Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (215)

Search Parameters:
Keywords = proteinase K

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1386 KiB  
Article
Probing the Interaction Between Icariin and Proteinase K: A Combined Spectroscopic and Molecular Modeling Study
by Zhongbao Han, Huizi Zheng, Yimeng Qi, Dilshadbek T. Usmanov, Liyan Liu and Zhan Yu
Biophysica 2025, 5(3), 32; https://doi.org/10.3390/biophysica5030032 - 28 Jul 2025
Viewed by 186
Abstract
Icariin (ICA) is widely recognized for its health benefits. In this work, we examined the intermolecular interactions between ICA and proteinase K (PK) via multi-spectroscopic techniques and molecular simulations. The experimental findings revealed that ICA quenched the fluorescence emission of PK by forming [...] Read more.
Icariin (ICA) is widely recognized for its health benefits. In this work, we examined the intermolecular interactions between ICA and proteinase K (PK) via multi-spectroscopic techniques and molecular simulations. The experimental findings revealed that ICA quenched the fluorescence emission of PK by forming a noncovalent complex. Both hydrogen bonding and van der Waals interactions are essential for the complex’s formation. Then Förster resonance energy transfer (FRET), competitive experiments, and synchronous fluorescence spectroscopy were adopted to verify the formation of the complex. Molecular docking studies demonstrated that ICA could spontaneously bind to PK by hydrogen bonding and hydrophobic interactions, which is consistent with the spectroscopic results. The PK-ICA complex’s dynamic stability was evaluated using a 50 ns molecular dynamics (MD) simulation. The simulation results revealed no significant structural deformation or positional changes throughout the entire simulation period. The complex appears to be rather stable, as seen by the average root-mean-square deviation (RMSD) fluctuations for the host protein in the PK-ICA complex of 1.08 Å and 3.09 Å. These outcomes of molecular simulations suggest that ICA interacts spontaneously and tightly with PK, consistent with the spectroscopic findings. The approach employed in this research presents a pragmatic and advantageous method for examining protein–ligand interactions, as evidenced by the concordance between empirical and theoretical findings. Full article
(This article belongs to the Special Issue Biomedical Optics: 3rd Edition)
Show Figures

Figure 1

14 pages, 1234 KiB  
Article
Exploring the Potential of Plant Cytokinins Against Common Human Pathogens: In Vitro Assessment and In Silico Insights
by Jelena Lazarević, Aleksandar Veselinović, Marija Stojiljković, Miloš Petrović, Pierangela Ciuffreda and Enzo Santaniello
Plants 2025, 14(12), 1749; https://doi.org/10.3390/plants14121749 - 7 Jun 2025
Viewed by 640
Abstract
Cytokinins, plant hormones derived from adenine, are best known for regulating growth and stress responses in plants. Recent findings suggest they may also influence microbial viability, yet their direct antimicrobial potential remains underexplored. This study evaluates the antimicrobial activities of four natural cytokinins [...] Read more.
Cytokinins, plant hormones derived from adenine, are best known for regulating growth and stress responses in plants. Recent findings suggest they may also influence microbial viability, yet their direct antimicrobial potential remains underexplored. This study evaluates the antimicrobial activities of four natural cytokinins (iPA, B, K, and p-T) and their N9-ribosides (iPAR, BR, KR, and p-TR) against selected human pathogens. Using the broth microdilution method, we assessed their effects on Gram-positive and Gram-negative bacteria, as well as fungal strains. While Gram-negative species showed no susceptibility, all tested compounds exhibited bacteriostatic activity against Bacillus subtilis and Enterococcus faecalis. Most notably, kinetin (K) and kinetin riboside (KR) displayed strong antifungal activity against Candida albicans, with MIC values comparable to the reference drug nystatin. Molecular docking studies supported these findings by showing that K and KR form favorable interactions with two validated antifungal targets in Candida albicans: secreted aspartic proteinase 3 (SAP3) and dihydrofolate reductase (DHFR). This is, to our knowledge, the first report linking natural cytokinins to direct antifungal action against C. albicans supported by in silico evidence. These findings highlight the potential of K and KR as promising leads for the development of cytokinin-based antifungal agents. Full article
(This article belongs to the Special Issue Plant-Derived Natural Products: Development and Utilization)
Show Figures

Figure 1

43 pages, 5385 KiB  
Article
Hypothermia Shifts Neurodegeneration Phenotype in Neonatal Human Hypoxic–Ischemic Encephalopathy but Not in Related Piglet Models: Possible Relationship to Toxic Conformer and Intrinsically Disordered Prion-like Protein Accumulation
by Lee J. Martin, Jennifer K. Lee, Mark V. Niedzwiecki, Adriana Amrein Almira, Cameron Javdan, May W. Chen, Valerie Olberding, Stephen M. Brown, Dongseok Park, Sophie Yohannan, Hasitha Putcha, Becky Zheng, Annalise Garrido, Jordan Benderoth, Chloe Kisner, Javid Ghaemmaghami, Frances J. Northington and Panagiotis Kratimenos
Cells 2025, 14(8), 586; https://doi.org/10.3390/cells14080586 - 12 Apr 2025
Viewed by 1876
Abstract
Hypothermia (HT) is used clinically for neonatal hypoxic–ischemic encephalopathy (HIE); however, the brain protection is incomplete and selective regional vulnerability and lifelong consequences remain. Refractory damage and impairment with HT cooling/rewarming could result from unchecked or altered persisting cell death and proteinopathy. We [...] Read more.
Hypothermia (HT) is used clinically for neonatal hypoxic–ischemic encephalopathy (HIE); however, the brain protection is incomplete and selective regional vulnerability and lifelong consequences remain. Refractory damage and impairment with HT cooling/rewarming could result from unchecked or altered persisting cell death and proteinopathy. We tested two hypotheses: (1) HT modifies neurodegeneration type, and (2) intrinsically disordered proteins (IDPs) and encephalopathy cause toxic conformer protein (TCP) proteinopathy neonatally. We studied postmortem human neonatal HIE cases with or without therapeutic HT, neonatal piglets subjected to global hypoxia-ischemia (HI) with and without HT or combinations of HI and quinolinic acid (QA) excitotoxicity surviving for 29–96 h to 14 days, and human oligodendrocytes and neurons exposed to QA for cell models. In human and piglet encephalopathies with normothermia, the neuropathology by hematoxylin and eosin staining was similar; necrotic cell degeneration predominated. With HT, neurodegeneration morphology shifted to apoptosis-necrosis hybrid and apoptotic forms in human HIE, while neurons in HI piglets were unshifting and protected robustly. Oligomers and putative TCPs of α-synuclein (αSyn), nitrated-Syn and aggregated αSyn, misfolded/oxidized superoxide dismutase-1 (SOD1), and prion protein (PrP) were detected with highly specific antibodies by immunohistochemistry, immunofluorescence, and immunoblotting. αSyn and SOD1 TCPs were seen in human HIE brains regardless of HT treatment. αSyn and SOD1 TCPs were detected as early as 29 h after injury in piglets and QA-injured human oligodendrocytes and neurons in culture. Cell immunophenotyping by immunofluorescence showed αSyn detected with antibodies to aggregated/oligomerized protein; nitrated-Syn accumulated in neurons, sometimes appearing as focal dendritic aggregations. Co-localization also showed aberrant αSyn accumulating in presynaptic terminals. Proteinase K-resistant PrP accumulated in ischemic Purkinje cells, and their target regions had PrP-positive neuritic plaque-like pathology. Immunofluorescence revealed misfolded/oxidized SOD1 in neurons, axons, astrocytes, and oligodendrocytes. HT attenuated TCP formation in piglets. We conclude that HT differentially affects brain damage in humans and piglets. HT shifts neuronal cell death to other forms in human while blocking ischemic necrosis in piglet for sustained protection. HI and excitotoxicity also acutely induce formation of TCPs and prion-like proteins from IDPs globally throughout the brain in gray matter and white matter. HT attenuates proteinopathy in piglets but seemingly not in humans. Shifting of cell death type and aberrant toxic protein formation could explain the selective system vulnerability, connectome spreading, and persistent damage seen in neonatal HIE leading to lifelong consequences even after HT treatment. Full article
(This article belongs to the Special Issue Perinatal Brain Injury—from Pathophysiology to Therapy)
Show Figures

Figure 1

20 pages, 2246 KiB  
Article
On the Significance of the Terminal Location of Prion-Forming Regions of Yeast Proteins
by Arthur A. Galliamov, Valery N. Urakov, Alexander A. Dergalev and Vitaly V. Kushnirov
Int. J. Mol. Sci. 2025, 26(4), 1637; https://doi.org/10.3390/ijms26041637 - 14 Feb 2025
Viewed by 745
Abstract
The prion-forming regions (PFRs) of yeast prion proteins are usually located at either the N- or C-terminus of a protein. In the Sup35 prion, the main prion structure contains 71 N-terminal residues. Here, we investigated the importance of the terminal PFR location for [...] Read more.
The prion-forming regions (PFRs) of yeast prion proteins are usually located at either the N- or C-terminus of a protein. In the Sup35 prion, the main prion structure contains 71 N-terminal residues. Here, we investigated the importance of the terminal PFR location for prion properties. Two prionogenic sequences of 29 and 30 residues and two random sequences of 23 and 15 residues were added to the Sup35 N-terminus, making the original PFR internal. These proteins were overproduced in yeast with two variants of the Sup35 prion. Mapping of the prion-like structures of these proteins by partial proteinase K digestion showed that in most cases, the extensions acquired an amyloid fold, and, strikingly, the prion structure was no longer present or was substantially altered at its original location. The addition of two to five residues to the Sup35 N-terminus often resulted in prion instability and loss when the respective genes were used to replace chromosomal SUP35. The structures of yeast prions Mot3, Swi1, Lsb2, candidate prions Asm4, Nsp1, Cbk1, Cpp1, and prions based on scrambled Sup35 PFRs were mapped. The mapping showed that the N-terminal location of a QN-rich sequence predisposes to, but does not guarantee, the formation of a prion structure by it and that the prion structure located near a terminus does not always include the actual terminus, as in the cases of Sup35 and Rnq1. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

16 pages, 16734 KiB  
Article
Engineering a Protease K for Efficient Degradation of Wool Scale Layer Using a Substrate Pocket Modification
by Lei Zhao, Xiangyang Ma, Yunan Ding, Kaixin Zheng, Kefen Wang, Fuping Lu and Yihan Liu
Fermentation 2025, 11(2), 51; https://doi.org/10.3390/fermentation11020051 - 22 Jan 2025
Cited by 1 | Viewed by 1182
Abstract
The outermost surface of wool is covered by a scale layer, posing challenges to some steps of fabric processing. This layer, primarily composed of keratin, resists degradation by conventional proteases due to its high disulfide bond content. Protease K, an extracellular serine endo-proteinase [...] Read more.
The outermost surface of wool is covered by a scale layer, posing challenges to some steps of fabric processing. This layer, primarily composed of keratin, resists degradation by conventional proteases due to its high disulfide bond content. Protease K, an extracellular serine endo-proteinase derived from Tritirachium album Limber (tPRK), is known for its ability to digest native keratin. However, its limited activity against keratin has restricted its application in wool scale layer treatment. In this study, the substrate-binding pocket of tPRK was engineered, yielding the mutant N162A, which demonstrated an 84% increase in catalytic activity toward keratin. Additionally, the catalytic efficiency (kcat/Km) of N162A on keratin improved by 44.52%. Structural analysis indicated that modifications in the substrate-binding pocket reduced steric hindrance during substrate entry while enhancing substrate binding. Additionally, 3.3 mg/mL of amino acids were released within 6 h, which were catalyzed by N162A, with a 61% increase compared to the native tPRK. Moreover, the N162A variant effectively reduced the scale layer thickness without compromising the tensile strength of the wool, maintaining its mechanical properties. The findings provide a sustainable strategy for the wool industry while broadening the scope of biotechnological applications in the textile sector. Full article
(This article belongs to the Special Issue Microbial Production of Industrial Enzymes)
Show Figures

Figure 1

18 pages, 2624 KiB  
Article
GPpred: A Novel Sequence-Based Tool for Predicting Glutamic Proteases Using Optimized Hybrid Encodings
by Ahmad Firoz, Adeel Malik, Nitin Mahajan, Hani Mohammed Ali, Majid Rasool Kamli and Chang-Bae Kim
Catalysts 2024, 14(12), 894; https://doi.org/10.3390/catal14120894 - 5 Dec 2024
Viewed by 1267
Abstract
Glutamic proteases (GPs) represent one of the seven peptidase families described in the MEROPS database of peptidases (also known as proteases, proteinases, and proteolytic enzymes). Currently, the GP family is divided into six sub-families (G1–G6) distributed across three clans (GA, GB, and GC). [...] Read more.
Glutamic proteases (GPs) represent one of the seven peptidase families described in the MEROPS database of peptidases (also known as proteases, proteinases, and proteolytic enzymes). Currently, the GP family is divided into six sub-families (G1–G6) distributed across three clans (GA, GB, and GC). A glutamic acid and another variable amino acid are the catalytic residues in this family. Members of the GP family are involved in a wide variety of biological functions. For example, they act as bacterial and plant pathogens, and are involved in cancer and celiac disease. These enzymes are considered potential drug targets given their crucial roles in numerous biological processes. Characterizing GPs provides insights into their structure–function relationships, enabling the design of specific inhibitors or modulators. Such advancements directly contribute to drug discovery by identifying novel therapeutic targets and guiding the development of potent and selective drugs for various diseases, including cancers and autoimmune disorders. To address the challenges associated with labor-intensive experimental methods, we developed GPpred, an innovative support vector machine (SVM)-based predictor to identify GPs from their primary sequences. The workflow involves systematically extracting six distinct feature sets from primary sequences, and optimization using a recursive feature elimination (RFE) algorithm to identify the most informative hybrid encodings. These optimized encodings were then used to evaluate multiple machine learning classifiers, including K-Nearest Neighbors (KNNs), Random Forest (RF), Naïve Bayes (NB), and SVM. Among these, the SVM demonstrated a consistent performance, with an accuracy of 97% during the cross-validation and independent validation. Computational methods like GPpred accelerate this process by analyzing large datasets, predicting potential enzyme targets, and prioritizing candidates for experimental validation, thereby significantly reducing time and costs. GPpred will be a valuable tool for discovering GPs from large datasets, and facilitating drug discovery efforts by narrowing down viable therapeutic candidates. Full article
(This article belongs to the Special Issue Enzyme and Biocatalysis Application)
Show Figures

Figure 1

16 pages, 5079 KiB  
Article
Optogenetic Control of the Mitochondrial Protein Import in Mammalian Cells
by Lukas F. J. Althoff, Markus M. Kramer, Benjamin Bührer, Denise Gaspar and Gerald Radziwill
Cells 2024, 13(19), 1671; https://doi.org/10.3390/cells13191671 - 9 Oct 2024
Viewed by 2522
Abstract
Mitochondria provide cells with energy and regulate the cellular metabolism. Almost all mitochondrial proteins are nuclear-encoded, translated on ribosomes in the cytoplasm, and subsequently transferred to the different subcellular compartments of mitochondria. Here, we developed OptoMitoImport, an optogenetic tool to control the import [...] Read more.
Mitochondria provide cells with energy and regulate the cellular metabolism. Almost all mitochondrial proteins are nuclear-encoded, translated on ribosomes in the cytoplasm, and subsequently transferred to the different subcellular compartments of mitochondria. Here, we developed OptoMitoImport, an optogenetic tool to control the import of proteins into the mitochondrial matrix via the presequence pathway on demand. OptoMitoImport is based on a two-step process: first, light-induced cleavage by a TEV protease cuts off a plasma membrane-anchored fusion construct in close proximity to a mitochondrial targeting sequence; second, the mitochondrial targeting sequence preceding the protein of interest recruits to the outer mitochondrial membrane and imports the protein fused to it into mitochondria. Upon reaching the mitochondrial matrix, the matrix processing peptidase cuts off the mitochondrial targeting sequence and releases the protein of interest. OptoMitoImport is available as a two-plasmid system as well as a P2A peptide or IRES sequence-based bicistronic system. Fluorescence studies demonstrate the release of the plasma membrane-anchored protein of interest through light-induced TEV protease cleavage and its localization to mitochondria. Cell fractionation experiments confirm the presence of the peptidase-cleaved protein of interest in the mitochondrial fraction. The processed product is protected from proteinase K treatment. Depletion of the membrane potential across the inner mitochondria membrane prevents the mitochondrial protein import, indicating an import of the protein of interest by the presequence pathway. These data demonstrate the functionality of OptoMitoImport as a generic system with which to control the post-translational mitochondrial import of proteins via the presequence pathway. Full article
(This article belongs to the Section Mitochondria)
Show Figures

Graphical abstract

10 pages, 1453 KiB  
Article
Comparison of Antigen Retrieval Methods for Immunohistochemical Analysis of Cartilage Matrix Glycoproteins Using Cartilage Intermediate Layer Protein 2 (CILP-2) as an Example
by Taavi Torga, Siim Suutre, Kalle Kisand, Marina Aunapuu and Andres Arend
Methods Protoc. 2024, 7(5), 67; https://doi.org/10.3390/mps7050067 - 24 Aug 2024
Cited by 1 | Viewed by 1935
Abstract
The aim of this study was to compare different antigen retrieval methods to improve the outcome of immunohistochemistry (IHC) performed on osteoarthritic (OA) cartilage obtained from total knee replacement operation. A voluminous and dense extracellular matrix of articular cartilage inhibits antibody penetration, and [...] Read more.
The aim of this study was to compare different antigen retrieval methods to improve the outcome of immunohistochemistry (IHC) performed on osteoarthritic (OA) cartilage obtained from total knee replacement operation. A voluminous and dense extracellular matrix of articular cartilage inhibits antibody penetration, and therefore, proteins present at low concentrations and masked during fixation may need antigen retrieval to enhance an IHC outcome. We focused on the IHC detection of a minor but diagnostically promising cartilage glycoprotein, CILP-2 (cartilage intermediate layer protein 2), to demonstrate the effect of four different protocols: (1) heat-induced epitope retrieval (HIER), (2) proteolytic-induced epitope retrieval applying proteinase K and hyaluronidase (PIER), (3) HIER combined with PIER, and (4) no antigen retrieval (control). A semi-quantitative staining assessment based on the CILP-2 staining extent was applied. Out of the tested antigen retrieval protocols, the best CILP-2 IHC staining results were achieved by PIER. Combining PIER with HIER did not improve CILP-2 staining in the given experimental setting. Rather the opposite, the application of heat reduced the positive effect of PIER on CILP-2 staining and resulted in the frequent detachment of sections from the slides. Our findings emphasize the need for proper adaptation of antigen retrieval protocols for IHC to maximize the quantitative evaluation of minor matrix proteins in OA articular cartilage samples. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
Show Figures

Figure 1

12 pages, 3586 KiB  
Article
Poly(lactic acid) Degradation by Recombinant Cutinases from Aspergillus nidulans
by Eric Alvarado, Rafael Castro, José Augusto Castro-Rodríguez, Arturo Navarro and Amelia Farrés
Polymers 2024, 16(14), 1994; https://doi.org/10.3390/polym16141994 - 12 Jul 2024
Cited by 4 | Viewed by 2054
Abstract
Poly(lactic-acid) (PLA) is a biodegradable polymer widely used as a packaging material. Its monomer, lactic acid, and its derivatives have been used in the food, cosmetic, and chemical industries. The accumulation of PLA residues leads to the development of green degrading methodologies, such [...] Read more.
Poly(lactic-acid) (PLA) is a biodegradable polymer widely used as a packaging material. Its monomer, lactic acid, and its derivatives have been used in the food, cosmetic, and chemical industries. The accumulation of PLA residues leads to the development of green degrading methodologies, such as enzymatic degradation. This work evaluates the potential use of three cutinolytic enzymes codified in the Aspergillus nidulans genome to achieve this goal. The results are compared with those obtained with proteinase K from Tritirachium album, which has been reported as a PLA-hydrolyzing enzyme. The results show that all three cutinases act on the polymer, but ANCUT 1 releases the highest amount of lactic acid (25.86 mM). Different reaction conditions assayed later led to double the released lactic acid. A decrease in weight (45.96%) was also observed. The enzyme showed activity both on poly L lactic acid and on poly D lactic acid. Therefore, this cutinase offers the potential to rapidly degrade these package residues, and preliminary data show that this is feasible. Full article
(This article belongs to the Special Issue Degradation of Plastics)
Show Figures

Figure 1

13 pages, 5470 KiB  
Article
A Simple and Rapid Microscale Method for Isolating Bacterial Lipopolysaccharides
by Daniil Grumov, Alexey Kostarnoy, Petya Gancheva and Alexey Kondratev
Int. J. Mol. Sci. 2024, 25(12), 6345; https://doi.org/10.3390/ijms25126345 - 8 Jun 2024
Viewed by 2911
Abstract
Bacterial endotoxins (lipopolysaccharides (LPSs)) are important mediators of inflammatory processes induced by Gram-negative microorganisms. LPSs are the key inducers of septic shock due to a Gram-negative bacterial infection; thus, the structure and functions of LPSs are of specific interest. Often, highly purified bacterial [...] Read more.
Bacterial endotoxins (lipopolysaccharides (LPSs)) are important mediators of inflammatory processes induced by Gram-negative microorganisms. LPSs are the key inducers of septic shock due to a Gram-negative bacterial infection; thus, the structure and functions of LPSs are of specific interest. Often, highly purified bacterial endotoxins must be isolated from small amounts of biological material. Each of the currently available methods for LPS extraction has certain limitations. Herein, we describe a rapid and simple microscale method for extracting LPSs. The method consists of the following steps: ultrasonic destruction of the bacterial material, LPS extraction via heating, LPS purification with organic solvents, and treatment with proteinase K. LPSs that were extracted by using this method contained less than 2–3% protein and 1% total nucleic acid. We also demonstrated the structural integrity of the O-antigen and lipid A via the sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS–PAGE) and matrix-assisted laser desorption ionization mass spectrometry (MALDI–MS) methods, respectively. We demonstrated the ability of the extracted LPSs to induce typical secretion of cytokines and chemokines by primary macrophages. Overall, this method may be used to isolate purified LPSs with preserved structures of both the O-antigen and lipid A and unchanged functional activity from small amounts of bacterial biomass. Full article
(This article belongs to the Collection Feature Papers in Molecular Microbiology)
Show Figures

Figure 1

13 pages, 2646 KiB  
Article
SK-03-92 Treatment Causes Release of a Lethal Factor Protein That Kills Staphylococcus aureus Cells
by William R. Schwan, Madison Moore, Allison Zank, Sophia Cannarella, Kyle Gebhardt and John F. May
Targets 2024, 2(2), 80-92; https://doi.org/10.3390/targets2020005 - 22 May 2024
Cited by 1 | Viewed by 1541
Abstract
Background: Staphylococcus aureus is a leading cause of skin and bloodstream infections in humans. Antibiotic resistant strains of S. aureus continue to be a problem in treating patients that are infected, so treatment options are needed. A drug discovery project identified SK-03-92 as [...] Read more.
Background: Staphylococcus aureus is a leading cause of skin and bloodstream infections in humans. Antibiotic resistant strains of S. aureus continue to be a problem in treating patients that are infected, so treatment options are needed. A drug discovery project identified SK-03-92 as a novel anti-staphylococcal drug, but the SK-03-92 mechanism of action is unknown. We hypothesized that a lethal factor was being released by the bacteria that killed siblings. Methods: In this study, filtration through molecular weight cut-off filters as well as boiling, trypsin treatment, and proteinase K treatment were used to ascertain what the lethal factor was released by SK-03-92 treated S. aureus cells. Results: Filtration through molecular weight cut-off filters demonstrated the lethal factor released by SK-03-92 treated S. aureus cells had a molecular cut-off between 10,000 Da and 30,000 Da that killed fresh S. aureus cells but was not released by untreated cells. Through proteinase K digestion, trypsin digestion, and boiling experiments, the lethal factor was shown to be a protein. Further experiments are needed to identify what proteins released following SK-03-92 treatment cause the death of S. aureus cells. Conclusions: The data show that SK-03-92 treatment causes S. aureus to release a lethal factor protein that kills S. aureus cells, suggesting a new mechanism of action for an antibacterial drug. Full article
Show Figures

Figure 1

21 pages, 6094 KiB  
Article
Synergistic Inhibition of Synbiotic Cultures among Lactobacilli and Plant Extracts against Vaginal Discharge Causing Candida albicans
by Siriwoot Sookkhee, Phadungkiat Khamnoi, Thanapat Sastraruji, Sathian Boonkum, Nitwara Wikan and Wutigri Nimlamool
Nutrients 2024, 16(9), 1372; https://doi.org/10.3390/nu16091372 - 30 Apr 2024
Cited by 2 | Viewed by 1922
Abstract
Vulvovaginal candidiasis (VVC) is the most common cause of vaginal discharge among women. The present study aimed to investigate the synergistic anticandidal effect of lactobacillus cultures supplemented with plant extracts. Among 600 isolates of lactic acid bacteria, 41 isolates exhibited inhibitory activity against [...] Read more.
Vulvovaginal candidiasis (VVC) is the most common cause of vaginal discharge among women. The present study aimed to investigate the synergistic anticandidal effect of lactobacillus cultures supplemented with plant extracts. Among 600 isolates of lactic acid bacteria, 41 isolates exhibited inhibitory activity against Candida albicans ATCC10231. Six out of 41 cell-free supernatants demonstrated the most potent antibacterial and anticandidal activities. They also inhibited the clinical isolates of C. albicans, causing VVC and non-C. albicans. The synergistic effect between Lactobacillus crispatus 84/7 and Limosilactobacillus reuteri 89/4 was demonstrated by the lowest fractional inhibitory concentration index (FICI = 0.5). The synbiotic culture of bacterial combination, cultured with Jerusalem artichoke (H. tuberosus) extract, also exhibited the strongest inhibition against the tested C. albicans. Biofilm formation decreased after 12 h of incubation in the selected cell-free supernatants of this synbiotic culture. The anticandidal activity of crude extracts was lost after treatment with proteinase K and trypsin but not with heating conditions, suggesting that it may be a heat-stable substance. In conclusion, the combination of L. crispatus 84/7 and L. reuteri 89/4 with H. tuberosus may be a promising candidate for inhibiting Candida infection and biofilm formation, with the potential use as ingredients in vaginal biotherapeutic products. Full article
(This article belongs to the Special Issue Microbiota and Microecological Health in Humans)
Show Figures

Figure 1

19 pages, 3398 KiB  
Article
4-Oxo-2-Nonenal- and Agitation-Induced Aggregates of α-Synuclein and Phosphorylated α-Synuclein with Distinct Biophysical Properties and Biomedical Applications
by Tie Wang, Weijin Liu, Qidi Zhang, Jie Jiao, Zihao Wang, Ge Gao and Hui Yang
Cells 2024, 13(9), 739; https://doi.org/10.3390/cells13090739 - 24 Apr 2024
Cited by 4 | Viewed by 1858
Abstract
α-Synuclein (α-syn) can form oligomers, protofibrils, and fibrils, which are associated with the pathogenesis of Parkinson’s disease and other synucleinopathies. Both the lipid peroxidation product 4-oxo-2-nonenal (ONE) and agitation can induce aggregation of α-syn and phosphorylated α-syn. Thus, clarification of the characteristics of [...] Read more.
α-Synuclein (α-syn) can form oligomers, protofibrils, and fibrils, which are associated with the pathogenesis of Parkinson’s disease and other synucleinopathies. Both the lipid peroxidation product 4-oxo-2-nonenal (ONE) and agitation can induce aggregation of α-syn and phosphorylated α-syn. Thus, clarification of the characteristics of different α-syn species could help to select suitable aggregates for diagnosis and elucidate the pathogenesis of diseases. Here, we characterized ONE-induced wild-type (WT) α-syn aggregates (OW), ONE-induced phosphorylated α-syn (p-α-syn) aggregates (OP), agitation-induced α-syn preformed fibrils (PFF), and agitation-induced p-α-syn preformed fibrils (pPFF). Thioflavin T (ThT) dying demonstrated that OW and OP had fewer fibrils than the PFF and pPFF. Transmission electron microscopy revealed that the lengths of PFF and pPFF were similar, but the diameters differed. OW and OP had more compact structures than PFF and pPFF. Aggregation of p-α-syn was significantly faster than WT α-syn. Furthermore, OW and OP were more sodium dodecyl sulfate-stable and proteinase K-resistant, suggesting greater stability and compactness, while aggregates of PFF and pPFF were more sensitive to proteinase K treatment. Both ONE- and agitation-induced aggregates were cytotoxic when added exogenously to SH-SY5Y cells with increasing incubation times, but the agitation-induced aggregates caused cell toxicity in a shorter time and more p-α-syn inclusions. Similarly, p-proteins were more cytotoxic than non-p-proteins. Finally, all four aggregates were used as standard antigens to establish sandwich enzyme-linked immunosorbent assay (ELISA). The results showed that the recognition efficiency of OW and OP was more sensitive than that of PFF and pPFF. The OW- and OP-specific ELISA for detection of p-α-syn and α-syn in plasma samples of Thy1-α-syn transgenic mice showed that the content of aggregates could reflect the extent of disease. ONE and agitation induced the formation of α-syn aggregates with distinct biophysical properties and biomedical applications. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Graphical abstract

19 pages, 4356 KiB  
Article
Effect of Microwave Treatment on Protease Activity, Dough Properties and Protein Quality in Sprouted Wheat
by Xiangyu Wang, Mengyuan Zhao, Panpan Shang, Jing Liu and Renyong Zhao
Foods 2024, 13(8), 1277; https://doi.org/10.3390/foods13081277 - 22 Apr 2024
Cited by 4 | Viewed by 2139
Abstract
In this study, the effects of microwave treatment on protease activity, dough properties and protein quality in sprouted wheat were investigated. Microwave treatment led to a significant (p < 0.05) reduction in protease activity in sprouted wheat. Proteases with a pH optimum [...] Read more.
In this study, the effects of microwave treatment on protease activity, dough properties and protein quality in sprouted wheat were investigated. Microwave treatment led to a significant (p < 0.05) reduction in protease activity in sprouted wheat. Proteases with a pH optimum of 4.4 (cysteine proteinases) were more susceptible to microwave heating, which contributed mostly to protease inactivation. Significant improvements (p < 0.05) in the dough properties and gluten quality of sprouted wheat were observed, which are probably attributable to the synergistic effectiveness of protease inactivation and heat-induced gluten cross-linking. After microwave treatment, the decrease in the solubility and extractability of protein in sprouted wheat indicated protein polymerization, which was induced by intermolecular disulfide bond cross-linking. The changes in gliadin were less pronounced due to the relatively low temperature of the microwave treatment. The cross-linking in sprouted wheat that occurred after microwave treatment seemed to mainly involve glutenin, especially B/C low-molecular-weight glutenin subunits (B/C-LMW-GSs) in the range of 30–50 kD. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

20 pages, 4367 KiB  
Article
Mechanistic Study of Novel Dipeptidyl Peptidase IV Inhibitory Peptides from Goat’s Milk Based on Peptidomics and In Silico Analysis
by Yulong Wu, Jin Zhang, Ruikai Zhu, Hong Zhang, Dapeng Li, Huanhuan Li, Honggang Tang, Lihong Chen, Xinyan Peng, Xianrong Xu and Ke Zhao
Foods 2024, 13(8), 1194; https://doi.org/10.3390/foods13081194 - 14 Apr 2024
Cited by 8 | Viewed by 2478
Abstract
Two novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides (YPF and LLLP) were discovered from goat milk protein by peptidomics, in silico analysis, and in vitro assessment. A total of 698 peptides (<23 AA) were successfully identified by LC-MS/MS from goat milk hydrolysates (hydrolyzed [...] Read more.
Two novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides (YPF and LLLP) were discovered from goat milk protein by peptidomics, in silico analysis, and in vitro assessment. A total of 698 peptides (<23 AA) were successfully identified by LC-MS/MS from goat milk hydrolysates (hydrolyzed by papaian plus proteinase K). Then, 105 potential DPP-IV inhibitory peptides were screened using PeptideRanker, the ToxinPred tool, Libdock, iDPPIV-SCM, and sequence characteristics. After ADME, physicochemical property evaluation, and a literature search, 12 candidates were efficiently selected and synthesized in vitro for functional validation. Two peptides (YPF and LLLP) were found to exert relatively high in vitro chemical system (IC50 = 368.54 ± 12.97 μM and 213.99 ± 0.64 μM) and in situ (IC50 = 159.46 ± 17.40 μM and 154.96 ± 8.41 μM) DPP-IV inhibitory capacities, and their inhibitory mechanisms were further explored by molecular docking. Our study showed that the formation of strong non-bonding interactions with the core residues from the pocket of DPP-IV (such as ARG358, PHE357, GLU205, TYR662, TYR547, and TYR666) might primarily account for the DPP-IV inhibitory activity of two identified peptides. Overall, the two novel DPP-IV inhibitory peptides rapidly identified in this study can be used as functional food ingredients for the control of diabetes. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

Back to TopTop