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Simple Summary: For breast cancer patients who do not wish to undergo any form of surgery, vari-
ous non-surgical treatments have been investigated. Radiotherapy is considered the most important
modality, but conventional radiotherapy alone or concurrent chemoradiotherapy do not lead to
high local control rates. So, to increase curability, radiosensitization strategies, including the use of
hydrogen peroxide injection before radiation and hyperthermia plus oral tegafur-gimeracil-oteracil
potassium (S-1), have been investigated. These strategies have yielded promising outcomes, with
local control rates of ~97%. A trial of carbon ion radiotherapy is ongoing, and particle therapy should
be further investigated in the future. Image-guided ablation therapy including radiofrequency abla-
tion and focused ultrasound have been investigated; although complete ablation rates of ≥70% have
been reported, combination with radiotherapy may be necessary to treat the extensive intraductal
components. Non-surgical treatment of breast cancer is evolving steadily and will become a valuable
treatment option for patients who refuse surgery.

Abstract: This article reviews the results of various non-surgical curative treatments for operable
breast cancer. Radiotherapy is considered the most important among such treatments, but conven-
tional radiotherapy alone and concurrent chemoradiotherapy do not achieve high cure rates. As a
radiosensitization strategy, intratumoral injection of hydrogen peroxide before radiation has been
investigated, and high local control rates (75–97%) were reported. The authors treated 45 patients
with whole-breast radiotherapy, followed by stereotactic or intensity-modulated radiotherapy boost,
with or without a radiosensitization strategy employing either hydrogen peroxide injection or hyper-
thermia plus oral tegafur-gimeracil-oteracil potassium. Stages were 0–I in 23 patients, II in 19, and
III in 3. Clinical and cosmetic outcomes were good, with 5-year overall, progression-free, and local
recurrence-free survival rates of 97, 86, and 88%, respectively. Trials of carbon ion radiotherapy are
ongoing, with promising interim results. Radiofrequency ablation, focused ultrasound, and other
image-guided ablation treatments yielded complete ablation rates of 20–100% (mostly ≥70%), but
long-term cure rates remain unclear. In these treatments, combination with radiotherapy seems
necessary to treat the extensive intraductal components. Non-surgical treatment of breast cancer is
evolving steadily, with radiotherapy playing a major role. In the future, proton therapy with the
ultra-high-dose-rate FLASH mode is expected to further improve outcomes.

Keywords: breast cancer; radiotherapy; radiosensitization; hydrogen peroxide; hyperthermia; parti-
cle therapy; radiofrequency ablation; high-intensity focused ultrasound; cryoablation; microwave
ablation
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1. Introduction

Breast cancer is increasing worldwide; there were over 2.3 million new cases and
685,000 deaths from breast cancer in 2020 in the world, but by 2040, new cases will increase
to over 3 million, and 1 million patients will die every year [1]. Therefore, the choice of
an optimal treatment for each patient, taking the patient’s wishes into consideration, may
become more important in the future. Breast cancers are classified into subtypes based on
the hormone-receptor positivity, human epidermal growth factor receptor type 2 (HER2)
status, and proliferative activity of the tumor cells, and they are staged according to the size
and local invasiveness of the tumor and the nodal and distant metastasis statuses [2]. For
each subtype and stage, recommended neoadjuvant and adjuvant treatments exist, but the
major treatment modality is surgery in the vast majority of non-Stage IV patients, unless
they are medically inoperable or very elderly.

In fact, 95.7% of non-Stage IV breast cancer patients received surgery, according to a US
National Cancer Database analysis [3]. Depending upon the disease stage and local status,
breast-conserving surgery, with or without postoperative radiation or total mastectomy,
is chosen. After breast-conserving surgery, however, the breast shape is not the same as
before, and permanent scars remain, sometimes causing pain. Recently, prosthetic breast
reconstruction was developed, but the reconstructed breast is an artificial one. In some
patients, the mental burden and fear of undergoing surgery seem to be substantial. Indeed,
the breasts are important body parts for women of any age, and so, if breast cancer can be
cured without any surgical procedure, many women may wish to choose the non-surgical
treatment. It may be natural that women wish to conserve their breasts as they are, and the
progress in medicine and technology should meet the wishes of such women.

Non-surgical treatments of Stage 0-III operable breast cancer have been attempted in a
relatively small proportion of patients who definitely refuse surgery. With the developments
of imaging modalities, non-surgical treatment may now be delivered more precisely than
before [4,5]. Radiation therapy has been used in inoperable cases, so it could be employed
for definitive treatment. The National Cancer Database study emphasized the role of
radiation therapy [3]. To achieve sufficient local control rates, however, some strategies
to increase the radiation doses from conventionally used ones or to enhance the effects
of radiation are necessary. In this respect, certain advances have been noted in recent
years. The authors have attempted to treat patients who refuse surgery with radiation
therapy, followed by stereotactic or intensity-modulated radiotherapy (IMRT) boost, with or
without radiosensitization methods [6,7], and the number of patients so treated is increasing.
Besides radiation therapy, image-guided ablative therapy has been attempted; there are
various methods for this purpose, including radiofrequency ablation (RFA), high-intensity
focused ultrasound (HIFU), cryoablation, and microwave ablation. Clinical data on these
treatments are accumulating. In this article, the outcomes of these non-surgical treatments
are reviewed, and the authors’ updated data are presented. Then, the future prospects
of these treatments are discussed. A literature search was conducted in PubMed using
various combinations of key words, such as breast cancer, radiotherapy, radiosensitization,
hydrogen peroxide, hyperthermia, particle therapy, radiofrequency ablation, high-intensity
focused ultrasound, cryoablation, and microwave ablation.

2. Radiotherapy-Based Treatment
2.1. Conventional Radiotherapy Alone

Radiation therapy has been used to treat unresectable breast cancer or elderly patients.
Conventional fractionation or hypofractionation with conventional doses was used, so
such treatments were not definitive ones. Previous data indicated that with conventional
radiation doses, 3-year local control rates would be expected to be 45–57% [8–10]; these
rates are insufficient as a definitive treatment. In a relatively large retrospective analysis
of 192 patients with locally advanced breast cancer, patients were treated with 45–50 Gy
to the breast, and about 80% of the patients received a local boost. Furthermore, 28% of
the patients received multi-agent chemotherapy. As a result, however, the 5-year local
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control rate was 73%, and 5-year survival was 41% [11]. In another study of early breast
cancer patients treated by primary radiotherapy, 27 tumors were found to have histologic
features of moderate to marked intraductal carcinoma in the tumor and adjacent tissue and
a high nuclear grade; the 5-year local control rate was 84% for 15 patients receiving ≥60 Gy,
whereas it was 48% for those who received <60 Gy [12]. Hypofractionated treatment was
used for more palliative cases [13], so data from such treatment are not fully evaluable.
Combination with adjuvant hormone therapy would improve the survival time of hormone-
receptor-positive patients [13].

2.2. Concurrent Chemoradiotherapy

Since conventional radiotherapy alone is insufficient to achieve a high local control
rate, concurrent chemoradiotherapy has been investigated for early breast cancer by a few
groups [14–16]. In a case series of 5 patients, 4 achieved local control for more than 2.5 years,
but 1 developed local recurrence, which was treated by reirradiation [14]. The Japanese
Clinical Oncology Group investigated preoperative chemoradiation for 108 Stage I–IIIA
patients. All patients underwent mastectomy or lumpectomy thereafter, and a pathological
complete response was achieved in only 36% of the patients [15]. Therefore, the conclusion
of the study was that the treatment was not sufficient to use as a definitive treatment. In
locally advanced breast cancer patients, concurrent chemoradiation was investigated by
many groups in a preoperative neoadjuvant setting [16–18]; surgery was a prerequisite of
treatment, and cure was not a goal of chemoradiation. Histological evaluation of resected
specimens showed pathological complete response rates of 9–61% (median, 29%) [16].
Concurrent chemoradiotherapy in combination with neoadjuvant/adjuvant chemotherapy
and hormonal therapy when indicated should be a method of definitive treatment, but
intensification of radiation therapy may be necessary to achieve a high enough local
control rate.

2.3. Radiotherapy with Hydrogen Peroxide Sensitization

As a definitive treatment for early breast cancer, Ogawa et al. [19] developed a new
treatment modality named KORTUC (Kochi Oxydol-Radiation Therapy for Unresectable
Carcinomas). In this treatment, hydrogen peroxide was injected into the breast tumor just
before radiation therapy [20,21]. Hydrogen peroxide produces oxygen in the tumor and,
hence, sensitizes hypoxic tumor cells to radiotherapy [22]. In addition, hydrogen peroxide
inactivates anti-oxidative enzymes, such as peroxidases and catalases that are scavengers
of radicals produced by radiation and reduce the therapeutic efficacy of RT [19]. Usually,
hydrogen peroxide dissolved in sodium hyaluronate was injected twice a week, while
radiation was delivered five times a week. Radiation doses used by Ogawa’s group were
44 Gy in 16 fractions (2.75 Gy per day) to the whole breast, followed by an electron boost
with 9 Gy in 3 fractions [20,21]. They treated 72 patients with Stage I or II operable breast
cancer with KORTUC, with or without chemotherapy and hormonal therapy. During a
mean follow-up period of 51 months, they found only 1 local recurrence; another patient
developed bone metastases. Disease-free survival and local control rates were both 97.1%
at 5 years.

Following the study of Ogawa et al. [19–21], several groups used the intratumoral
hydrogen peroxide radiosensitization method to treat breast cancer [6–8,23,24]. Table 1
summarizes the results reported so far. Subsequent investigators treated more advanced
cases, and the treatment outcomes were not as good as those of Ogawa et al. Shimbo
et al. [23] treated 30 patients with locally advanced or recurrent breast cancer employing
the KORTUC method, and the 3-year local control rate was 75%; the 2-year progression-
free survival rate was only 24%. Obata et al. [24] treated 5 patients with Stage I breast
cancer with KORTUC, and no local recurrences or distant metastases have been observed
during a median follow-up period of 65 months (range, 47–91 months). They also treated 2
Stage II patients with axillary lymph node metastases: one developed a local recurrence at
12 months, and another developed brain metastasis at 35 months and died at 56 months
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(personal communication, December 2022). In addition, Obata et al. [24] treated 32 patients
with Stage III or IV breast cancer, and a complete or partial response was obtained in 50%.
So, the treatment efficacy depends on the disease stage. Our group also used this treatment,
and the results are shown in the next section, as well as Table 1.

Table 1. Studies on radiosensitization with intratumoral hydrogen peroxide injection for breast
cancer.

1st Author n Stage Radiation
(Gy/Fraction) OS (%) PFS (%) LC (%)

Ogawa [20] 72 I/II 44/16 + 9/3 100 (5 y) 97.1 (5 y) 97.1 (5 y)

Shimbo [23] 30 IIIA–IV & R 44–67/16–30 60 (3 y) 24 (2 y) 75 (3 y)

Obata [24] * 5 I 44/16 + 9/3 100 (5 y) 100 (5 y) 100 (5 y)

Nimalasena [8] 13 I–IV 36/6 or 49.5/18 92 (1 y) NA 100 (1 y)

Shibamoto [7] ** 15 I–III 50/25 + 21/3 or
20/8 93 (5 y) 87 (5 y) 93 (5 y)

Abbreviations: OS = overall survival; PFS = progression-free survival; LC = local control; y = years; R = recurrence;
NA = not available; CR = complete response. * Updated by personal communication. ** Updated in this study.

This radiosensitization method with intratumoral hydrogen peroxide injection has
spread to the United Kingdom, and a Phase I study was conducted for locally advanced
breast cancer [8]. Twelve patients were treated, and all had acceptable toxicity. At the last
imaging assessment, the percentage of tumor volume reduction was between 50 and 100%.
A Phase II study is now being conducted.

2.4. Whole-Breast Radiotherapy Followed by Stereotactic or Intensity-Modulated Boost with or
without Radiosensitization Strategy

The authors’ group has been using conventional whole-breast radiation, followed
by stereotactic or IMRT boost, for operable breast cancer patients who refuse any type of
surgery. Details of the treatment have been described [6,7]; updated results are shown in
this article. Until recently, we used 50 Gy in 25 daily fractions for whole-breast treatment,
but currently moderate hypofractionation with 44.8 Gy in 16 fractions (2.8 Gy daily) is used.
Standard boost doses were 21 Gy in 3 fractions for stereotactic irradiation and 20 Gy in
8 fractions for IMRT. The planning target volume for the boost treatment was the internal
target volume plus 5 mm margins in all directions. The IMRT boost dose has recently
been modified to 19.6 Gy in 7 fractions (2.8 Gy daily). For tumors approximately ≥2 cm
in maximum diameter, two types of radiosensitization methods have been applied: one is
hydrogen peroxide injection (KORTUC) during whole-breast radiotherapy, and the other is
hyperthermia plus oral tegafur-gimeracil-oteracil potassium (S-1). The former radiosen-
sitization method was terminated due to a change in medical legislation in Japan, and
thereafter, the latter sensitization method has been employed. The hydrogen peroxide
radiosensitization method is the same as that used by Ogawa et al. [19–21]. Radiofre-
quency hyperthermia was performed with RF-8 (Yamamoto Vinitor, Osaka, Japan) once a
week during radiation therapy up to five times. The skin temperature was maintained at
40–41.5 ◦C for at least 30 min. S-1 (80–120 mg/day) was orally administered twice a day
from the evening before the starting day (usually Monday) of irradiation to the morning of
weekends (usually Friday) and repeated until the treatment end.

As of June 2022, 45 patients had been treated. The disease stages were 0 (ductal
carcinoma in situ, DCIS) in 7 patients, I in 16, II in 19, and III in 3. The patients with a
biopsy result of DCIS were staged as 0, but it was unknown whether the biopsy result
represented the whole tumor. All the patients were judged to be operable by breast
surgeons. Standard chemotherapy and/or hormonal therapy was used when the patients
agreed to receive them; 4 patients received systemic chemotherapy and/or anti-HER2
therapy, and 31 of 35 hormone-receptor-positive patients received adjuvant hormonal
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therapy. Figure 1 shows overall, progression-free, and local recurrence-free survival curves
for all 45 patients. The median follow-up period was 50 months (range, 6–180). The
5-year overall, progression-free, and local recurrence-free survival rates were 97.3, 86.4, and
87.9%, respectively. An important finding in our study is that even when a residual mass
persisted after radiotherapy, the mass did not necessarily show regrowth. Figure 2 shows
the changes of breast cancer over time. The original tumor achieved a partial response,
but has remained stable after 22 months since treatment. We consider that these residual
masses are usually scars, while fibroadenoma was detected by biopsy after 3 years of this
treatment in a patient. Overall, 24 of the 45 patients had such a residual mass, but 20 of
them have not developed local recurrence.
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Figure 2. A case with an invasive ductal carcinoma (arrow) and a residual mass after treatment with
whole-breast radiotherapy and stereotactic boost. (A) Before, (B) 22 months after, and (C) 81 months
after treatment.

Figure 3 shows progression-free survival curves for the three groups treated without
radiosensitization, with hydrogen peroxide sensitization, and with hyperthermia plus
S-1 sensitization. The mean tumor size (±standard deviation) was 18 ± 11, 26 ± 9, and
27 ± 11 mm for the three groups, respectively. The stage distribution (0/I/II/III) was
2/9/3/1, 2/2/10/1, and 3/5/6/1, respectively. The 5-year progression-free survival rates
were 83, 87, and 80%, respectively, for the three groups, with no significant differences
among the groups.
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Major toxicities were acute skin toxicities (radiation dermatitis), with Grade 1 in 23,
Grade 2 in 7, and Grade 3 in 15. The Harvard Scale of breast cosmesis was excellent (nearly
identical to an untreated breast) in 20, good (slightly different from an untreated breast) in
24, and fair (clearly different from an untreated breast but not seriously distorted) in 1. We
reported enlargement of the irradiated breast probably due to lymph edema; although the
enlarged breast is esthetically favorable, this produced asymmetry of the breasts, making
the Harvard Scale “good” instead of “excellent”.

2.5. Particle Therapy

The use of proton or carbon ion beams has been considered for postoperative radio-
therapy of breast cancer or for locally advanced cases [25,26]. Using proton beams in an
anterior direction, irradiation to the lung can be minimized, and so it is expected that
radiation pneumonitis would become almost zero. Attempts to use protons for definitive
treatment of operable breast cancer are ongoing at two Japanese facilities of proton therapy.
To our knowledge, however, patient accrual is limited, and no meaningful data are available
at present.

Prospective studies of carbon ion therapy for Stage I breast cancer have been conducted.
Results of a Phase I study, in which seven patients were enrolled, were reported [27]. They
received hypofractionated carbon ion therapy with 48, 52.8, or 60 GyRBE in 4 fractions. At
3 months after carbon ion therapy, 1 achieved a complete response, 5 achieved a partial
response, and 1 had stable disease. The tumors were excised at 3 months after the treatment
and were histologically evaluated; among the 7 patients, only 2 had a Grade 3 pathological
effect. The conclusion of the study was that the timing of the histological evaluation (at
3 months) may not have been optimal.

Subsequently, the study entered Phase II, and three studies have been conducted [28].
Although respective studies have limited patient numbers and are still ongoing, no local
recurrence has been observed [28]. The most recent study employed a single fraction
treatment with 42–50 GyRBE using partial-breast irradiation. In addition, the results
for 14 off-protocol patients undergoing carbon ion therapy for Stage I (T1N0M0) breast
cancer were reported [29]. Accelerated partial-breast irradiation was employed, and the
radiation dose was 52.8 or 60 GyRBE in 4 fractions. Possibly due to the use of relatively
high doses, 13 patients maintained a complete response, whereas only 1 patient developed
local recurrence; this patient died of the disease at 69 months after carbon ion radiotherapy,
while the other 13 patients were alive at 51–87 months (median, 61 months). Thus, particle
therapy has not yet been established as a definitive treatment of early breast cancer, but
carbon ion therapy may be worthy of further investigation.

3. Image-Guided Percutaneous Minimally Invasive Treatment

Percutaneous ablation therapy has been used for local treatment of benign breast
tumors, and the indication has been extended to breast cancer. Ablation therapy includes
RFA, HIFU, cryoablation, microwave ablation, and laser therapy. Vacuum-assisted excision
and irreversible electroporation may become used in the future. Further, photothermal
therapy and magnetic hyperthermia are under investigation. In most ablation treatments
aiming at heat-induced coagulation necrosis, tumor temperatures are raised to >60 ◦C, in
contrast to 40–42 ◦C in hyperthermia, in which a direct cell killing effect is considered to be
weak, but a radiosensitizing effect is expected. In the ablation treatments, various types
of cell death, including necrosis, apoptosis, ferroptosis, necroptosis, and pyroptosis, are
reported to occur [30,31]. In hyperthermia, both necrosis and apoptosis were reported, and
necrosis increased with elevation of the temperature above 45 ◦C [32]. In general, these
modalities are applied to relatively small tumors (<2 cm), and breast cancers with extensive
DCIS components are not indicated. Management of extensive intraductal components is
always a problem in increasing the curability of these treatments, and in this respect, some
groups employed radiation therapy in combination with ablation therapy. Below are brief
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summaries of each modality; for more details, readers are recommended to refer to other
review articles [33–43].

3.1. Radiofrequency Ablation

RFA utilizes radiofrequency alternating current from electrodes placed in the tumor
with the aid of ultrasound or magnetic resonance imaging (MRI). This current causes local
coagulation necrosis. Cells usually die at temperatures > 60 ◦C, and shorter exposure times
become sufficient as the temperature in the target increases. Regarding the procedure,
RFA is advantageous in terms of a relatively short ablation time, use of a finer needle, no
need for gas tanks, and the availability of MR thermometry. Disadvantages are a lack of
monitoring the ablation zone during the procedure, the necessity of placing grounding
pads on the patient, and the necessity of a tailored algorithm in some cases.

The clinical outcomes of representative studies are shown in Table 2, together with
those of other modalities. In most studies of RFA, as well as other ablation treatments,
ablated sites were excised later and underwent histopathological evaluation. The results
showed a complete tumor eradication rate of 30–100% (mostly >60%) [37,44–48]. Studies
without subsequent surgery are few, but they indicated local control rates of 70–100%; 100%
local control was reported during a follow-up period of 6–30 months (median, 15 months),
but a longer follow-up is clearly necessary [45]. Frequently observed complications of RFA
are bleeding, infection, breast ecchymosis, skin burns, and fat necrosis.

Table 2. Excerpts of clinical studies of ablation therapy for breast cancer.

1st Author Modality n Size * (cm) Other
Therapy

Complete
Necrosis
Rate (%)

Local
Control (%) Survival (%)

Ito [44] RFA 244 ≤1.0 R (91%) NA 97 NA

111 1.1–2.0 NA 94 NA

30 >2.0 NA 87 NA

Oura [45] RFA 52 0.5–2.0 (1.3) S, R 42 100 100 (6–30 M)

Kinoshita [46] RFA 49 <3.0 (1.7) S 61 NA NA

Yamamoto [47] RFA 29 0.5–1.9 (1.3) S, C, H 92 NA NA

Palussière [48] RFA 21 <3.0 H, S (-) 95 NA

Gianfelice [49] HIFU 24 <2.0 H, S (-) 79 NA NA

Furusawa [50] HIFU 21 0.5–5.0 (1.5) R, C 95 (~26 M) NA

Wu [51] HIFU 22 2.0–4.8 (3.4) R, C, H 89 (5 year) NA

Simmons [52] Cryo 87 0–1.9 (1.1) S 76 NA NA

Poplack [53] Cryo 20 ≤1.5 S 85 NA NA

Zhou [54] Microwave 41 1.3–6.4 (2.2) S 90 NA NA

Schwartzberg
[55] Laser 61 0.4–1.9 (1.1) S, R, C 84 96 (34–65 M) NA

Dowlatshahi [56] Laser 54 0.5–2.3 (1.2) S 70 NA NA

* Data in parentheses are mean. Abbreviations: RFA = radiofrequency ablation; NA = not available; S = surgery;
(-) = not performed; R = radiation; M = months; C = chemotherapy; H = hormone therapy; HIFU = high-intensity
focused ultrasound; Cryo = cryosurgery.

3.2. High-Intensity Focused Ultrasound

In HIFU, high-frequency ultrasound waves (average spatial intensity, 100–10,000 W/cm2)
are focused on the target under MRI or ultrasound guidance, and acoustic energy is
converted to heat, producing thermal coagulation. A focal temperature of 56–90 ◦C for >1 s
effectively produces thermal injury. Other proposed mechanisms for HIFU ablation are
acoustic cavitation, microstreaming, and immune system modulation [57]. The advantages
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of HIFU are no probe insertion, leading to excellent cosmesis; sharp ablation margin;
negligible cooling effect from blood flow; and inhomogeneous temperature distribution.
The disadvantages are the relatively long treatment time (>40 min) and sensitivity to patient
movement and near-field heating.

Similar to other ablation modalities, HIFU has been used before surgery to histo-
logically evaluate its effect. Various studies reported complete necrosis rates of 17–100%
(mostly >50%), which may be similar to those of other ablation modalities [33,37,39,49,58].
In a study with 21 patients followed by MRI after HIFU-alone treatment, only one recur-
rence was observed during a median follow-up period of 14 months (range: 3–26) [50]. In
another study, HIFU was combined with radiation, chemotherapy, and hormonal therapy,
and surgery was not performed; of 22 stage I–IV patients so treated, 2 developed local
recurrence [51]. The 5-year disease-free and recurrence-free survival were 95 and 89%,
respectively. Therefore, combination with radiochemotherapy and hormone treatment
may yield better outcomes. Complications of HIFU include pain, edema, muscle injury,
erythema, hyperpigmentation, and hemorrhage.

3.3. Cryoablation

Under ultrasound guidance, a needle is placed in the lesion, and an ice ball is expanded.
The procedure consists of the initial freeze, passive thaw, and subsequent freeze. During
the first freeze, extracellular water freezes earlier due to a higher intracellular osmolality,
leading to dehydration of the cells. In the passive thaw phase, the osmotic gradient
reverses, causing cell swelling and rupture. A longer thaw after the first freeze seems more
effective than rapid freezing to increase cellular damage, since intracellular ice crystals
growing while thawing disrupt organelles and plasma membranes [59]. The second freeze
enlarges the necrotic area, since the tissue disrupted during the first freeze conducts cold
temperature more efficiently. Tissue destruction occurs at lethal temperatures <−40 ◦C. The
advantages of cryoablation are the good visualization and rapid procedure and recovery.
The disadvantages are the cost and cumbersome management of argon.

In clinical studies of cryoablation in which treatment success was evaluated histopatho-
logically, clinical success was reported in 18–99% (mostly >70%) of the patients [33,37,52,53].
However, studies without subsequent surgery have not been documented to date. Compli-
cations include skin frostbite, bleeding, infection, and skin or chest wall injury.

3.4. Microwave Ablation

Microwave ablation also creates frictional heat and induces coagulative necrosis. In
contrast to RFA that uses resistive heating, microwave ablation heats tissue surround-
ing an antenna that transfers energy from a power source to tissue. At frequencies of
900–2500 MHz, the temperature reaches a lethal level. Since microwave ablation is less
effective in low-water tissue like fat, tumor cells are considered to be more effectively
destroyed than normal fatty breast tissue [60]. The delivery of energy in microwave abla-
tion is less limited by the electrical impedance of tissue when compared to RFA, and so it
theoretically increases the probability of complete ablation [61]. This is an advantage of
microwave ablation. As a disadvantage, the procedure can be very painful and may be
poorly tolerated by some patients.

A clinical study reported a complete tumor coagulation rate of 90% in 41 patients [54].
Imaging follow-up of the patients revealed tumor volume reduction over time, but the
long-term outcomes of patients treated without subsequent surgery have not been reported.
The complications of microwave ablation are mostly skin burns.

3.5. Laser Ablation

Laser therapy aims at elective thermal destruction of the target by converting light into
thermal energy, causing direct and indirect damage to the tissue. Heat injury occurs directly
during heat deposition, and indirect injury develops thereafter, producing progressive tis-
sue damage from tissue vaporization, microvascular damage, tissue necrosis, and immune



Cancers 2023, 15, 1864 10 of 15

cell activation [55]. Under ultrasound or stereotactic guidance, a laser fiber in a laser probe
is placed in the lesion. A continuous-wave 805 nm diode laser and a neodymium-doped
yttrium aluminum garnet (Nd:YAG) 1064 nm laser are most frequently employed. At the
laser–tissue interface, the tissue absorbs photons and causes excitation and the release of
thermal energy, which results in rapid temperature elevation and irreversible tissue dam-
age. At temperatures of 60 ◦C, coagulation necrosis occurs rapidly, while supraphysiologic
hyperthermia is delivered to surrounding tissues, resulting in delayed thermal damage.
Overheating may reduce its effectiveness, since tissue carbonization may alter tissue optical
properties and hamper penetration. In this modality, major complications are rare. As
disadvantages, carbonization may limit penetration, and MRI is required to evaluate the
ablation zone. In addition, the treatment parameters need to be adapted for patient-specific
tissue.

In clinical studies, complete tumor ablation was reported in 84% of 61 patients with
early breast cancer [55] and 70% of 54 patients with breast cancer smaller than 1.5 cm [56].
In the latter study, 2 patients were followed for up to 24 months without resection; tumor
shrinkage and subsequent oil cyst formation and fibrosis at biopsy were reported. The
complications of laser ablation are skin burns, hyperpigmentation, and pneumothorax.

3.6. Other Modalities

Two other ablation methods may be considered for future application in the treatment
of early breast cancer [33]. An ultrasound-guided vacuum-assisted breast biopsy device
comprising a cutting needle and vacuum suction can be used for the treatment of small
breast lesions, such as fibroadenoma; however, to date, vacuum-assisted excision has not
yet been used for breast cancer. Excising the tumor from multiple directions and repeating
the excision cycle may be required for complete resection.

In irreversible electroporation, electric pulses are delivered at high voltages through
needle electrodes placed around the tumor. Brief intense electric pulses alter the membrane
potential and produce permanent nanopores in the cell membrane, increasing its permeabil-
ity. Irreversible apoptosis also occurs above a certain threshold. Then, a well-demarcated
ablation zone is produced with a sharp boundary. To date, this modality has also not been
employed for the treatment of breast cancer.

Furthermore, two novel modalities are under investigation before clinical use. Photo-
thermal therapy involves photo-thermoconversion agents and laser irradiation. Gold
nanoparticles generate heat when exposed to light, especially in the near-infrared range.
Compounds possessing various unique properties other than thermoconversion are being
developed [62,63]. In magnetic hyperthermia, magnetic nanoparticles are injected into the
tumor, and alternating the magnetic field induces heat by interacting with the nanoparti-
cles [64,65]. The temperature reaches 43 ◦C or higher, leading to the apoptosis of cancer
cells. Since the magnetic field is only absorbed by the magnetic nanoparticles, cancer cells
can be treated selectively. These two methods have not yet been investigated as clinical
trials, but may deserve further investigation as new treatment modalities for breast cancer.

3.7. Summary of Ablation Therapies

All ablation therapy modalities may be effective in achieving tumor necrosis. Reported
complete necrosis rates differ slightly with the modalities, but this may not be inherent
to the differences in modalities. The complete ablation rate depends on the tumor size,
nature of the breast cancer, patient selection criteria, imaging techniques used, ablation
protocols, size of the ablated margins, and evaluation method. Therefore, the modality
that is most frequently used in each institution may be employed. However, the greatest
issue in using ablation therapy in the definitive treatment of operable breast cancers is the
treatment of extensive intraductal components. To treat such components, whole-breast
radiation therapy or partial-breast irradiation with adequate margins may be the most
useful and effective, so the authors consider that combination with radiotherapy should be
mandatory to establish the treatment as the definitive breast cancer therapy.
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4. Current Recommendations and Future Prospects

From the above considerations, the use of whole-breast radiation is strongly rec-
ommended to cure operable breast cancer. When indicated, accelerated partial-breast
irradiation may be employed in place of whole-breast irradiation. A tumor mass may
be treated with a stereotactic or IMRT boost, as our group is doing, or with an ablation
modality. Since skin reactions occur with whole-breast radiation, an ablation treatment may
be better performed before whole-breast radiation. A stereotactic or IMRT boost should be
given after whole-breast radiation, because the residual tumor can be treated with smaller
radiation fields. It is not yet known which of ablation therapy and stereotactic or IMRT
boost is better, and this should be determined in future studies. The advantage of IMRT
boost is that multiple tumors can be readily treated in one treatment session. In addition,
stereotactic radiation and IMRT boost may have an advantage regarding the treatment of
tumor margins. In our study, the margin for the boost were 5 mm, which was not much
different from the ablation margins (3–10 mm) in most studies [5,33,44]. However, while
the effect of ablation treatment sharply decreases outside the margins, radiation doses fall
off by gradation outside the margins, so a geographic miss may be less likely to occur in the
radiation boost method. The disadvantage of stereotactic radiotherapy or IMRT boost is the
skin toxicity, as we observed many patients with Grade 3 radiation dermatitis. However,
the dermatitis later recovered to acceptable levels. Conventional electron boost may be
sufficient to treat very small tumors (<1 cm), and for larger tumors, it should be employed
when strategies to intensify the effect of whole-breast radiation, such as hydrogen peroxide
injection, are used. Which of the radiosensitization strategies is the best is still unknown and
should be determined in future studies. Besides radiosensitization efficacy, complications,
especially with regard to cosmetic outcomes, should be evaluated. Hydrogen peroxide
injection causes indurations of the injected site, and hyperthermia often leads to fat necrosis.
It is desirable to avoid these complications.

The recommended treatment differs with the subtype of breast cancer. Of course, stan-
dard adjuvant chemotherapy and hormonal therapy should be used whenever indicated
to increase the curability. HER2-type breast cancer responds to anti-HER2 therapy, and a
pathological complete response is often obtained. In such cases, simply adding whole- or
partial-breast irradiation may be sufficient to cure the tumor. A prospective study to test
this hypothesis is ongoing by the Japan Clinical Oncology Group (JCOG) Breast Cancer
Study Group (JCOG1806: http://www.jcog.jp/basic/org/group/bcsq.html, accessed on
25 January 2023). This approach should be investigated in future studies.

Whole-breast irradiation is usually delivered with photons using tangential fields,
by which irradiation to the lung can be kept at a low level. However, Grade I radiation
pneumonitis develops in most patients in the lung adjacent to the breast. IMRT can reduce
the dose to the lung, but it does not become zero. In addition, irradiation to the heart
becomes an issue in left-sided breast cancer, although irradiation during deep breathing
can decrease radiation doses to the heart. A good solution to this issue is the use of
particle therapy, especially proton therapy. When protons are irradiated from the anterior
direction, the dose to the lung could be minimal among various radiation methods. When
the cost–benefit issue is solved, proton beam therapy may become the best choice in the
future. Further, when using accelerated partial-breast irradiation, proton or carbon ion
radiotherapy may be effective.

Recently, ultra-high-dose-rate (>40 Gy/s) FLASH radiotherapy has been attracting
marked attention among various research topics in radiation oncology [66–68]. In terms
of the mechanisms of producing the high-dose rate, electron and particle beams seem to
be more suitable to produce the ultra-high-dose rate than photon beams. In the future,
FLASH electron beams may be employed for a boost after whole-breast radiotherapy for
superficial breast cancer. Since one of the proposed mechanisms for the FLASH effect
is oxygen depletion in normal tissue [69], proton beams may produce stronger FLASH
effects than heavy ions, because the oxygen effect (oxygen enhancement ratio) is greater for
protons than heavy ions [70]. So, to treat breast cancers, including relatively deep-seated
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ones, proton beams may be the best. To obtain the normal tissue-sparing effects of FLASH
therapy, a high fractional dose is required, so FLASH proton beams may be used for the
boost treatment after whole-breast radiotherapy. In a mouse model, radioprotective effects
for the skin has been reported with a dose-modifying factor of 1.44–1.58 [71]. Skin reactions
are marked at the completion of whole-breast radiotherapy, so the use of FLASH protons
may be a better choice for patients without lymph node metastasis. Thus, radiation therapy
is expected to further develop in the future as a key treatment modality for operable breast
cancer patients who do not wish to undergo surgery.

5. Conclusions

Non-surgical definitive treatment is gradually being developed for early breast cancer
and will be established in the near future. This should be good news for patients who do not
wish to receive any surgery. With the increase in treatment options, computational modeling
and treatment planning may play a greater role in the future. Further investigations to
determine the optimal treatment modality for this purpose are warranted.
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