1865
Abstract
The potential of standard methods of radiation therapy is limited by the dose that can be safely delivered to the tumor, which could be too low for radical treatment. The dose efficiency can be increased by using radiosensitizers. In this study, we evaluated [...] Read more.
The potential of standard methods of radiation therapy is limited by the dose that can be safely delivered to the tumor, which could be too low for radical treatment. The dose efficiency can be increased by using radiosensitizers. In this study, we evaluated the sensitizing potential of biocompatible iron oxide nanoparticles coated with a dextran shell in A172 and Gl-Tr glioblastoma cells in vitro. The cells preincubated with nanoparticles for 24 h were exposed to ionizing radiation (X-ray, gamma, or proton) at doses of 0.5–6 Gy, and their viability was assessed by the Resazurin assay and by staining of the surviving cells with crystal violet. A statistically significant effect of radiosensitization by nanoparticles was observed in both cell lines when cells were exposed to 35 keV X-rays. A weak radiosensitizing effect was found only in the Gl-Tr line for the 1.2 MeV gamma irradiation and there was no radiosensitizing effect in both lines for the 200 MeV proton irradiation at the Bragg peak. A slight (ca. 10%) increase in the formation of additional reactive oxygen species after X-ray irradiation was found when nanoparticles were present. These results suggest that the nanoparticles absorbed by glioma cells can produce a significant radiosensitizing effect, probably due to the action of secondary electrons generated by the magnetite core, whereas the dextran shell of the nanoparticles used in these experiments appears to be rather stable under radiation exposure. Full article
(This article belongs to the Special Issue Bioactive Compounds in Cancer, Inflammation and Related Diseases)
Show Figures

Figure 1

13 pages, 1161 KiB  
Article
Study of Nuclear Reactions in Therapy of Tumors with Proton Beams
by Maxim Azarkin, Martin Kirakosyan and Vladimir Ryabov
Int. J. Mol. Sci. 2023, 24(17), 13400; https://doi.org/10.3390/ijms241713400 - 29 Aug 2023
Cited by 9 | Viewed by 2104
Abstract
This paper presents an assessment of nuclear reaction yields of protons, α-particles, and neutrons in human tissue-equivalentmaterial in proton therapy using a simulation with Geant 4. In this study, we also check an enhancement of nuclear reactions due to the presence [...] Read more.
This paper presents an assessment of nuclear reaction yields of protons, α-particles, and neutrons in human tissue-equivalentmaterial in proton therapy using a simulation with Geant 4. In this study, we also check an enhancement of nuclear reactions due to the presence of Bi, Au, 11B, and 10B radiosensitizer nanoparticles. We demonstrate that a proton beam induces a noticeable amount of nuclear reactions in the tissue. Nevertheless, the enhancement of nuclear reaction products due to radiosensitizer nanoparticles is found to be negligible. Full article
(This article belongs to the Special Issue Latest Advances on Nanoparticles for Modern Biomedicine)
Show Figures

Figure 1

11 pages, 887 KiB  
Review
Current State and Prospectives for Proton Boron Capture Therapy
by Nhan Hau Tran, Tatiana Shtam, Yaroslav Yu Marchenko, Andrey L. Konevega and Dmitry Lebedev
Biomedicines 2023, 11(6), 1727; https://doi.org/10.3390/biomedicines11061727 - 16 Jun 2023
Cited by 7 | Viewed by 3471
Abstract
The development of new methods increasing the biological effectiveness of proton therapy (PT) is of high interest in radiation oncology. The use of binary technologies, in which the damaging effect of proton radiation is further enhanced by the selective accumulation of the radiosensitizer [...] Read more.
The development of new methods increasing the biological effectiveness of proton therapy (PT) is of high interest in radiation oncology. The use of binary technologies, in which the damaging effect of proton radiation is further enhanced by the selective accumulation of the radiosensitizer in the target tissue, can significantly increase the effectiveness of radiation therapy. To increase the absorbed dose in a tumor target, proton boron capture therapy (PBCT) was proposed based on the reaction of proton capture on the 11B isotope with the formation of three α-particles. This review summarizes data on theoretical and experimental studies on the effectiveness and prospects of proton boron capture therapy. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

15 pages, 1655 KiB  
Review
Non-Surgical Definitive Treatment for Operable Breast Cancer: Current Status and Future Prospects
by Yuta Shibamoto and Seiya Takano
Cancers 2023, 15(6), 1864; https://doi.org/10.3390/cancers15061864 - 20 Mar 2023
Cited by 11 | Viewed by 4288
Abstract
This article reviews the results of various non-surgical curative treatments for operable breast cancer. Radiotherapy is considered the most important among such treatments, but conventional radiotherapy alone and concurrent chemoradiotherapy do not achieve high cure rates. As a radiosensitization strategy, intratumoral injection of [...] Read more.
This article reviews the results of various non-surgical curative treatments for operable breast cancer. Radiotherapy is considered the most important among such treatments, but conventional radiotherapy alone and concurrent chemoradiotherapy do not achieve high cure rates. As a radiosensitization strategy, intratumoral injection of hydrogen peroxide before radiation has been investigated, and high local control rates (75–97%) were reported. The authors treated 45 patients with whole-breast radiotherapy, followed by stereotactic or intensity-modulated radiotherapy boost, with or without a radiosensitization strategy employing either hydrogen peroxide injection or hyperthermia plus oral tegafur-gimeracil-oteracil potassium. Stages were 0–I in 23 patients, II in 19, and III in 3. Clinical and cosmetic outcomes were good, with 5-year overall, progression-free, and local recurrence-free survival rates of 97, 86, and 88%, respectively. Trials of carbon ion radiotherapy are ongoing, with promising interim results. Radiofrequency ablation, focused ultrasound, and other image-guided ablation treatments yielded complete ablation rates of 20–100% (mostly ≥70%), but long-term cure rates remain unclear. In these treatments, combination with radiotherapy seems necessary to treat the extensive intraductal components. Non-surgical treatment of breast cancer is evolving steadily, with radiotherapy playing a major role. In the future, proton therapy with the ultra-high-dose-rate FLASH mode is expected to further improve outcomes. Full article
(This article belongs to the Special Issue Radiation Therapy for Breast Cancer: Recent Advances and Challenges)
Show Figures

Figure 1

Back to TopTop