Structural and Stability Analysis of GRP Family Allergens Pru p 7 and Cry j 7, Which Cause Pollen and Food Allergy Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Expression and Purification
2.2. NMR Analysis
2.3. Circular Dichroism Spectroscopy
2.4. Proteolytic Degradation Assay
2.5. Stability to the Simulated Gastrointestinal Digestion
2.6. Epitope Prediction
3. Results
3.1. Expression and Purification of GRP Proteins
3.2. Characterization of GRP Proteins
3.3. Effects of pH and Temperature on the Secondary Structure of GRP Proteins
3.4. NMR Chemical Shift Assignment and Three-Dimensional Structural Analysis
3.5. 1H NMR Analysis of Thermally Denatured GRP Structural Stability
3.6. Proteolytic Degradation of GRP Proteins
3.7. Stimulation of Gastrointestinal Digestion of GRP Proteins
3.8. Endosomal Degradation of GRP Proteins Is Mediated by Cathepsin S
3.9. Epitope Prediction of Cry j 7 and Pru p 7
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, K.; Milne, R.I.; Zhang, L.; Peng, Y.; Liu, J.; Thomas, P.; Mill, R.R.; Renner, S.S. Distribution of living Cupressaceae reflects the breakup of Pangea. Proc. Natl. Acad. Sci. USA 2012, 109, 7793–7798. [Google Scholar] [CrossRef] [PubMed]
- Charpin, D.; Pichot, C.; Belmonte, J.; Sutra, J.P.; Zidkova, J.; Chanez, P.; Shahali, Y.; Sénéchal, H.; Poncet, P. Cypress Pollinosis: From Tree to Clinic. Clin. Rev. Allergy Immunol. 2017, 56, 174–195. [Google Scholar] [CrossRef]
- D’Amato, G.; Cecchi, L.; Bonini, S.; Nunes, C.; Annesi-Maesano, I.; Behrendt, H.; Liccardi, G.; Popov, T.; Van Cauwenberge, P. Allergenic pollen and pollen allergy in Europe. Allergy 2007, 62, 976–990. [Google Scholar] [CrossRef] [PubMed]
- Ohashi-Doi, K.; Utsumi, D.; Mitobe, Y.; Fujinami, K. Japanese Cedar Pollen Allergens in Japan. Curr. Protein Pept. Sci. 2022, 23, 837–850. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Otsuka, M. Japanese cedar pollinosis: Discovery, nomenclature, and epidemiological trends. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2014, 90, 203–210. [Google Scholar] [CrossRef]
- Osada, T.; Okano, M. Japanese cedar and cypress pollinosis updated: New allergens, cross-reactivity, and treatment. Allergol. Int. 2021, 70, 281–290. [Google Scholar] [CrossRef]
- Hofmann, A.; Burks, A.W. Pollen food syndrome: Update on the allergens. Curr. Allergy Asthma Rep. 2008, 8, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Werfel, T.; Asero, R.; Ballmer-Weber, B.K.; Beyer, K.; Enrique, E.; Knulst, A.C.; Mari, A.; Muraro, A.; Ollert, M.; Poulsen, L.K.; et al. Position paper of the EAACI: Food allergy due to immunological cross-reactions with common inhalant allergens. Allergy 2015, 70, 1079–1090. [Google Scholar] [CrossRef] [PubMed]
- Caffarelli, C.; Garrubba, M.; Greco, C.; Mastrorilli, C.; Dascola, C.P. Asthma and food allergy in children: Is there a connection or interaction? Front. Pediatr. 2016, 4, 190754. [Google Scholar] [CrossRef]
- Mastrorilli, C.; Cardinale, F.; Giannetti, A.; Caffarelli, C. Pollen-Food Allergy Syndrome: A not so Rare Disease in Childhood. Medicina 2019, 55, 641. [Google Scholar] [CrossRef]
- Elisyutina, O.; Fedenko, E.; Campana, R.; Litovkina, A.; Ilina, N.; Kudlay, D.; Egorenkov, E.; Smirnov, V.; Valenta, R.; Lupinek, C.; et al. Bet v 1-specific IgE levels and PR-10 reactivity discriminate silent sensitization from phenotypes of birch allergy. Allergy 2019, 74, 2525–2528. [Google Scholar] [CrossRef]
- Inomata, N. Gibberellin-regulated protein allergy: Clinical features and cross-reactivity. Allergol. Int. 2020, 69, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, I.; Li, W.Q.; Jing, X.Q.; Zhou, M.R.; Shalmani, A.; Ali, M.; Wei, X.Y.; Sharif, R.; Liu, W.T.; Chen, K.M. A systematic in silico prediction of gibberellic acid stimulated GASA family members: A novel small peptide contributes to floral architecture and transcriptomic changes induced by external stimuli in rice. J. Plant Physiol. 2019, 234–235, 117–132. [Google Scholar] [CrossRef]
- Sénéchal, H.; Šantrůček, J.; Melčová, M.; Svoboda, P.; Zídková, J.; Charpin, D.; Guilloux, L.; Shahali, Y.; Selva, M.A.; Couderc, R.; et al. A new allergen family involved in pollen food-associated syndrome: Snakin/gibberellin-regulated proteins. J. Allergy Clin. Immunol. 2018, 141, 411–414.e4. [Google Scholar] [CrossRef]
- Sénéchal, H.; Keykhosravi, S.; Couderc, R.; Selva, M.A.; Shahali, Y.; Aizawa, T.; Busnel, J.M.; Arif, R.; Mercier, I.; Pham-Thi, N.; et al. Pollen/Fruit Syndrome: Clinical Relevance of the Cypress Pollen Allergenic Gibberellin-Regulated Protein. Allergy Asthma Immunol. Res. 2019, 11, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, T.; Takei, M.; Saito, Y.; Rumi, F.; Zheng, J.; Lu, X.; Chafey, P.; Broussard, C.; Guilloux-Assalet, L.; Charpin, D.; et al. Gibberellin-regulated protein sensitization in Japanese cedar (Cryptomeria japonica) pollen allergic Japanese cohorts. Allergy 2021, 76, 2297–2302. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, T.; Barre, A.; Rougé, P.; Charpin, D.; Scala, E.; Baudin, B.; Aizawa, T.; Sénéchal, H.; Poncet, P. Gibberellin-regulated proteins: Emergent allergens. Front. Allergy 2022, 3, 877553. [Google Scholar] [CrossRef]
- Tuppo, L.; Alessandri, C.; Pomponi, D.; Picone, D.; Tamburrini, M.; Ferrara, R.; Petriccione, M.; Mangone, I.; Palazzo, P.; Liso, M.; et al. Peamaclein—A new peach allergenic protein: Similarities, differences and misleading features compared to Pru p 3. Clin. Exp. Allergy 2013, 43, 128–140. [Google Scholar] [CrossRef]
- Inomata, N.; Miyakawa, M.; Aihara, M. Gibberellin-regulated protein in Japanese apricot is an allergen cross-reactive to Pru p 7. Immunity Inflamm. Dis. 2017, 5, 469. [Google Scholar] [CrossRef] [PubMed]
- Huan, F.; Han, T.J.; Liu, M.; Li, M.S.; Yang, Y.; Liu, Q.M.; Lai, D.; Cao, M.J.; Liu, G.M. Identification and characterization of: Crassostrea angulata arginine kinase, a novel allergen that causes cross-reactivity among shellfish. Food Funct. 2021, 12, 9866–9879. [Google Scholar] [CrossRef] [PubMed]
- Tuppo, L.; Alessandri, C.; Pasquariello, M.S.; Petriccione, M.; Giangrieco, I.; Tamburrini, M.; Mari, A.; Ciardiello, M.A. Pomegranate Cultivars: Identification of the New IgE-Binding Protein Peamaclein and Analysis of Antioxidant Variability. J. Agric. Food Chem. 2017, 65, 2702–2710. [Google Scholar] [CrossRef] [PubMed]
- Takei, M.; Nin, C.; Iizuka, T.; Pawlikowski, M.; Selva, M.A.; Chantran, Y.; Nakajima, Y.; Zheng, J.; Aizawa, T.; Ebisawa, M.; et al. Capsicum Allergy: Involvement of Cap a 7, a New Clinically Relevant Gibberellin-Regulated Protein Cross-Reactive with Cry j 7, the Gibberellin-Regulated Protein from Japanese Cedar Pollen. Allergy Asthma Immunol. Res. 2022, 14, 328. [Google Scholar] [CrossRef]
- Tuppo, L.; Alessandri, C.; Giangrieco, I.; Ciancamerla, M.; Rafaiani, C.; Tamburrini, M.; Ciardiello, M.A.; Mari, A. Isolation of cypress gibberellin-regulated protein: Analysis of its structural features and IgE binding competition with homologous allergens. Mol. Immunol. 2019, 114, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Poncet, P.; Sénéchal, H.; Charpin, D. Update on pollen-food allergy syndrome. Expert Rev. Clin. Immunol. 2020, 16, 561–578. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, L.; Poncet, P.; Maltagliati, L.; Carli, G.; Macchia, D.; Maggi, L.; Meucci, E.; Parronchi, P.; Mazzoni, A.; Salvati, L.; et al. Optimization of the diagnosis and characterization of gibberellin-regulated protein sensitization: An Italian cohort study. Ann. Allergy Asthma Immunol. 2023, 132, 82–90.e1. [Google Scholar] [CrossRef]
- Koga, T.; Tokuyama, K.; Ogawa, S.; Morita, E.; Ueda, Y.; Itazawa, T.; Kamijo, A. Surveillance of pollen-food allergy syndrome in elementary and junior high school children in Saitama, Japan. Asia Pac. Allergy 2022, 12, e3. [Google Scholar] [CrossRef] [PubMed]
- Cabral, K.M.S.; Almeida, M.S.; Valente, A.P.; Almeida, F.C.L.; Kurtenbach, E. Production of the active antifungal Pisum sativum defensin 1 (Psd1) in Pichia pastoris: Overcoming the inefficiency of the STE13 protease. Protein Expr. Purif. 2003, 31, 115–122. [Google Scholar] [CrossRef]
- Kant, P.; Liu, W.Z.; Pauls, K.P. PDC1, a corn defensin peptide expressed in Escherichia coli and Pichia pastoris inhibits growth of Fusarium graminearum. Peptides 2009, 30, 1593–1599. [Google Scholar] [CrossRef]
- Cereghino, J.L.; Cregg, J.M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 2000, 24, 45–66. [Google Scholar] [CrossRef]
- Koganesawa, N.; Aizawa, T.; Shimojo, H.; Miura, K.; Ohnishi, A.; Demura, M.; Hayakawa, Y.; Nitta, K.; Kawano, K. Expression and purification of a small cytokine growth-blocking peptide from armyworm Pseudaletia separata by an optimized fermentation method using the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 2002, 25, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Kuddus, M.R.; Rumi, F.; Tsutsumi, M.; Takahashi, R.; Yamano, M.; Kamiya, M.; Kikukawa, T.; Demura, M.; Aizawa, T. Expression, purification and characterization of the recombinant cysteine-rich antimicrobial peptide snakin-1 in Pichia pastoris. Protein Expr. Purif. 2016, 122, 15–22. [Google Scholar] [CrossRef] [PubMed]
- De Lamotte, F.; Boze, H.; Blanchard, C.; Klein, C.; Moulin, G.; Gautier, M.F.; Delsuc, M.A. NMR Monitoring of Accumulation and Folding of 15N-Labeled Protein Overexpressed in Pichia pastoris. Protein Expr. Purif. 2001, 22, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M. Recent developments of methyl-labeling strategies in Pichia pastoris for NMR spectroscopy. Protein Expr. Purif. 2020, 166, 105521. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Bigam, C.G.; Yao, J.; Abildgaard, F.; Dyson, H.J.; Oldfield, E.; Markley, J.L.; Sykes, B.D. 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR 1995, 6, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Delaglio, F.; Grzesiek, S.; Vuister, G.W.; Zhu, G.; Pfeifer, J.; Bax, A. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 1995, 6, 277–293. [Google Scholar] [CrossRef]
- Güntert, P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 2004, 278, 353–378. [Google Scholar] [CrossRef]
- Kumeta, H.; Ogura, K.; Nishimiya, Y.; Miura, A.; Inagaki, F.; Tsuda, S. NMR structure note: A defective isoform and its activity-improved variant of a type III antifreeze protein from Zoarces elongates Kner. J. Biomol. NMR 2013, 55, 225–230. [Google Scholar] [CrossRef]
- Jacob, T.; Vogel, L.; Reuter, A.; Wangorsch, A.; Kring, C.; Mahler, V.; Wöhrl, B.M. Food Processing Does not Abolish the Allergenicity of the Carrot Allergen Dau c 1: Influence of pH, Temperature, and the Food Matrix. Mol. Nutr. Food Res. 2020, 64, 2000334. [Google Scholar] [CrossRef]
- Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2007, 1, 2876–2890. [Google Scholar] [CrossRef]
- Pey, A.L. The interplay between protein stability and dynamics in conformational diseases: The case of hPGK1 deficiency. Biochim. Biophys. Acta—Proteins Proteom. 2013, 1834, 2502–2511. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.J.; Pringle, M.A.; Woolhead, C.A.; Bulleid, N.J. Folding of a single domain protein entering the endoplasmic reticulum precedes disulfide formation. J. Biol. Chem. 2017, 292, 6978–6986. [Google Scholar] [CrossRef]
- Soh, W.T.; Aglas, L.; Mueller, G.A.; Gilles, S.; Weiss, R.; Scheiblhofer, S.; Huber, S.; Scheidt, T.; Thompson, P.M.; Briza, P.; et al. Multiple roles of Bet v 1 ligands in allergen stabilization and modulation of endosomal protease activity. Allergy Eur. J. Allergy Clin. Immunol. 2019, 74, 2382–2393. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Jürets, A.; Wallner, M.; Briza, P.; Ruzek, S.; Hainzl, S.; Pichler, U.; Kitzmüller, C.; Bohle, B.; Huber, C.G.; et al. Assessing protein immunogenicity with a dendritic cell line-derived endolysosomal degradome. PLoS ONE 2011, 6, e17278. [Google Scholar] [CrossRef] [PubMed]
- Finkina, E.I.; Melnikova, D.N.; Bogdanov, I.V.; Matveevskaya, N.S.; Ignatova, A.A.; Toropygin, I.Y.; Ovchinnikova, T.V. Impact of Different Lipid Ligands on the Stability and IgE-Binding Capacity of the Lentil Allergen Len c 3. Biomolecules 2020, 10, 1668. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, M.L.; Giangrieco, I.; Camardella, L.; Ferrara, R.; Palazzo, P.; Panico, M.R.; Crescenzo, R.; Carratore, V.; Zennaro, D.; Liso, M.; et al. Allergenic Lipid Transfer Proteins from Plant-Derived Foods Do not Immunologically and Clinically Behave Homogeneously: The Kiwifruit LTP as a Model. PLoS ONE 2011, 6, e27856. [Google Scholar] [CrossRef] [PubMed]
- Tuppo, L.; Spadaccini, R.; Alessandri, C.; Wienk, H.; Boelens, R.; Giangrieco, I.; Tamburrini, M.; Mari, A.; Picone, D.; Ciardiello, M.A. Structure, stability, and IgE binding of the peach allergen peamaclein (Pru p 7). Biopolym.—Pept. Sci. Sect. 2014, 102, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Ko, S.; Ha, K.; Choi, Y. Assessing the Predictive Ability of Computational Epitope Prediction Methods on Fel d 1 Allergen. PLoS ONE 2024, 19, e0306254. [Google Scholar] [CrossRef]
- Singh, H.; Raghava, G.P.S. ProPred: Prediction of HLA-DR binding sites. Bioinformatics 2001, 17, 1236–1237. [Google Scholar] [CrossRef]
- Clifford, J.N.; Høie, M.H.; Deleuran, S.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-3.0: Improved B-cell epitope prediction using protein language models. Protein Sci. 2022, 31, e4497. [Google Scholar] [CrossRef] [PubMed]
- Kringelum, J.V.; Lundegaard, C.; Lund, O.; Nielsen, M. Reliable B Cell Epitope Predictions: Impacts of Method Development and Improved Benchmarking. PLOS Comput. Biol. 2012, 8, e1002829. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Lange, O.; Delaglio, F.; Rossi, P.; Aramini, J.M.; Liu, G.; Eletsky, A.; Wu, Y.; Singarapu, K.K.; Lemak, A.; et al. Consistent blind protein structure generation from NMR chemical shift data. Proc. Natl. Acad. Sci. USA 2008, 105, 4685–4690. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Kumar, A.; Chugh, J.; Srivastava, S.; Bhavesh, N.S.; Hosur, R.V. NMR of unfolded proteins. J. Chem. Sci. 2005, 117, 3–21. [Google Scholar] [CrossRef]
- Hoffmann, B.; Eichmüller, C.; Steinhauser, O.; Konrat, R. Rapid Assessment of Protein Structural Stability and Fold Validation via NMR. Methods Enzymol. 2005, 394, 142–175. [Google Scholar] [CrossRef]
- Young, T.A.; Skordalakes, E.; Marqusee, S. Comparison of Proteolytic Susceptibility in Phosphoglycerate Kinases from Yeast and E. coli: Modulation of Conformational Ensembles Without Altering Structure or Stability. J. Mol. Biol. 2007, 368, 1438–1447. [Google Scholar] [CrossRef] [PubMed]
- Foo, A.C.Y.; Nesbit, J.B.; Gipson, S.A.Y.; Cheng, H.; Bushel, P.; DeRose, E.F.; Schein, C.H.; Teuber, S.S.; Hurlburt, B.K.; Maleki, S.J.; et al. Structure, Immunogenicity, and IgE Cross-Reactivity among Walnut and Peanut Vicilin-Buried Peptides. J. Agric. Food Chem. 2022, 70, 2389–2400. [Google Scholar] [CrossRef] [PubMed]
- Lützner, N.; Kalbacher, H. Quantifying cathepsin S activity in antigen presenting cells using a novel specific substrate. J. Biol. Chem. 2008, 283, 36185–36194. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, R.; Xu, Y.; Chi, L.; Li, Y.; Mu, G.; Zhu, X. Investigation of the Structure and Allergic Potential of Whey Protein by Both Heating Sterilization and Simulation with Molecular Dynamics. Foods 2022, 11, 4050. [Google Scholar] [CrossRef] [PubMed]
- Foster, E.S.; Kimber, I.; Dearman, R.J. Relationship between protein digestibility and allergenicity: Comparisons of pepsin and cathepsin. Toxicology 2013, 309, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Astwood, J.D.; Leach, J.N.; Fuchs, R.L. Stability of food allergens to digestion in vitro. Nat. Biotechnol. 1996, 14, 1269–1273. [Google Scholar] [CrossRef] [PubMed]
- Langenkamp, A.; Messi, M.; Lanzavecchia, A.; Sallusto, F. Kinetics of dendritic cell activation: Impact on priming of TH1, TH2 and nonpolarized T cells. Nat. Immunol. 2000, 1, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Traidl-Hoffmann, C.; Kasche, A.; Menzel, A.; Jakob, T.; Thiel, M.; Ring, J.; Behrendt, H. Impact of Pollen on Human Health: More Than Allergen Carriers? Int. Arch. Allergy Immunol. 2003, 131, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Scheiblhofer, S.; Laimer, J.; Machado, Y.; Weiss, R.; Thalhamer, J. Influence of protein fold stability on immunogenicity and its implications for vaccine design. Expert Rev. Vaccines 2017, 16, 479–489. [Google Scholar] [CrossRef]
- So, T.; Ito, H.O.; Koga, T.; Watanabe, S.; Ueda, T.; Imoto, T. Depression of T-cell Epitope Generation by Stabilizing Hen Lysozyme. J. Biol. Chem. 1997, 272, 32136–32140. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Kumeta, H.; Kumaki, Y.; Iizuka, T.; Yoshikawa, I.; Hanaoka, A.; Aizawa, T. Structural and Stability Analysis of GRP Family Allergens Pru p 7 and Cry j 7, Which Cause Pollen and Food Allergy Syndrome. Biomolecules 2025, 15, 232. https://doi.org/10.3390/biom15020232
Zheng J, Kumeta H, Kumaki Y, Iizuka T, Yoshikawa I, Hanaoka A, Aizawa T. Structural and Stability Analysis of GRP Family Allergens Pru p 7 and Cry j 7, Which Cause Pollen and Food Allergy Syndrome. Biomolecules. 2025; 15(2):232. https://doi.org/10.3390/biom15020232
Chicago/Turabian StyleZheng, Jingkang, Hiroyuki Kumeta, Yasuhiro Kumaki, Tomona Iizuka, Ichiho Yoshikawa, Ami Hanaoka, and Tomoyasu Aizawa. 2025. "Structural and Stability Analysis of GRP Family Allergens Pru p 7 and Cry j 7, Which Cause Pollen and Food Allergy Syndrome" Biomolecules 15, no. 2: 232. https://doi.org/10.3390/biom15020232
APA StyleZheng, J., Kumeta, H., Kumaki, Y., Iizuka, T., Yoshikawa, I., Hanaoka, A., & Aizawa, T. (2025). Structural and Stability Analysis of GRP Family Allergens Pru p 7 and Cry j 7, Which Cause Pollen and Food Allergy Syndrome. Biomolecules, 15(2), 232. https://doi.org/10.3390/biom15020232