Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (224)

Search Parameters:
Keywords = proteinase K

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3124 KB  
Article
Effects of Microgravity, Hypergravity, and Ionizing Radiation on the Enzymatic Activity of Proteinase K
by Bartosz Rybacki, Wojciech Wysocki, Tomasz Zajkowski, Robert Brodzik and Beata Krawczyk
Molecules 2026, 31(2), 229; https://doi.org/10.3390/molecules31020229 - 9 Jan 2026
Viewed by 518
Abstract
Space conditions offer new insights into fundamental biological and molecular mechanisms. The study aimed to evaluate the enzymatic activity of proteinase K (PK) under extreme conditions relevant to space environments: simulated microgravity, hypergravity, and gamma radiation. PK activity was tested using azocasein (AZO) [...] Read more.
Space conditions offer new insights into fundamental biological and molecular mechanisms. The study aimed to evaluate the enzymatic activity of proteinase K (PK) under extreme conditions relevant to space environments: simulated microgravity, hypergravity, and gamma radiation. PK activity was tested using azocasein (AZO) as a chromogenic substrate, with enzymatic reactions monitored spectrophotometrically at 450 nm. A rotating wall vessel (RWV) simulated microgravity, centrifugation at 1000× g (3303 rpm) generated hypergravity, and gamma radiation exposure used cesium-137 as the ionizing source. PK activity showed no remarkable changes under microgravity after 16 or 48 h; however, higher absorbance values after 96 h indicated enhanced AZO proteolysis compared to 1 g (Earth gravity) controls. In hypergravity, low PK concentrations exhibited slightly increased activity, while higher concentrations led to reduced activity. Meanwhile, gamma radiation caused a dose-dependent decline in PK activity; samples exposed to deep-space equivalent doses showed reduced substrate degradation. PK retained enzymatic activity under all tested conditions, though the type and duration of stress modulated its efficiency. The results suggest that enzyme-based systems may remain functional during space missions and, in some cases, exhibit enhanced activity. Nevertheless, their behavior must be evaluated in a context-dependent manner. These findings may be significant to advance biotechnology, diagnostics, and the development of enzyme systems for space applications. Full article
Show Figures

Graphical abstract

31 pages, 5849 KB  
Article
Planktonic Aggregation Enhances Antibiotic Tolerance in Non-MDR Acinetobacter baumannii
by Jiali Liu, Yinyue Li, Jie Liu, Zhiyong Tao, Feng Lu, Fang Tian, Jin-Hee Han and Xinlong He
Microorganisms 2026, 14(1), 8; https://doi.org/10.3390/microorganisms14010008 - 19 Dec 2025
Viewed by 464
Abstract
Acinetobacter baumannii relies on biofilms for antibiotic resistance, but the role of planktonic aggregates in drug tolerance is uncharacterized. We studied 103 clinical isolates to explore how the RND efflux pump gene adeG regulates aggregation. Non-MDR strains (with RND deletions) formed aggregates more [...] Read more.
Acinetobacter baumannii relies on biofilms for antibiotic resistance, but the role of planktonic aggregates in drug tolerance is uncharacterized. We studied 103 clinical isolates to explore how the RND efflux pump gene adeG regulates aggregation. Non-MDR strains (with RND deletions) formed aggregates more frequently (13.79%, 4/29) than MDR strains (1.35%, 1/74), driven by residual RND efflux activity (not just deletions). adeG deletion induced 1–2 mm aggregates in a strain with combined adeRadeABC defects (via upregulated adhesion genes/hydrophobicity) but not in one with only ΔadeC. Aggregates boosted antibiotic tolerance (2–4-fold higher survival vs. disaggregated/parental strains) via metabolic dormancy (5-fold lower ATP), maintained growth in human serum, and promoted persistent bacteremia in immunosuppressed mice. Proteinase K disrupted aggregates, confirming protein matrices’ role. These findings identify planktonic aggregates as pivotal adaptive and virulence-related targets for combating refractory non-MDR A. baumannii infections while also revealing an association between adeG-related genetic contexts and aggregate formation in the bacterium. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

16 pages, 5159 KB  
Article
Enzymatic Degradation of PLA: Preferential Degradation of the Amorphous Fraction
by Sarita Shrestha, Michael Snowdon and David B. Levin
Polymers 2025, 17(22), 3042; https://doi.org/10.3390/polym17223042 - 17 Nov 2025
Viewed by 1448
Abstract
Polylactic acid (PLA), a widely used biobased biopolymer, is highly resistant to biodegradation under ambient conditions, contributing to persistent plastic pollution and posing potential environmental and health risks. This study investigates the enzymatic degradation of PLA by Proteinase K, a proteolytic hydrolase enzyme [...] Read more.
Polylactic acid (PLA), a widely used biobased biopolymer, is highly resistant to biodegradation under ambient conditions, contributing to persistent plastic pollution and posing potential environmental and health risks. This study investigates the enzymatic degradation of PLA by Proteinase K, a proteolytic hydrolase enzyme with the ability to degrade PLA, and explores the underlying mechanisms for degradation. Both amorphous and semi-crystalline PLA were treated with Proteinase K (2 mg/mL) at 37 °C over varying time periods. PLA degradation was evaluated using multiple techniques, including weight loss measurement, pH reduction, quantification of lactic acid monomer release by High-Performance Liquid Chromatography (HPLC), surface morphology analysis through Scanning Electron Microscopy (SEM), changes in thermal properties by Differential Scanning Calorimetry (DSC), and structural changes by X-Ray Diffraction (XRD). The data revealed that the degradation of amorphous regions of the PLA polymer was faster and more extensive than the crystalline regions of the polymer. Repeated enzymatic treatments significantly enhanced the degradation rate. Furthermore, Proteinase K showed a clear preference for degrading amorphous regions of the PLA, as evidenced by higher weight loss, sharper pH decline, higher lactic acid production, and more pronounced surface disruptions, such as visible gaps between degraded oligomer structures. Full article
(This article belongs to the Special Issue Degradation and Stabilization of Polymer Materials 2nd Edition)
Show Figures

Figure 1

19 pages, 1772 KB  
Article
Study on the Enrichment of the Main Active Components in Rhodococcus opacus PD630 Cell-Free Supernatant for the Degradation of Aflatoxin B1, the Degradation Products, and the Underlying Mechanisms
by Aiyuan Zhang, Xuewu Zhang and Jiguo Yang
Foods 2025, 14(21), 3772; https://doi.org/10.3390/foods14213772 - 3 Nov 2025
Viewed by 686
Abstract
Due to the high toxicity and widespread distribution of aflatoxin B1 (AFB1), there is significant interest in efficient, safe, and environmentally friendly microbial degradation methods. Rhodococcus opacus PD630 cell-free supernatant (RCFS) shows excellent activity in degrading AFB1, but its active components and mechanisms [...] Read more.
Due to the high toxicity and widespread distribution of aflatoxin B1 (AFB1), there is significant interest in efficient, safe, and environmentally friendly microbial degradation methods. Rhodococcus opacus PD630 cell-free supernatant (RCFS) shows excellent activity in degrading AFB1, but its active components and mechanisms remain unclear. We assessed the feasibility of ethanol precipitation to enrich active components in RCFS and characterized the ethanol precipitate (RCFSC-EP). Metabolomics and proteomics were used to elucidate the active components, mechanisms, and products of AFB1 degradation by RCFS. The results indicate that ethanol precipitation enriches over 80% of the active components for AFB1 degradation in RCFS. RCFSC-EP exhibits excellent heat resistance, and inhibitors like EDTA-2Na and proteinase K significantly inhibit its activity. Multi-omics analysis suggests that active components in RCFS metabolize AFB1 into six products through four potential pathways, three of which withstand 135 °C for 20 min. The AFB1-degrading activity of RCFS is an intrinsic, constitutive trait of R. opacus PD630 during normal growth. The active components are diverse proteins or enzymes, including glutathione S-transferases, aldo/keto reductase, peroxidases, and carbonyl reductases. This study enriches and reveals the active components, pathways, and products of AFB1 degradation by RCFS, providing a basis for developing RCFS as a biological agent for AFB1 degradation. Full article
(This article belongs to the Special Issue Mycotoxins in Foods: Occurrence, Detection, and Control)
Show Figures

Figure 1

10 pages, 1358 KB  
Article
Vesicle-Mediated Transfer of CTX-M β-Lactamase Genes and Proteins Confers Ampicillin Resistance in Escherichia coli
by Nader Kameli
Int. J. Mol. Sci. 2025, 26(21), 10601; https://doi.org/10.3390/ijms262110601 - 31 Oct 2025
Viewed by 739
Abstract
The global rise of antimicrobial resistance represents a critical challenge to public health, with Escherichia coli emerging as one of the most significant contributors due to its high adaptability and prevalence of extended-spectrum β-lactamase (ESBL) production. Outer membrane vesicles (OMVs), nanoscale structures released [...] Read more.
The global rise of antimicrobial resistance represents a critical challenge to public health, with Escherichia coli emerging as one of the most significant contributors due to its high adaptability and prevalence of extended-spectrum β-lactamase (ESBL) production. Outer membrane vesicles (OMVs), nanoscale structures released by Gram-negative bacteria, have recently been implicated in the dissemination of resistance determinants and direct antibiotic inactivation. This study investigated the role of OMVs derived from ESBL-producing E. coli in mediating resistance to ampicillin. Clinical strains harboring CTX-M-15 resistance genes were cultured under selective pressure, and OMVs were purified via size-exclusion chromatography. Characterization using tunable resistive pulse sensing (TRPS) and cryo-transmission electron microscopy confirmed vesicle integrity, with sizes ranging from 80 to 150 nm. DNA quantification and PCR analysis revealed the presence of CTX-M-15 genes within vesicles, which remained protected from DNase digestion, confirming encapsulation. Functional assays demonstrated β-lactamase activity within OMVs, with proteinase K treatment indicating localization primarily within vesicles rather than on their surface. Importantly, OMVs inactivated ampicillin in a dose-dependent manner, significantly reducing its efficacy against susceptible E. coli. Disc diffusion and microtiter plate assays confirmed that β-lactamase-positive OMVs protected susceptible strains from antibiotic killing, promoting bacterial survival and growth. This study uniquely demonstrates that OMVs from CTX-M-15–producing Escherichia coli carry both resistance genes and active β-lactamase enzymes, thereby facilitating both genetic dissemination and direct antibiotic inactivation. Targeting OMV biogenesis may represent a novel strategy to combat antimicrobial resistance. Full article
Show Figures

Figure 1

20 pages, 2538 KB  
Article
Hybrid Kinetic Modelling of Protein Crystallization: Hanging Drop and Langmuir–Blodgett Conditions
by Eugenia Pechkova, Fabio Massimo Speranza, Paola Ghisellini, Cristina Rando, Katia Barbaro and Roberto Eggenhöffner
Crystals 2025, 15(10), 857; https://doi.org/10.3390/cryst15100857 - 30 Sep 2025
Viewed by 690
Abstract
The understanding and control of protein crystallization are crucial in structural biology, drug development, and biomaterial design. This study introduces a unified framework for modeling and comparing crystallization kinetics using selected growth functions. Experimental datasets from the literature for four proteins, Lysozyme, Thaumatin, [...] Read more.
The understanding and control of protein crystallization are crucial in structural biology, drug development, and biomaterial design. This study introduces a unified framework for modeling and comparing crystallization kinetics using selected growth functions. Experimental datasets from the literature for four proteins, Lysozyme, Thaumatin, Ribonuclease A, and Proteinase K, under Hanging Drop and Langmuir–Blodgett conditions were analyzed. Five kinetic models, Avrami, Kashchiev, Hill, Logistic, and Generalized Sigmoid (GSM), were fitted to size–time data of the four benchmark proteins. From each fit, four descriptors were extracted: crystallization half-time, time of maximum growth, width at half-maximum, and peak growth rate. These metrics summarize crystallization dynamics and enable cross-comparison of proteins and methods. Langmuir–Blodgett templating accelerated onset and improved synchrony, though the effect varied by protein and model. Logistic, Hill, and GSM models provided consistent fits across most conditions, while Avrami and Kashchiev were more sensitive to early or late deviations. Notably, descriptor extraction remained reliable even with limited or uneven sampling, revealing kinetic regimes such as synchrony, asymmetry, or prolonged nucleation, not evident in raw data. This transferable analytical framework supports quantitative evaluation of crystallization behavior, aiding screening, process optimization, and time-resolved structural studies. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

12 pages, 1863 KB  
Protocol
Expansion Microscopy of the Enteric Nervous System: A Feasibility Study
by Xin Xu, Wenchuan Zhang and Menachem Hanani
Cells 2025, 14(18), 1463; https://doi.org/10.3390/cells14181463 - 18 Sep 2025
Viewed by 1018
Abstract
Expansion microscopy (ExM) enables conventional light microscopes to achieve nanoscale resolution by physically enlarging biological specimens. While ExM has been widely applied in neurobiology, it has not been adapted for the enteric nervous system (ENS). Here, we provide a detailed and reproducible protocol [...] Read more.
Expansion microscopy (ExM) enables conventional light microscopes to achieve nanoscale resolution by physically enlarging biological specimens. While ExM has been widely applied in neurobiology, it has not been adapted for the enteric nervous system (ENS). Here, we provide a detailed and reproducible protocol for applying ExM to mouse colonic ENS tissue. The procedure includes preparation of the external muscle layers with the myenteric plexus, histochemical staining for NADPH-diaphorase, immunostaining for glial fibrillary acidic protein (GFAP), anchoring of biomolecules, gelation, proteinase K digestion, and isotropic expansion in a swellable polymer matrix. Step-by-step instructions, required reagents, and critical parameters are described to ensure robustness and reproducibility. Using this protocol, tissues expand 3–5-fold, allowing neuronal somata, fibers, and glial cell processes to be clearly visualized by standard brightfield or fluorescence microscopy. The tissue architecture is preserved, with distortion in the X–Y plane of about 7%. This protocol provides a reliable framework for high-resolution structural analysis of the ENS and can be readily adapted to other peripheral tissues. Full article
(This article belongs to the Section Cell Methods)
Show Figures

Graphical abstract

15 pages, 3465 KB  
Article
Identification of Bioactive Peptides from Caenorhabditis elegans Secretions That Promote Indole-3-Acetic Acid Production in Arthrobacter pascens ZZ21
by Shan Sun, Mengsha Li, Luchen Tao, Xiran Liu, Lei Ouyang, Gen Li, Feng Hu and Huixin Li
Microorganisms 2025, 13(8), 1951; https://doi.org/10.3390/microorganisms13081951 - 21 Aug 2025
Viewed by 875
Abstract
Caenorhabditis elegans, a free-living nematode model, secretes neuropeptides, but the ecological roles of its peptide exudates in regulating rhizosphere microbial activity remain largely unexplored. We identified six short peptides (P1, P9, P19, P20, P25, and P26) from C. elegans exudates that significantly [...] Read more.
Caenorhabditis elegans, a free-living nematode model, secretes neuropeptides, but the ecological roles of its peptide exudates in regulating rhizosphere microbial activity remain largely unexplored. We identified six short peptides (P1, P9, P19, P20, P25, and P26) from C. elegans exudates that significantly enhanced indole-3-acetic acid (IAA) production by the plant growth-promoting bacterium Arthrobacter pascens ZZ21. These peptides were heat-labile and proteinase K-sensitive but unaffected by DNase I or RNase A, confirming their proteinaceous (peptide) nature rather than nucleic acid origin. The retention of bioactivity in n-butanol extracts further supported their hydrophilic, peptide-like properties. LC-MS/MS identified 30 linear peptides, including the six bioactive ones, which exhibited distinct dose-dependent effects, suggesting diverse regulatory mechanisms. Despite their relatively low abundance, these peptides strongly promoted IAA production in the bacterial culture system across multiple concentrations. These findings reveal an unrecognized mechanism whereby free-living nematodes regulate rhizobacterial metabolism via secreted peptides, offering new insights into nematode-mediated chemical signaling. Therefore, this study advances understanding of plant–microbe–nematode interactions and highlights strategies for manipulating rhizosphere microbiota in sustainable agriculture. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

14 pages, 2312 KB  
Article
Isolation and Characterization of Bacteriocin-like-Producing Companilactobacillus farciminis YLR-1 and the Inhibitory Activity of Bacteriocin Against Staphylococcus aureus
by Lirong Yang, Hui Su, Jiayue Wang, Sijia Sun, Sibo Liu, Baishuang Yin, Wenlong Dong and Guojiang Li
Fermentation 2025, 11(8), 460; https://doi.org/10.3390/fermentation11080460 - 11 Aug 2025
Viewed by 1747
Abstract
This study aimed to identify a probiotic bacterium with antagonistic activity against the foodborne pathogen Staphylococcus aureus (S. aureus) and investigate the mechanism of its antibacterial components. Growth kinetics were analyzed to assess bacterial proliferation. Acid and bile salt tolerance are [...] Read more.
This study aimed to identify a probiotic bacterium with antagonistic activity against the foodborne pathogen Staphylococcus aureus (S. aureus) and investigate the mechanism of its antibacterial components. Growth kinetics were analyzed to assess bacterial proliferation. Acid and bile salt tolerance are vital indicators for evaluating probiotic survival in the gastrointestinal tract. The results indicated that Companilactobacillus farciminis (C. farciminis) YLR-1 not only had high tolerance to salt conditions (0.03%, 0.3%, and 0.5%) but also has a high survival rate at pH 3–4. The bacteriocin-like inhibitory substance (BLIS) isolated from C. farciminis YLR-1 was dialyzed using a membrane with a molecular weight cut-off (MWCO) of 500 Da, followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The results indicate that the BLIS produced by C. farciminis YLR-1 is a small-molecule peptide. BLIS displayed pH tolerance within acidic and neutral environments (4–8) and exhibited thermostability. When treated with proteinase K, the antibacterial action of BLIS was found to be inactivated. Membrane disruption mechanisms were examined using fluorescence imaging and scanning electron microscopy (SEM). SEM and fluorescence imaging revealed that BLIS-induced membrane damage in S. aureus ATCC 25923 causes cytoplasmic leakage and cell death. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

14 pages, 1386 KB  
Article
Probing the Interaction Between Icariin and Proteinase K: A Combined Spectroscopic and Molecular Modeling Study
by Zhongbao Han, Huizi Zheng, Yimeng Qi, Dilshadbek T. Usmanov, Liyan Liu and Zhan Yu
Biophysica 2025, 5(3), 32; https://doi.org/10.3390/biophysica5030032 - 28 Jul 2025
Viewed by 698
Abstract
Icariin (ICA) is widely recognized for its health benefits. In this work, we examined the intermolecular interactions between ICA and proteinase K (PK) via multi-spectroscopic techniques and molecular simulations. The experimental findings revealed that ICA quenched the fluorescence emission of PK by forming [...] Read more.
Icariin (ICA) is widely recognized for its health benefits. In this work, we examined the intermolecular interactions between ICA and proteinase K (PK) via multi-spectroscopic techniques and molecular simulations. The experimental findings revealed that ICA quenched the fluorescence emission of PK by forming a noncovalent complex. Both hydrogen bonding and van der Waals interactions are essential for the complex’s formation. Then Förster resonance energy transfer (FRET), competitive experiments, and synchronous fluorescence spectroscopy were adopted to verify the formation of the complex. Molecular docking studies demonstrated that ICA could spontaneously bind to PK by hydrogen bonding and hydrophobic interactions, which is consistent with the spectroscopic results. The PK-ICA complex’s dynamic stability was evaluated using a 50 ns molecular dynamics (MD) simulation. The simulation results revealed no significant structural deformation or positional changes throughout the entire simulation period. The complex appears to be rather stable, as seen by the average root-mean-square deviation (RMSD) fluctuations for the host protein in the PK-ICA complex of 1.08 Å and 3.09 Å. These outcomes of molecular simulations suggest that ICA interacts spontaneously and tightly with PK, consistent with the spectroscopic findings. The approach employed in this research presents a pragmatic and advantageous method for examining protein–ligand interactions, as evidenced by the concordance between empirical and theoretical findings. Full article
(This article belongs to the Special Issue Biomedical Optics: 3rd Edition)
Show Figures

Figure 1

14 pages, 1234 KB  
Article
Exploring the Potential of Plant Cytokinins Against Common Human Pathogens: In Vitro Assessment and In Silico Insights
by Jelena Lazarević, Aleksandar Veselinović, Marija Stojiljković, Miloš Petrović, Pierangela Ciuffreda and Enzo Santaniello
Plants 2025, 14(12), 1749; https://doi.org/10.3390/plants14121749 - 7 Jun 2025
Viewed by 1425
Abstract
Cytokinins, plant hormones derived from adenine, are best known for regulating growth and stress responses in plants. Recent findings suggest they may also influence microbial viability, yet their direct antimicrobial potential remains underexplored. This study evaluates the antimicrobial activities of four natural cytokinins [...] Read more.
Cytokinins, plant hormones derived from adenine, are best known for regulating growth and stress responses in plants. Recent findings suggest they may also influence microbial viability, yet their direct antimicrobial potential remains underexplored. This study evaluates the antimicrobial activities of four natural cytokinins (iPA, B, K, and p-T) and their N9-ribosides (iPAR, BR, KR, and p-TR) against selected human pathogens. Using the broth microdilution method, we assessed their effects on Gram-positive and Gram-negative bacteria, as well as fungal strains. While Gram-negative species showed no susceptibility, all tested compounds exhibited bacteriostatic activity against Bacillus subtilis and Enterococcus faecalis. Most notably, kinetin (K) and kinetin riboside (KR) displayed strong antifungal activity against Candida albicans, with MIC values comparable to the reference drug nystatin. Molecular docking studies supported these findings by showing that K and KR form favorable interactions with two validated antifungal targets in Candida albicans: secreted aspartic proteinase 3 (SAP3) and dihydrofolate reductase (DHFR). This is, to our knowledge, the first report linking natural cytokinins to direct antifungal action against C. albicans supported by in silico evidence. These findings highlight the potential of K and KR as promising leads for the development of cytokinin-based antifungal agents. Full article
(This article belongs to the Special Issue Plant-Derived Natural Products: Development and Utilization)
Show Figures

Figure 1

43 pages, 5385 KB  
Article
Hypothermia Shifts Neurodegeneration Phenotype in Neonatal Human Hypoxic–Ischemic Encephalopathy but Not in Related Piglet Models: Possible Relationship to Toxic Conformer and Intrinsically Disordered Prion-like Protein Accumulation
by Lee J. Martin, Jennifer K. Lee, Mark V. Niedzwiecki, Adriana Amrein Almira, Cameron Javdan, May W. Chen, Valerie Olberding, Stephen M. Brown, Dongseok Park, Sophie Yohannan, Hasitha Putcha, Becky Zheng, Annalise Garrido, Jordan Benderoth, Chloe Kisner, Javid Ghaemmaghami, Frances J. Northington and Panagiotis Kratimenos
Cells 2025, 14(8), 586; https://doi.org/10.3390/cells14080586 - 12 Apr 2025
Cited by 3 | Viewed by 3349
Abstract
Hypothermia (HT) is used clinically for neonatal hypoxic–ischemic encephalopathy (HIE); however, the brain protection is incomplete and selective regional vulnerability and lifelong consequences remain. Refractory damage and impairment with HT cooling/rewarming could result from unchecked or altered persisting cell death and proteinopathy. We [...] Read more.
Hypothermia (HT) is used clinically for neonatal hypoxic–ischemic encephalopathy (HIE); however, the brain protection is incomplete and selective regional vulnerability and lifelong consequences remain. Refractory damage and impairment with HT cooling/rewarming could result from unchecked or altered persisting cell death and proteinopathy. We tested two hypotheses: (1) HT modifies neurodegeneration type, and (2) intrinsically disordered proteins (IDPs) and encephalopathy cause toxic conformer protein (TCP) proteinopathy neonatally. We studied postmortem human neonatal HIE cases with or without therapeutic HT, neonatal piglets subjected to global hypoxia-ischemia (HI) with and without HT or combinations of HI and quinolinic acid (QA) excitotoxicity surviving for 29–96 h to 14 days, and human oligodendrocytes and neurons exposed to QA for cell models. In human and piglet encephalopathies with normothermia, the neuropathology by hematoxylin and eosin staining was similar; necrotic cell degeneration predominated. With HT, neurodegeneration morphology shifted to apoptosis-necrosis hybrid and apoptotic forms in human HIE, while neurons in HI piglets were unshifting and protected robustly. Oligomers and putative TCPs of α-synuclein (αSyn), nitrated-Syn and aggregated αSyn, misfolded/oxidized superoxide dismutase-1 (SOD1), and prion protein (PrP) were detected with highly specific antibodies by immunohistochemistry, immunofluorescence, and immunoblotting. αSyn and SOD1 TCPs were seen in human HIE brains regardless of HT treatment. αSyn and SOD1 TCPs were detected as early as 29 h after injury in piglets and QA-injured human oligodendrocytes and neurons in culture. Cell immunophenotyping by immunofluorescence showed αSyn detected with antibodies to aggregated/oligomerized protein; nitrated-Syn accumulated in neurons, sometimes appearing as focal dendritic aggregations. Co-localization also showed aberrant αSyn accumulating in presynaptic terminals. Proteinase K-resistant PrP accumulated in ischemic Purkinje cells, and their target regions had PrP-positive neuritic plaque-like pathology. Immunofluorescence revealed misfolded/oxidized SOD1 in neurons, axons, astrocytes, and oligodendrocytes. HT attenuated TCP formation in piglets. We conclude that HT differentially affects brain damage in humans and piglets. HT shifts neuronal cell death to other forms in human while blocking ischemic necrosis in piglet for sustained protection. HI and excitotoxicity also acutely induce formation of TCPs and prion-like proteins from IDPs globally throughout the brain in gray matter and white matter. HT attenuates proteinopathy in piglets but seemingly not in humans. Shifting of cell death type and aberrant toxic protein formation could explain the selective system vulnerability, connectome spreading, and persistent damage seen in neonatal HIE leading to lifelong consequences even after HT treatment. Full article
(This article belongs to the Special Issue Perinatal Brain Injury—from Pathophysiology to Therapy)
Show Figures

Figure 1

20 pages, 2246 KB  
Article
On the Significance of the Terminal Location of Prion-Forming Regions of Yeast Proteins
by Arthur A. Galliamov, Valery N. Urakov, Alexander A. Dergalev and Vitaly V. Kushnirov
Int. J. Mol. Sci. 2025, 26(4), 1637; https://doi.org/10.3390/ijms26041637 - 14 Feb 2025
Cited by 1 | Viewed by 1313
Abstract
The prion-forming regions (PFRs) of yeast prion proteins are usually located at either the N- or C-terminus of a protein. In the Sup35 prion, the main prion structure contains 71 N-terminal residues. Here, we investigated the importance of the terminal PFR location for [...] Read more.
The prion-forming regions (PFRs) of yeast prion proteins are usually located at either the N- or C-terminus of a protein. In the Sup35 prion, the main prion structure contains 71 N-terminal residues. Here, we investigated the importance of the terminal PFR location for prion properties. Two prionogenic sequences of 29 and 30 residues and two random sequences of 23 and 15 residues were added to the Sup35 N-terminus, making the original PFR internal. These proteins were overproduced in yeast with two variants of the Sup35 prion. Mapping of the prion-like structures of these proteins by partial proteinase K digestion showed that in most cases, the extensions acquired an amyloid fold, and, strikingly, the prion structure was no longer present or was substantially altered at its original location. The addition of two to five residues to the Sup35 N-terminus often resulted in prion instability and loss when the respective genes were used to replace chromosomal SUP35. The structures of yeast prions Mot3, Swi1, Lsb2, candidate prions Asm4, Nsp1, Cbk1, Cpp1, and prions based on scrambled Sup35 PFRs were mapped. The mapping showed that the N-terminal location of a QN-rich sequence predisposes to, but does not guarantee, the formation of a prion structure by it and that the prion structure located near a terminus does not always include the actual terminus, as in the cases of Sup35 and Rnq1. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

16 pages, 16734 KB  
Article
Engineering a Protease K for Efficient Degradation of Wool Scale Layer Using a Substrate Pocket Modification
by Lei Zhao, Xiangyang Ma, Yunan Ding, Kaixin Zheng, Kefen Wang, Fuping Lu and Yihan Liu
Fermentation 2025, 11(2), 51; https://doi.org/10.3390/fermentation11020051 - 22 Jan 2025
Cited by 1 | Viewed by 1935
Abstract
The outermost surface of wool is covered by a scale layer, posing challenges to some steps of fabric processing. This layer, primarily composed of keratin, resists degradation by conventional proteases due to its high disulfide bond content. Protease K, an extracellular serine endo-proteinase [...] Read more.
The outermost surface of wool is covered by a scale layer, posing challenges to some steps of fabric processing. This layer, primarily composed of keratin, resists degradation by conventional proteases due to its high disulfide bond content. Protease K, an extracellular serine endo-proteinase derived from Tritirachium album Limber (tPRK), is known for its ability to digest native keratin. However, its limited activity against keratin has restricted its application in wool scale layer treatment. In this study, the substrate-binding pocket of tPRK was engineered, yielding the mutant N162A, which demonstrated an 84% increase in catalytic activity toward keratin. Additionally, the catalytic efficiency (kcat/Km) of N162A on keratin improved by 44.52%. Structural analysis indicated that modifications in the substrate-binding pocket reduced steric hindrance during substrate entry while enhancing substrate binding. Additionally, 3.3 mg/mL of amino acids were released within 6 h, which were catalyzed by N162A, with a 61% increase compared to the native tPRK. Moreover, the N162A variant effectively reduced the scale layer thickness without compromising the tensile strength of the wool, maintaining its mechanical properties. The findings provide a sustainable strategy for the wool industry while broadening the scope of biotechnological applications in the textile sector. Full article
(This article belongs to the Special Issue Microbial Production of Industrial Enzymes)
Show Figures

Figure 1

18 pages, 2624 KB  
Article
GPpred: A Novel Sequence-Based Tool for Predicting Glutamic Proteases Using Optimized Hybrid Encodings
by Ahmad Firoz, Adeel Malik, Nitin Mahajan, Hani Mohammed Ali, Majid Rasool Kamli and Chang-Bae Kim
Catalysts 2024, 14(12), 894; https://doi.org/10.3390/catal14120894 - 5 Dec 2024
Cited by 1 | Viewed by 1645
Abstract
Glutamic proteases (GPs) represent one of the seven peptidase families described in the MEROPS database of peptidases (also known as proteases, proteinases, and proteolytic enzymes). Currently, the GP family is divided into six sub-families (G1–G6) distributed across three clans (GA, GB, and GC). [...] Read more.
Glutamic proteases (GPs) represent one of the seven peptidase families described in the MEROPS database of peptidases (also known as proteases, proteinases, and proteolytic enzymes). Currently, the GP family is divided into six sub-families (G1–G6) distributed across three clans (GA, GB, and GC). A glutamic acid and another variable amino acid are the catalytic residues in this family. Members of the GP family are involved in a wide variety of biological functions. For example, they act as bacterial and plant pathogens, and are involved in cancer and celiac disease. These enzymes are considered potential drug targets given their crucial roles in numerous biological processes. Characterizing GPs provides insights into their structure–function relationships, enabling the design of specific inhibitors or modulators. Such advancements directly contribute to drug discovery by identifying novel therapeutic targets and guiding the development of potent and selective drugs for various diseases, including cancers and autoimmune disorders. To address the challenges associated with labor-intensive experimental methods, we developed GPpred, an innovative support vector machine (SVM)-based predictor to identify GPs from their primary sequences. The workflow involves systematically extracting six distinct feature sets from primary sequences, and optimization using a recursive feature elimination (RFE) algorithm to identify the most informative hybrid encodings. These optimized encodings were then used to evaluate multiple machine learning classifiers, including K-Nearest Neighbors (KNNs), Random Forest (RF), Naïve Bayes (NB), and SVM. Among these, the SVM demonstrated a consistent performance, with an accuracy of 97% during the cross-validation and independent validation. Computational methods like GPpred accelerate this process by analyzing large datasets, predicting potential enzyme targets, and prioritizing candidates for experimental validation, thereby significantly reducing time and costs. GPpred will be a valuable tool for discovering GPs from large datasets, and facilitating drug discovery efforts by narrowing down viable therapeutic candidates. Full article
(This article belongs to the Special Issue Enzyme and Biocatalysis Application)
Show Figures

Figure 1

Back to TopTop