Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = proteolysis-resistant protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5007 KiB  
Review
PROTAC-Based Antivirals for Respiratory Viruses: A Novel Approach for Targeted Therapy and Vaccine Development
by Amith Anugu, Pankaj Singh, Dharambir Kashyap, Jillwin Joseph, Sheetal Naik, Subhabrata Sarkar, Kamran Zaman, Manpreet Dhaliwal, Shubham Nagar, Tanishq Gupta and Prasanna Honnavar
Microorganisms 2025, 13(7), 1557; https://doi.org/10.3390/microorganisms13071557 - 2 Jul 2025
Viewed by 540
Abstract
The global burden of respiratory viral infections is notable, which is attributed to their higher transmissibility compared to other viral diseases. Respiratory viruses are seen to have evolved resistance to available treatment options. Although vaccines and antiviral drugs control some respiratory viruses, this [...] Read more.
The global burden of respiratory viral infections is notable, which is attributed to their higher transmissibility compared to other viral diseases. Respiratory viruses are seen to have evolved resistance to available treatment options. Although vaccines and antiviral drugs control some respiratory viruses, this control is limited due to unexpected events, such as mutations and the development of antiviral resistance. The technology of proteolysis-targeting chimeras (PROTACs) has been emerging as a novel technology in viral therapeutics. These are small molecules that can selectively degrade target proteins via the ubiquitin–proteasome pathway. PROTACs as a therapy were initially developed against cancer, but they have recently shown promising results in their antiviral mechanisms by targeting viral and/or host proteins involved in the pathogenesis of viral infections. In this review, we elaborate on the antiviral potential of PROTACs as therapeutic agents and their potential as vaccine components against important respiratory viral pathogens, including influenza viruses, coronaviruses (SARS-CoV-2), and respiratory syncytial virus. Advanced applications of PROTAC antiviral strategies, such as hemagglutinin and neuraminidase degraders for influenza and spike proteins of SARS-CoV-2, are detailed in this review. Additionally, the role of PROTACs in targeting cellular mechanisms within the host, thereby preventing viral pathogenesis and eliciting an antiviral effect, is discussed. The potential of PROTACs as vaccines, utilizing proteasome-based virus attenuation to achieve a robust protective immune response, while ensuring safety and enhancing efficient production, is also presented. With the promises exhibited by PROTACs, this technology faces significant challenges, including the emergence of novel viral strains, tissue-specific expression of E3 ligases, and pharmacokinetic constraints. With advanced computational design in molecular platforms, PROTAC-based antiviral development offers an alternative, transformative path in tackling respiratory viruses. Full article
Show Figures

Figure 1

24 pages, 950 KiB  
Review
Pathophysiological Roles of the CX3CL1-CX3CR1 Axis in Renal Disease, Cardiovascular Disease, and Cancer
by Yuya Iwahashi, Yuko Ishida, Naofumi Mukaida and Toshikazu Kondo
Int. J. Mol. Sci. 2025, 26(11), 5352; https://doi.org/10.3390/ijms26115352 - 3 Jun 2025
Cited by 1 | Viewed by 1173
Abstract
CX3CL1 and its unique receptor, CX3CR1, are leukocyte migration factors and are involved in the pathogenesis and progression of many inflammatory diseases and malignancies. The CX3CL1-CX3CR1 axis induces a variety of responses, including cell proliferation, migration, invasion, and apoptosis resistance. CX3CL1 is a [...] Read more.
CX3CL1 and its unique receptor, CX3CR1, are leukocyte migration factors and are involved in the pathogenesis and progression of many inflammatory diseases and malignancies. The CX3CL1-CX3CR1 axis induces a variety of responses, including cell proliferation, migration, invasion, and apoptosis resistance. CX3CL1 is a transmembrane protein, and proteolysis generates a soluble form. The membrane and soluble forms of CX3CL1 exhibit different functions, but both bind to the chemokine receptor CX3CR1. The CX3CL1-CX3CR1 axis is a chemokine system that has attracted attention not only as a therapeutic target but also as a potentially useful diagnostic and prognostic marker for disease. Many studies have reported that the CX3CL1-CX3CR1 axis is involved in disease progression, but more recently there are scattered reports suggesting that it is involved in disease suppression. In this article, we summarize the latest findings on the pathophysiological role of the CX3CL1-CX3CR1 axis, with a particular focus on renal disease, cardiovascular disease, and cancer. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

21 pages, 2895 KiB  
Article
Genomic and Transcriptomic Profiling of Bacillus cereus in Milk: Insights into the Sweet Curdling Defect
by Maria Kyritsi, George Tsiolas, Antiopi Tsoureki, Vasiliki Schoretsaniti, Maria Gougouli, Sofia Michailidou and Anagnostis Argiriou
Foods 2025, 14(5), 780; https://doi.org/10.3390/foods14050780 - 25 Feb 2025
Viewed by 1448
Abstract
Bacillus cereus sensu lato (B. cereus s.l.) are significant spoilage and pathogenic microorganisms found in various foodstuffs. They are responsible for defects like sweet curdling in milk, which impacts dairy product storage and distribution. Nevertheless, the genetic mechanisms underlying B. cereus-induced sweet curdling [...] Read more.
Bacillus cereus sensu lato (B. cereus s.l.) are significant spoilage and pathogenic microorganisms found in various foodstuffs. They are responsible for defects like sweet curdling in milk, which impacts dairy product storage and distribution. Nevertheless, the genetic mechanisms underlying B. cereus-induced sweet curdling remain poorly characterized. In this study, we investigated the genetic and functional basis underlying this phenomenon through whole genome sequencing of the newly isolated B. cereus strain BC46 and transcriptome sequencing at two phases of its growth in milk. Hybrid assembly of Illumina and Nanopore reads resulted in a 5.6 Mb genome with 35.1% GC content, classifying BC46 as B. cereus sensu stricto (B. cereus s.s.) within the panC group IV. Several virulence factors, antimicrobial resistance genes, and cold shock proteins were identified in the genome. A distinct functional profile of BC46 was observed before and after the development of sweet curdling in milk. Genes associated with sporulation, toxin production, hydrolysis, and proteolysis were upregulated in sweet-curdled samples. Our findings highlight potential gene targets that may play an important role in the BC46-induced sweet curdling in milk, enhancing our understanding of its molecular basis and supporting the development of new genetic approaches for early spoilage detection. Full article
(This article belongs to the Special Issue Foodborne Pathogen Reduction in Foods)
Show Figures

Figure 1

17 pages, 5760 KiB  
Article
The Proteolytic Activation, Toxic Effects, and Midgut Histopathology of the Bacillus thuringiensis Cry1Ia Protoxin in Rhynchophorus ferrugineus (Coleoptera: Curculionidae)
by Camilo Ayra-Pardo, Victor Ramaré, Ana Couto, Mariana Almeida, Ricardo Martins, José Américo Sousa and Maria João Santos
Toxins 2025, 17(2), 84; https://doi.org/10.3390/toxins17020084 - 12 Feb 2025
Viewed by 1551
Abstract
The red palm weevil (RPW; Coleoptera: Curculionidae) is a destructive pest affecting palms worldwide, capable of causing significant economic losses and ecological damage in managed palm ecosystems. Current management heavily relies on synthetic insecticides, but their overuse fosters resistance. Bacillus thuringiensis (Bt) offers [...] Read more.
The red palm weevil (RPW; Coleoptera: Curculionidae) is a destructive pest affecting palms worldwide, capable of causing significant economic losses and ecological damage in managed palm ecosystems. Current management heavily relies on synthetic insecticides, but their overuse fosters resistance. Bacillus thuringiensis (Bt) offers a promising alternative, producing toxins selective against various insect orders, including Coleoptera. However, no specific Bt toxin has yet been identified for RPW. This study investigates the toxicity against RPW larvae of the Bt Cry1Ia protoxin, known for its dual activity against Lepidoptera and Coleoptera. A laboratory RPW colony was reared for two generations, ensuring a reliable insect source for bioassays. Cry1Ia was expressed as a 6xHis-tagged fusion protein in Escherichia coli and purified using nickel affinity. Incubation with RPW larval gut proteases for 24 h produced a stable core of ~65 kDa. Diet-incorporation bioassays revealed high Cry1Ia toxicity in neonate larvae. In contrast, the lepidopteran-active Cry1Ac protoxin, used as a robust negative control, was completely degraded after 24 h of in vitro proteolysis and showed no toxicity in bioassays. Cry1Ia-fed larvae exhibited significant midgut cell damage, characteristic of Bt intoxication. These findings highlight Cry1Ia’s strong potential for integration into RPW management programs. Full article
Show Figures

Figure 1

21 pages, 6680 KiB  
Article
Structural and Stability Analysis of GRP Family Allergens Pru p 7 and Cry j 7, Which Cause Pollen and Food Allergy Syndrome
by Jingkang Zheng, Hiroyuki Kumeta, Yasuhiro Kumaki, Tomona Iizuka, Ichiho Yoshikawa, Ami Hanaoka and Tomoyasu Aizawa
Biomolecules 2025, 15(2), 232; https://doi.org/10.3390/biom15020232 - 6 Feb 2025
Viewed by 1146
Abstract
Cry j 7 is a 7 kDa cysteine-rich gibberellin regulatory protein (GRP) with six disulfide bonds. It was isolated from Japanese cedar as the pollen allergen in this study. It exhibits cross-reactivity with food allergens such as Pru p 7 from peach and [...] Read more.
Cry j 7 is a 7 kDa cysteine-rich gibberellin regulatory protein (GRP) with six disulfide bonds. It was isolated from Japanese cedar as the pollen allergen in this study. It exhibits cross-reactivity with food allergens such as Pru p 7 from peach and causes pollen-food allergy syndrome (PFAS). In this work, recombinant Cry j 7 and Pru p 7 were successfully overexpressed using Pichia pastoris in a high-cell-density fermentation culture, and pure proteins were purified by reverse-phase HPLC. The characterization of Cry j 7 and Pru p 7 were performed by MS, CD, and 1H-NMR experiments to confirm the correct native conformation of Cry j 7 as well as Pru p 7. When compared, the results showed that Cry j 7 exhibits excellent stability in disulfide linkages and preserves its original structure up to 90 °C in various pH buffers in comparison to Pru p 7. Notably, NMR analyses indicated the greater mobility in the α-helix and loop regions of S38-C47 in Pru p 7 compared to those of Cry j 7. Furthermore, our results showed that the sensitivity of Cry j 7 to enzyme digestion differed from that of Pru p 7: Cry j 7 was more susceptible to proteolysis, while Pru p 7 displayed better resistance in the gastrointestinal tract. These variations in structural stability and sensitivity to proteolysis provide valuable insights into the allergenicity within the GRP family. Full article
(This article belongs to the Section Molecular Structure and Dynamics)
Show Figures

Figure 1

27 pages, 8963 KiB  
Article
Alternaria alternata (Fr) Keissl Crude Extract Inhibits HIV Subtypes and Integrase Drug-Resistant Strains at Different Stages of HIV Replication
by Darian Naidu, Ernest Oduro-Kwateng, Mahmoud E. S. Soliman, Sizwe I. Ndlovu and Nompumelelo P. Mkhwanazi
Pharmaceuticals 2025, 18(2), 189; https://doi.org/10.3390/ph18020189 - 30 Jan 2025
Cited by 1 | Viewed by 1336
Abstract
Background/Objectives: The development of HIV drug resistance to current antiretrovirals, and the antiretrovirals’ inability to cure HIV, provides the need of developing novel drugs that inhibit HIV-1 subtypes and drug-resistance strains. Fungal endophytes, including Alternaria alternata, stand out for their potentially [...] Read more.
Background/Objectives: The development of HIV drug resistance to current antiretrovirals, and the antiretrovirals’ inability to cure HIV, provides the need of developing novel drugs that inhibit HIV-1 subtypes and drug-resistance strains. Fungal endophytes, including Alternaria alternata, stand out for their potentially antiviral secondary metabolites. Hence, this study investigates the anti-HIV activities and mechanism of action of the A. alternata crude extract against different HIV-1 subtypes and integrase-resistant mutant strains. Methods: Cytotoxicity of the A. alternata crude extract on TZM-bl cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed. The crude extract antiviral activity against subtypes A, B, C, and D and integrase drug-resistant strain T66K and S230R was determined using a luciferase-based antiviral assay. Luciferase and p24 ELISA-based time-of-addition assays were used to determine the mechanism of action of the crude extract. Docking scores and protein ligand interactions of integrase T66K and S230R strains against the identified bioactive compounds were determined. Results: The crude extract CC50 was 300 μg/mL and not cytotoxic to the TZM-bl cell lines. In HIV-1 subtypes A, B, C, and D, the crude extract exhibited 100% inhibition and therapeutic potential. The A. alternata crude extract had strong anti-HIV-1 activity against integrase strand transfer drug-resistant strains T66K and S230R, with a 0.7265- and 0. 8751-fold increase in susceptibility. The crude extract had antiviral activity during attachment, reverse transcription, integration, and proteolysis. In silico calculations showed compounds 2,3-2H-Benzofuran-2-one, 3,3,4,6-tetramethyl-, 3-Methyl-1,4-diazabicyclo[4.3.0]nonan-2,5-dione, N-acetyl, Coumarin, 3,4-dihydro-4,5,7-trimethyl-, Cyclopropanecarboxamide, N-cycloheptyl, Pyrrolo[1,2-a]pyrazine-1,4-dione, and hexahydro-3-(2-methylpropyl)- crude extract bioactive compounds had strong docking scores and diverse binding mechanisms with integrase. Conclusions: The A. alternata crude extract demonstrates strong antiviral activity against different HIV-1 subtypes and integrase drug-resistance strains. The extract inhibited various stages of the HIV-1 life cycle. The bioactive compounds 2,3-2H-Benzofuran-2-one, 3,3,4,6-tetramethyl-, 3-Methyl-1,4-diazabicyclo[4.3.0]nonan-2,5-dione, N-acetyl, Coumarin, 3,4-dihydro-4,5,7-trimethyl-, Cyclopropanecarboxamide, N-cycloheptyl, Pyrrolo[1,2-a]pyrazine-1,4-dione, and hexahydro-3-(2-methylpropyl)- may be responsible for the antiviral activity of A. alternata. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

16 pages, 2114 KiB  
Article
MicroRNA, Myostatin, and Metabolic Rate Depression: Skeletal Muscle Atrophy Resistance in Hibernating Myotis lucifugus
by W. Aline Ingelson-Filpula, Sarah A. Breedon and Kenneth B. Storey
Cells 2024, 13(24), 2074; https://doi.org/10.3390/cells13242074 - 16 Dec 2024
Viewed by 1139
Abstract
Little brown bats (Myotis lucifugus) cluster in hibernacula sites over winter, in which they use metabolic rate depression (MRD) to facilitate entrance and exit of hibernation. This study used small RNA sequencing and bioinformatic analyses to identify differentially regulated microRNAs (miRNAs) [...] Read more.
Little brown bats (Myotis lucifugus) cluster in hibernacula sites over winter, in which they use metabolic rate depression (MRD) to facilitate entrance and exit of hibernation. This study used small RNA sequencing and bioinformatic analyses to identify differentially regulated microRNAs (miRNAs) and to predict their downstream effects on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms in the skeletal muscle of torpid M. lucifugus as compared to euthermic controls. We observed a subset of ten miRNAs whose expression changed during hibernation, with predicted functional roles linked to cell cycle processes, downregulation of protein degradation via ubiquitin-mediated proteolysis, downregulation of signaling pathways, including MAPK, p53, mTOR, and TGFβ, and downregulation of cytoskeletal and vesicle trafficking terms. Taken together, our results indicate miRNA regulation corresponding to both widely utilized MRD survival strategies, as well as more hibernation- and tissue-specific roles in M. lucifugus, including skeletal muscle atrophy resistance via myostatin inhibition and insulin signaling suppression. Full article
Show Figures

Figure 1

16 pages, 742 KiB  
Review
Proteolysis Targeting Chimera Agents (PROTACs): New Hope for Overcoming the Resistance Mechanisms in Oncogene-Addicted Non-Small Cell Lung Cancer
by Nicoletta Cordani, Daniele Nova, Luca Sala, Maria Ida Abbate, Francesca Colonese, Diego Luigi Cortinovis and Stefania Canova
Int. J. Mol. Sci. 2024, 25(20), 11214; https://doi.org/10.3390/ijms252011214 - 18 Oct 2024
Cited by 1 | Viewed by 3289
Abstract
Non-small cell lung cancer (NSCLC) remains a disease with a poor prognosis despite the advances in therapies. NSCLC with actionable oncogenic alterations represent a subgroup of diseases for which tyrosine kinase inhibitors (TKIs) have shown relevant and robust impact on prognosis, both in [...] Read more.
Non-small cell lung cancer (NSCLC) remains a disease with a poor prognosis despite the advances in therapies. NSCLC with actionable oncogenic alterations represent a subgroup of diseases for which tyrosine kinase inhibitors (TKIs) have shown relevant and robust impact on prognosis, both in early and advanced stages. While the introduction of powerful TKIs increases the ratio of potentially curable patients, the disease does develop resistance over time through either secondary mutations or bypass activating tracks. Therefore, new treatment strategies are being developed to either overcome this inevitable resistance or to prevent it, and proteolysis targeting chimera agents (PROTACs) are among them. They consist of two linked molecules that bind to a target protein and an E3 ubiquitin ligase that causes ubiquitination and degradation of proteins of interest. In this paper, we review the rationale for PROTAC therapy and the current development of PROTACs for oncogene-addicted lung cancer. Moreover, we critically analyze the strengths and limitations of this promising technique that may help pave the way for future perspectives. Full article
Show Figures

Figure 1

14 pages, 991 KiB  
Review
Advances in Targeted Therapy: Addressing Resistance to BTK Inhibition in B-Cell Lymphoid Malignancies
by Andres Bravo-Gonzalez, Maryam Alasfour, Deborah Soong, Jose Noy and Georgios Pongas
Cancers 2024, 16(20), 3434; https://doi.org/10.3390/cancers16203434 - 10 Oct 2024
Viewed by 3843
Abstract
B-cell lymphoid malignancies are a heterogeneous group of hematologic cancers, where Bruton’s tyrosine kinase (BTK) inhibitors have received FDA approval for several subtypes. The first-in-class covalent BTK inhibitor, Ibrutinib, binds to the C481 amino acid residue to block the BTK enzyme and prevent [...] Read more.
B-cell lymphoid malignancies are a heterogeneous group of hematologic cancers, where Bruton’s tyrosine kinase (BTK) inhibitors have received FDA approval for several subtypes. The first-in-class covalent BTK inhibitor, Ibrutinib, binds to the C481 amino acid residue to block the BTK enzyme and prevent the downstream signaling. Resistance to covalent BTK inhibitors (BTKi) can occur through mutations at the BTK binding site (C481S) but also other BTK sites and the phospholipase C gamma 2 (PLCγ2) resulting in downstream signaling. To bypass the C481S mutation, non-covalent BTKi, such as Pirtobrutinib, were developed and are active against both wild-type and the C481S mutation. In this review, we discuss the molecular and genetic mechanisms which contribute to acquisition of resistance to covalent and non-covalent BTKi. In addition, we discuss the new emerging class of BTK degraders, which utilize the evolution of proteolysis-targeting chimeras (PROTACs) to degrade the BTK protein and constitute an important avenue of overcoming resistance. The moving landscape of resistance to BTKi and the development of new therapeutic strategies highlight the ongoing advances being made towards the pursuit of a cure for B-cell lymphoid malignancies. Full article
(This article belongs to the Special Issue Molecular Insights into Drug Resistance in Cancer)
Show Figures

Figure 1

48 pages, 7080 KiB  
Article
Proteomic Evidence for Amyloidogenic Cross-Seeding in Fibrinaloid Microclots
by Douglas B. Kell and Etheresia Pretorius
Int. J. Mol. Sci. 2024, 25(19), 10809; https://doi.org/10.3390/ijms251910809 - 8 Oct 2024
Cited by 2 | Viewed by 4464
Abstract
In classical amyloidoses, amyloid fibres form through the nucleation and accretion of protein monomers, with protofibrils and fibrils exhibiting a cross-β motif of parallel or antiparallel β-sheets oriented perpendicular to the fibre direction. These protofibrils and fibrils can intertwine to form mature amyloid [...] Read more.
In classical amyloidoses, amyloid fibres form through the nucleation and accretion of protein monomers, with protofibrils and fibrils exhibiting a cross-β motif of parallel or antiparallel β-sheets oriented perpendicular to the fibre direction. These protofibrils and fibrils can intertwine to form mature amyloid fibres. Similar phenomena can occur in blood from individuals with circulating inflammatory molecules (and also some originating from viruses and bacteria). Such pathological clotting can result in an anomalous amyloid form termed fibrinaloid microclots. Previous proteomic analyses of these microclots have shown the presence of non-fibrin(ogen) proteins, suggesting a more complex mechanism than simple entrapment. We thus provide evidence against such a simple entrapment model, noting that clot pores are too large and centrifugation would have removed weakly bound proteins. Instead, we explore whether co-aggregation into amyloid fibres may involve axial (multiple proteins within the same fibril), lateral (single-protein fibrils contributing to a fibre), or both types of integration. Our analysis of proteomic data from fibrinaloid microclots in different diseases shows no significant quantitative overlap with the normal plasma proteome and no correlation between plasma protein abundance and their presence in fibrinaloid microclots. Notably, abundant plasma proteins like α-2-macroglobulin, fibronectin, and transthyretin are absent from microclots, while less abundant proteins such as adiponectin, periostin, and von Willebrand factor are well represented. Using bioinformatic tools, including AmyloGram and AnuPP, we found that proteins entrapped in fibrinaloid microclots exhibit high amyloidogenic tendencies, suggesting their integration as cross-β elements into amyloid structures. This integration likely contributes to the microclots’ resistance to proteolysis. Our findings underscore the role of cross-seeding in fibrinaloid microclot formation and highlight the need for further investigation into their structural properties and implications in thrombotic and amyloid diseases. These insights provide a foundation for developing novel diagnostic and therapeutic strategies targeting amyloidogenic cross-seeding in blood clotting disorders. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

20 pages, 8915 KiB  
Article
Bioconjugation of Serratiopeptidase with Titanium Oxide Nanoparticles: Improving Stability and Antibacterial Properties
by Jhon Jairo Melchor-Moncada, Santiago Vasquez-Giraldo, Augusto Zuluaga-Vélez, Lina Marcela Orozco, Luz Angela Veloza and Juan Carlos Sepúlveda-Arias
J. Funct. Biomater. 2024, 15(10), 300; https://doi.org/10.3390/jfb15100300 - 7 Oct 2024
Cited by 3 | Viewed by 2178
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat, necessitating the development of novel antibacterial strategies. Serratiopeptidase (SP), a metalloprotease produced by bacteria such as Serratia marcescens, has gained attention not only for its anti-inflammatory properties but also for its potential antibacterial [...] Read more.
Antimicrobial resistance (AMR) poses a significant global health threat, necessitating the development of novel antibacterial strategies. Serratiopeptidase (SP), a metalloprotease produced by bacteria such as Serratia marcescens, has gained attention not only for its anti-inflammatory properties but also for its potential antibacterial activity. However, its protein nature makes it susceptible to pH changes and self-proteolysis, limiting its effectiveness. This study aimed to increase both the enzymatic stability and antibacterial activity of serratiopeptidase through immobilization on titanium oxide nanoparticles (TiO2-NPs), leveraging the biocompatibility and stability of these nanomaterials. Commercial TiO2-NPs were characterized using TGA/DTG, FT-IR, UV–Vis, and XRD analyses, and their biocompatibility was assessed through cytotoxicity studies. Serratiopeptidase was produced via fermentation using the C8 isolate of Serratia marcescens obtained from the intestine of Bombyx mori L., purified chromatographically, and immobilized on carboxylated nanoparticles via EDC/NHS coupling at various pH conditions. The optimal enzymatic activity was achieved by using pH 5.1 for nanoparticle activation and pH 5.5 for enzyme coupling. The resulting bioconjugate demonstrated stable proteolytic activity at 25 °C for 48 h. Immobilization was confirmed by FT-IR spectroscopy, and the Michaelis–Menten kinetics were determined. Notably, the bioconjugate exhibited two-fold greater antibacterial activity against E. coli than the free enzyme or TiO2-NPs at 1000 µg/mL. This study successfully developed a serratiopeptidase–TiO2 bioconjugate with enhanced enzymatic stability and antibacterial properties. The improved antibacterial activity of the immobilized enzyme presents a promising approach for developing new tools to combat antimicrobial resistance, with potential applications in healthcare, food safety, and environmental protection. Full article
(This article belongs to the Special Issue Medical Application of Functional Biomaterials (2nd Edition))
Show Figures

Figure 1

15 pages, 857 KiB  
Review
Anabolic Strategies for ICU-Acquired Weakness. What Can We Learn from Bodybuilders?
by Jakub Tarnawski, Maja Czub, Marta Dymecki, Medha Sunil and Marcin Folwarski
Nutrients 2024, 16(13), 2011; https://doi.org/10.3390/nu16132011 - 25 Jun 2024
Cited by 1 | Viewed by 4219
Abstract
The study aimed to show the potential clinical application of supplements used among sportsmen for patients suffering from Intensive Care Unit-acquired Weakness (ICUAW) treatment. ICUAW is a common complication affecting approximately 40% of critically ill patients, often leading to long-term functional disability. ICUAW [...] Read more.
The study aimed to show the potential clinical application of supplements used among sportsmen for patients suffering from Intensive Care Unit-acquired Weakness (ICUAW) treatment. ICUAW is a common complication affecting approximately 40% of critically ill patients, often leading to long-term functional disability. ICUAW comprises critical illness polyneuropathy, critical illness myopathy, or a combination of both, such as critical illness polyneuromyopathy. Muscle degeneration begins shortly after the initiation of mechanical ventilation and persists post-ICU discharge until proteolysis and autophagy processes normalize. Several factors, including prolonged bedrest and muscle electrical silencing, contribute to muscle weakness, resulting from an imbalance between protein degradation and synthesis. ICUAW is associated with tissue hypoxia, oxidative stress, insulin resistance, reduced glucose uptake, lower adenosine triphosphate (ATP) formation, mitochondrial dysfunction, and increased free-radical production. Several well-studied dietary supplements and pharmaceuticals commonly used by athletes are proven to prevent the aforementioned mechanisms or aid in muscle building, regeneration, and maintenance. While there is no standardized treatment to prevent the occurrence of ICUAW, nutritional interventions have demonstrated the potential for its mitigation. The use of ergogenic substances, popular among muscle-building sociates, may offer potential benefits in preventing muscle loss and aiding recovery based on their work mechanisms. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

16 pages, 4045 KiB  
Review
Myogenic microRNAs as Therapeutic Targets for Skeletal Muscle Mass Wasting in Breast Cancer Models
by Macarena Artigas-Arias, Rui Curi and Gabriel Nasri Marzuca-Nassr
Int. J. Mol. Sci. 2024, 25(12), 6714; https://doi.org/10.3390/ijms25126714 - 18 Jun 2024
Cited by 2 | Viewed by 1793
Abstract
Breast cancer is the type of cancer with the highest prevalence in women worldwide. Skeletal muscle atrophy is an important prognostic factor in women diagnosed with breast cancer. This atrophy stems from disrupted skeletal muscle homeostasis, triggered by diminished anabolic signalling and heightened [...] Read more.
Breast cancer is the type of cancer with the highest prevalence in women worldwide. Skeletal muscle atrophy is an important prognostic factor in women diagnosed with breast cancer. This atrophy stems from disrupted skeletal muscle homeostasis, triggered by diminished anabolic signalling and heightened inflammatory conditions, culminating in an upregulation of skeletal muscle proteolysis gene expression. The importance of delving into research on modulators of skeletal muscle atrophy, such as microRNAs (miRNAs), which play a crucial role in regulating cellular signalling pathways involved in skeletal muscle protein synthesis and degradation, has been recognised. This holds true for conditions of homeostasis as well as pathologies like cancer. However, the determination of specific miRNAs that modulate skeletal muscle atrophy in breast cancer conditions has not yet been explored. In this narrative review, we aim to identify miRNAs that could directly or indirectly influence skeletal muscle atrophy in breast cancer models to gain an updated perspective on potential therapeutic targets that could be modulated through resistance exercise training, aiming to mitigate the loss of skeletal muscle mass in breast cancer patients. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

23 pages, 1123 KiB  
Review
Current Novel Targeted Therapeutic Strategies in Multiple Myeloma
by Cindy Hsin-Ti Lin, Muhammad Junaid Tariq, Fauzia Ullah, Aishwarya Sannareddy, Farhan Khalid, Hasan Abbas, Abbas Bader, Christy Samaras, Jason Valent, Jack Khouri, Faiz Anwer, Shahzad Raza and Danai Dima
Int. J. Mol. Sci. 2024, 25(11), 6192; https://doi.org/10.3390/ijms25116192 - 4 Jun 2024
Cited by 8 | Viewed by 6845
Abstract
Multiple myeloma (MM) is a hematologic malignancy caused by the clonal expansion of immunoglobulin-producing plasma cells in the bone marrow and/or extramedullary sites. Common manifestations of MM include anemia, renal dysfunction, infection, bone pain, hypercalcemia, and fatigue. Despite numerous recent advancements in the [...] Read more.
Multiple myeloma (MM) is a hematologic malignancy caused by the clonal expansion of immunoglobulin-producing plasma cells in the bone marrow and/or extramedullary sites. Common manifestations of MM include anemia, renal dysfunction, infection, bone pain, hypercalcemia, and fatigue. Despite numerous recent advancements in the MM treatment paradigm, current therapies demonstrate limited long-term effectiveness and eventual disease relapse remains exceedingly common. Myeloma cells often develop drug resistance through clonal evolution and alterations of cellular signaling pathways. Therefore, continued research of new targets in MM is crucial to circumvent cumulative drug resistance, overcome treatment-limiting toxicities, and improve outcomes in this incurable disease. This article provides a comprehensive overview of the landscape of novel treatments and emerging therapies for MM grouped by molecular target. Molecular targets outlined include BCMA, GPRC5D, FcRH5, CD38, SLAMF7, BCL-2, kinesin spindle protein, protein disulfide isomerase 1, peptidylprolyl isomerase A, Sec61 translocon, and cyclin-dependent kinase 6. Immunomodulatory drugs, NK cell therapy, and proteolysis-targeting chimera are described as well. Full article
(This article belongs to the Special Issue New Targeted Therapeutic Strategies of Multiple Myeloma)
Show Figures

Figure 1

15 pages, 1140 KiB  
Review
PROTACs in Ovarian Cancer: Current Advancements and Future Perspectives
by Makenzie Vorderbruggen, Carlos A. Velázquez-Martínez, Amarnath Natarajan and Adam R. Karpf
Int. J. Mol. Sci. 2024, 25(10), 5067; https://doi.org/10.3390/ijms25105067 - 7 May 2024
Cited by 1 | Viewed by 3608
Abstract
Ovarian cancer is the deadliest gynecologic malignancy. The majority of patients diagnosed with advanced ovarian cancer will relapse, at which point additional therapies can be administered but, for the most part, these are not curative. As such, a need exists for the development [...] Read more.
Ovarian cancer is the deadliest gynecologic malignancy. The majority of patients diagnosed with advanced ovarian cancer will relapse, at which point additional therapies can be administered but, for the most part, these are not curative. As such, a need exists for the development of novel therapeutic options for ovarian cancer patients. Research in the field of targeted protein degradation (TPD) through the use of proteolysis-targeting chimeras (PROTACs) has significantly increased in recent years. The ability of PROTACs to target proteins of interest (POI) for degradation, overcoming limitations such as the incomplete inhibition of POI function and the development of resistance seen with other inhibitors, is of particular interest in cancer research, including ovarian cancer research. This review provides a synopsis of PROTACs tested in ovarian cancer models and highlights PROTACs characterized in other types of cancers with potential high utility in ovarian cancer. Finally, we discuss methods that will help to enable the selective delivery of PROTACs to ovarian cancer and improve the pharmacodynamic properties of these agents. Full article
(This article belongs to the Special Issue Ovarian Cancer: Advances on Pathophysiology and Therapies)
Show Figures

Figure 1

Back to TopTop