Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,210)

Search Parameters:
Keywords = protein expression systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 385 KB  
Communication
Complement Activation as a Predictor of Postoperative Delirium in Elderly Spine Surgery Patients
by Antje Vogelgesang, Hannah Wolf, Sarah Strack, Agnes Flöel, Henry W. S. Schroeder, Jonas Müller, Jan-Uwe Müller, Angelika Fleischmann, Robert Fleischmann, Diana Pauly and Johanna Ruhnau
Int. J. Mol. Sci. 2026, 27(2), 1077; https://doi.org/10.3390/ijms27021077 - 21 Jan 2026
Abstract
Postoperative delirium (POD) is a frequent and serious complication among elderly surgical patients. Despite its clinical relevance, reliable biomarkers for early identification and pathophysiological insight remain limited. Recent evidence implicates systemic immune activation and complements dysregulation as contributors to cognitive decline after surgery. [...] Read more.
Postoperative delirium (POD) is a frequent and serious complication among elderly surgical patients. Despite its clinical relevance, reliable biomarkers for early identification and pathophysiological insight remain limited. Recent evidence implicates systemic immune activation and complements dysregulation as contributors to cognitive decline after surgery. This study investigated the association between perioperative levels of selected complement pathway proteins and both the incidence and severity of POD. Methods: We performed a secondary analysis of 22 patients aged ≥ 60 years from the prospective CONFESS cohort undergoing elective spine surgery. Complement proteins (C1q, C2, C4), mannose-binding lectin (MBL), Factor D [FD], Factor B [FB], Factor I [FI] were quantified from blood samples collected at baseline, preoperatively, and on postoperative days 1 and 2. POD was assessed using the Nursing Delirium Screening Scale (Nu-DESC) and Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria. Delirium severity was rated with the Confusion Assessment Method–Severity (CAM-S) scale. Associations were tested using univariate and multivariate regression analyses. Preoperative levels of FD and C2 were significantly elevated in patients who developed POD (FD: p = 0.023; C2: p = 0.044), while C4 levels trended lower. FD remained an independent predictor of POD in multivariate regression (p = 0.049), although cognitive performance was the only significant predictor when adjusted for surgery duration. Delirium severity was associated with perioperative reductions in C1q, FI, and FB and with increased MBL levels, explaining up to 43% of CAM-S score variance. These findings highlight the role of complement activation—particularly FD, C2, MBL—in the development and clinical expression of POD. Complement profiling may offer a novel approach for risk stratification and therapeutic targeting in perioperative neurocognitive disorders. Full article
18 pages, 3714 KB  
Article
Febuxostat Improves MASLD in Male Rats: Roles of XOR Inhibition and Associated JNK/NRF2/HO-1 Pathway Changes
by Zhiyu Pu, Yangyang Cen, Bowen Yang, Kaijun Xing, Linxi Lian, Xi Chi, Jianjun Yang and Yannan Zhang
Int. J. Mol. Sci. 2026, 27(2), 1069; https://doi.org/10.3390/ijms27021069 - 21 Jan 2026
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a peril to public health. Xanthine oxidoreductase (XOR) is implicated in oxidative stress and lipid metabolism, which constitute the pathological basis of MASLD. As a specific XOR inhibitor, febuxostat therefore exhibits considerable potential for mitigating MASLD. [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a peril to public health. Xanthine oxidoreductase (XOR) is implicated in oxidative stress and lipid metabolism, which constitute the pathological basis of MASLD. As a specific XOR inhibitor, febuxostat therefore exhibits considerable potential for mitigating MASLD. However, the efficacy and underlying mechanisms of febuxostat in this context remain to be elucidated. Against this background, the present study aimed to observe the effect of febuxostat on the physiological changes of male MASLD rats and explore the related mechanisms. All rats were assigned to three groups: control, high-fat diet (HF), and high-fat diet with febuxostat (HF + F). After euthanasia, biosamples were immediately harvested to conduct an extensive suite of experiments, encompassing histological examination, assessment of biochemical and oxidative stress markers, serum non-targeted metabolomics, and Western blot analysis. Histological examination showed marked reductions in hepatic lipid accumulation and hepatocellular degeneration in the HF + F group relative to the HF group. Consistently, compared to the HF group, the HF + F group showed significant reductions in the elevated levels of plasma/hepatic lipids, and plasma oxidative stress markers (p < 0.05). Serum metabolomics revealed distinct metabolic profiles among groups, with 51 differential metabolites between HF + F and HF groups, with pathways such as taurine and hypotaurine metabolism and starch and sucrose metabolism being significantly altered (p < 0.05). Western blot analysis showed reduced p-JNK and increased NRF2 and HO-1 expression in the HF + F group (p < 0.05). In summary, we found that inhibiting XOR with febuxostat improved hepatic steatosis, serum metabolic dysregulation and systemic oxidative stress status, and it accompanied by JNK/NRF2/HO-1 pathway key molecule protein alterations in male MASLD rats. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
18 pages, 4155 KB  
Article
Functional Analysis of OsDRP2B in Rice Root Development
by Lihuiying Jia, Zhiqiang Guo, Yunyan Hua, Qi Zhu, Fengyi Zhou, Qiuping Li, Xu Li, Mengsha Li, Mengting Wang, Yujie Chen, Xiaofei Wang, Tao Ma and Wona Ding
Plants 2026, 15(2), 313; https://doi.org/10.3390/plants15020313 - 21 Jan 2026
Abstract
Rice (Oryza sativa L.) root system plays a critical role in water and nutrient uptake, influencing overall plant growth and crop yield. In this study, we characterized the Osdrp2b mutant, which exhibits a short-root phenotype and was identified through map-based cloning. The [...] Read more.
Rice (Oryza sativa L.) root system plays a critical role in water and nutrient uptake, influencing overall plant growth and crop yield. In this study, we characterized the Osdrp2b mutant, which exhibits a short-root phenotype and was identified through map-based cloning. The Osdrp2b mutation was traced to the gene encoding a dynamin-related protein, and the mutant displayed reduced cell elongation and impaired cell division in the root tip. Further analysis revealed that ROS (reactive oxygen species) accumulation was elevated in the mutant roots, and treatment with ROS inhibitors restored root elongation in the Osdrp2b mutant, indicating that altered ROS homeostasis is associated with the phenotype. Transcriptomic analysis highlighted the differential expression of genes involved in cell wall organization and hydrogen peroxide catabolism. Agronomic evaluations of the Osdrp2b mutant demonstrated compromised shoot growth, reduced tiller number, and lower seed setting rates, indicating the impact of the mutation on rice yield. Overall, these results suggest that OsDRP2B is involved in regulating root growth, potentially through effects on ROS homeostasis and associated signaling networks. These findings provide a basis for future studies on improving rice root development and agronomic performance. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Graphical abstract

24 pages, 4114 KB  
Article
A CNS-Directed, AAV9 Gene Therapy Restores Expression and Biochemical Function of Guanidinoacetate Methyltransferase in Models of GAMT Deficiency
by Robyn Binsfeld, Troy Webster, Ilona Tkachyova, Michael Tropak, Melissa Mitchell, Tesla Peretti, Andreas Schulze and Jagdeep S. Walia
Int. J. Mol. Sci. 2026, 27(2), 1035; https://doi.org/10.3390/ijms27021035 - 20 Jan 2026
Abstract
Guanidinoacetate methyltransferase (GAMT) is an essential enzyme in the biosynthesis of creatine, an important molecule in energy recycling. GAMT loss of function leads to GAMT deficiency (GAMT-D), an autosomal recessive disorder resulting in low creatine levels and the accumulation of a toxic intermediate, [...] Read more.
Guanidinoacetate methyltransferase (GAMT) is an essential enzyme in the biosynthesis of creatine, an important molecule in energy recycling. GAMT loss of function leads to GAMT deficiency (GAMT-D), an autosomal recessive disorder resulting in low creatine levels and the accumulation of a toxic intermediate, guanidinoacetate (GAA). GAMT-D patients present with intellectual disability and epilepsy, emphasizing the detrimental consequences of disturbed creatine metabolisms in the central nervous system (CNS). Current treatments are not curative and may not restore creatine metabolism in the brain. Here, we present a proof-of concept study testing the first CNS-directed, Adeno-associated virus serotype 9 (AAV9)-based gene therapy for the treatment of GAMT-D. the delivery of GAMT construct to cellular models of GAMT-D effectively restored protein and mRNA expression of GAMT while increasing intracellular creatine content and decreasing GAA accumulation. In murine models of GAMT-D, treatment with scAAV9.hGAMT, delivered intrathecally, resulted in increased creatine content as well as significant decreases in GAA accumulation in the CNS and peripheral organs. Overall, we found that scAAV9.hGAMT represents a promising gene therapy for treating GAMT-D, warranting further investigation in animal models to determine an appropriate therapeutic window for both efficacy and safety that allows for translation into human patients in the future. Full article
Show Figures

Graphical abstract

20 pages, 2028 KB  
Review
Advances in Boron, Iron, Manganese, and Zinc Signaling, Transport, and Functional Integration for Enhancing Cotton Nutrient Efficiency and Yield—A Review
by Unius Arinaitwe, Dalitso Noble Yabwalo, Abraham Hangamaisho, Shillah Kwikiiriza and Francis Akitwine
Int. J. Plant Biol. 2026, 17(1), 7; https://doi.org/10.3390/ijpb17010007 - 20 Jan 2026
Abstract
Micronutrients, particularly boron (B), iron (Fe), manganese (Mn), and zinc (Zn), are pivotal for cotton (Gossypium spp.) growth, reproductive success, and fiber quality. However, their critical roles are often overlooked in fertility programs focused primarily on macronutrients. This review synthesizes recent advances [...] Read more.
Micronutrients, particularly boron (B), iron (Fe), manganese (Mn), and zinc (Zn), are pivotal for cotton (Gossypium spp.) growth, reproductive success, and fiber quality. However, their critical roles are often overlooked in fertility programs focused primarily on macronutrients. This review synthesizes recent advances in the physiological, molecular, and agronomic understanding of B, Fe, Mn, and Zn in cotton production. The overarching goal is to elucidate their impact on cotton nutrient use efficiency (NUE). Drawing from the peer-reviewed literature, we highlight how these micronutrients regulate essential processes, including photosynthesis, cell wall integrity, hormone signaling, and stress remediation. These processes directly influence root development, boll retention, and fiber quality. As a result, deficiencies in these micronutrients contribute to significant yield gaps even when macronutrients are sufficiently supplied. Key genes, including Boron Transporter 1 (BOR1), Iron-Regulated Transporter 1 (IRT1), Natural Resistance-Associated Macrophage Protein 1 (NRAMP1), Zinc-Regulated Transporter/Iron-Regulated Transporter-like Protein (ZIP), and Gossypium hirsutum Zinc/Iron-regulated transporter-like Protein 3 (GhZIP3), are crucial for mediating micronutrient uptake and homeostasis. These genes can be leveraged in breeding for high-yielding, nutrient-efficient cotton varieties. In addition to molecular hacks, advanced phenotyping technologies, such as unmanned aerial vehicles (UAVs) and single-cell RNA sequencing (scRNA-seq; a technology that measures gene expression at single-cell level, enabling the high-resolution analysis of cellular diversity and the identification of rare cell types), provide novel avenues for identifying nutrient-efficient genotypes and elucidating regulatory networks. Future research directions should include leveraging microRNAs, CRISPR-based gene editing, and precision nutrient management to enhance the use efficiency of B, Fe, Mn, and Zn. These approaches are essential for addressing environmental challenges and closing persistent yield gaps within sustainable cotton production systems. Full article
Show Figures

Figure 1

14 pages, 1242 KB  
Article
Specific IgE/IgG in Umbilical Cord Blood and Maternal Blood in Mothers with Eosinophilia
by Diana Mitkova Hristova, Martin Vladimirov, Bozhidar Karamishev, Anatoli Kolev, Daria Koleva, Liliya Koleva, Victoria Spasova, Svetlana Shumarova and Vesela Karamisheva
Allergies 2026, 6(1), 2; https://doi.org/10.3390/allergies6010002 - 19 Jan 2026
Viewed by 181
Abstract
Background: Presence of milk, fruits, eggs, fish, nuts and wheat antigens in the amniotic fluid is described in the literature. Studies show a contradictory relationship between maternal exposure to allergens and early sensitization of the fetus to allergens. Hemochorionic type of the human [...] Read more.
Background: Presence of milk, fruits, eggs, fish, nuts and wheat antigens in the amniotic fluid is described in the literature. Studies show a contradictory relationship between maternal exposure to allergens and early sensitization of the fetus to allergens. Hemochorionic type of the human placenta allows for easier transfer of nutrients and antibodies from the mother’s blood to the fetal circulation through the direct contact of maternal blood with the fetal chorion. During the third trimester of pregnancy, immunoglobulin G (IgG) is actively transferred through the placenta into the fetal via neonatal FcRN receptor (FcRN). In addition, monomeric immunoglobulin E (IgE) cannot cross the placenta Aim: The objective of our study is to track intrauterine sensitization to essential food proteins at birth in umbilical cord blood in mothers with established peripheral blood eosinophilia and in their infants using allergen-specific IgE and IgG. Methods: An observational study was carried out in a cohort of 22 mothers with eosinophilia and their babies. Differences in expression between groups were assessed. Blood samples were collected to determine serum IgE and IgG specific to a set of inhalant and food allergens. Results: We did not find a significant correlation between specific IgE to cow’s milk (p = 0.857), egg white (p = 0.926) and egg yolk (p = 0.096) in umbilical cord blood and maternal blood samples taken immediately before birth. Spearman’s correlation of the specific IgE and IgG in umbilical cord blood showed no dependence between the two variables. In contrast, statistical analysis showed that maternal eosinophilia in peripheral blood could be a risk factor for the development of allergy in the offspring (χ2, p = 0.0347). However, given the small number of patients, this claim needs to be confirmed with further studies. Conclusions: Due to the functional immaturity of the developing immune system of the fetus, the generation and maintenance of an independent immune response to allergens are incomplete. Maternal IgG (specific) passes to the baby and high maternal IG to a specific allergen reduces babies IgE production. In addition, low maternal specific IgG may promote IgE production in the baby under the influence of microenvironmental factors (cytokine background). The main limitation of our study is the small number of patients. Further research is needed in this direction to clarify the mechanisms and risk factors for early sensitization in newborns. Full article
(This article belongs to the Section Physiopathology)
Show Figures

Figure 1

23 pages, 8593 KB  
Article
Genome-Wide Identification of CmPOD Genes and Partial Functional Characterization of CmPOD52 in Lignin-Related Granulation of ‘Sanhong’ Pomelo (Citrus maxima)
by Yunxuan Liu, Xinjia Wang, Rong Lian, Yan Zhao, Yurong Zhou, Yuan Yu, Wenqin She, Zhixiong Guo, Heli Pan and Tengfei Pan
Horticulturae 2026, 12(1), 106; https://doi.org/10.3390/horticulturae12010106 - 19 Jan 2026
Viewed by 34
Abstract
The granulation of pomelo (Citrus maxima) juice sacs severely compromises fruit quality and is closely associated with lignin accumulation, a process catalyzed by peroxidases (PODs). Analysis of ‘Sanhong’ pomelo juice sacs collected 175–215 days after flowering revealed that bound peroxidase (BPOD) [...] Read more.
The granulation of pomelo (Citrus maxima) juice sacs severely compromises fruit quality and is closely associated with lignin accumulation, a process catalyzed by peroxidases (PODs). Analysis of ‘Sanhong’ pomelo juice sacs collected 175–215 days after flowering revealed that bound peroxidase (BPOD) activity paralleled changes in lignin content, suggesting a potential role for BPOD in lignin biosynthesis. A total of 71 CmPOD genes were identified in the pomelo genome through integrated HMMER and BLAST analyses. Among them, CmPOD52 was selected for functional characterization based on its alkaline peroxidase properties, absence of a CE domain, predicted extracellular localization, and gradually increasing expression pattern revealed by RT-qPCR. Its transient overexpression in ‘Sanhong’ pomelo juice sacs for 36 h increased BPOD activity 2.06-fold (p < 0.01) compared to the empty vector control, indicating that CmPOD52 may be a BPOD gene. The recombinant CmPOD52 protein was expressed in a prokaryotic system, purified, and used in enzymatic assays with sinapyl alcohol as the substrate. The recombinant CmPOD52 protein, assayed at 272 nm with controls (substrate-only blank and heat-inactivated protein), showed an activity of 13.67 ± 0.9 U. The experimental group showed new products, identified by mass spectrometry as sinapyl alcohol dimers, thus suggesting that the recombinant protein catalyzes the dehydrogenation and polymerization of sinapyl alcohol monomers. This study identified CmPOD52, a gene potentially involved in lignin polymerization in pomelo juice sacs, offering a key candidate for further in vivo validation. Full article
Show Figures

Figure 1

13 pages, 916 KB  
Article
Development of an Indirect ELISA for REV gp90 Antibody Detection Using the gp90 Protein Expressed in Suspended Cells
by Erjing Ke, Mengmeng Huang, Guodong Wang, Jingzhe Han, Yulong Zhang, Runhang Liu, Hangbo Yu, Ziwen Wu, Dan Ling, Xianyun Liu, Tengfei Xu, Suyan Wang, Yuntong Chen, Yongzhen Liu, Yanping Zhang, Hongyu Cui, Yulu Duan, Liuan Li, Xiaoxue Yu, Yulong Gao and Xiaole Qiadd Show full author list remove Hide full author list
Viruses 2026, 18(1), 124; https://doi.org/10.3390/v18010124 - 17 Jan 2026
Viewed by 122
Abstract
Reticuloendotheliosis virus (REV) is an immunosuppressive virus in poultry that can cause acute reticular neoplasms, chronic lymphoid tumors, stunting syndrome, and secondary infections. In many countries, the lack of effective vaccines has resulted in a high prevalence of REV infections and substantial economic [...] Read more.
Reticuloendotheliosis virus (REV) is an immunosuppressive virus in poultry that can cause acute reticular neoplasms, chronic lymphoid tumors, stunting syndrome, and secondary infections. In many countries, the lack of effective vaccines has resulted in a high prevalence of REV infections and substantial economic losses. Enzyme-linked immunosorbent assay (ELISA)-based antibody detection is an important tool for monitoring the REV prevalence in poultry farms. ELISA coating antigens generally consist of either whole virus or viral protein; however, most commercially available REV antibody ELISA detection kits use whole virus as the coating antigen, which limits their applicability in certain diagnostic and research settings. In this study, the gp90 protein from a dominant REV strain was expressed and purified using 293F suspension cell eukaryotic expression system. Using recombinant gp90 protein as the coating antigen, an indirect ELISA for detecting gp90 antibodies (gp90-ELISA) was developed. After optimization, the optimal conditions were as follows: coating antigen concentration of 4 µg/mL with overnight incubation at 4 °C; blocking with 5% skim milk at 37 °C for 1.5 h; serum dilution of 1:200 with incubation at 37 °C for 45 min; secondary antibody dilution of 1:1000 with incubation at 37 °C for 30 min; and color development using TMB substrate at room temperature in the dark for 10 min. The cut-off value was defined as an OD450 ≥ 0.22 for positive samples and <0.22 for negative samples. The developed gp90-ELISA specifically detected REV-positive sera at a maximum serum dilution ratio of 1:3200. Intra- and inter-assay variation coefficients were ≤10%, indicating that the gp90-ELISA had good specificity, sensitivity, and reproducibility. Laboratory serum testing showed that the gp90-ELISA successfully detected sera from chickens immunized with the gp90 protein or infected with REV. Furthermore, analysis of clinical serum samples demonstrated 100% concordance between the gp90-ELISA results and a commercial whole-virus-coated ELISA kit. These results indicate that the gp90-ELISA is a reliable supplementary method to whole-virus-coated ELISA and has potential utility in disease surveillance and evaluation of immune responses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

23 pages, 2620 KB  
Article
Secretome Profiling of Lactiplantibacillus plantarum CRL681 Predicts Potential Molecular Mechanisms Involved in the Antimicrobial Activity Against Escherichia coli O157:H7
by Ayelen Antonella Baillo, Leonardo Albarracín, Eliana Heredia Ojeda, Mariano Elean, Weichen Gong, Haruki Kitazawa, Julio Villena and Silvina Fadda
Antibiotics 2026, 15(1), 96; https://doi.org/10.3390/antibiotics15010096 - 17 Jan 2026
Viewed by 203
Abstract
Background/Objectives. Lactiplantibacillus plantarum CRL681 has previously demonstrated a strong antagonistic effect against Escherichia coli O157:H7 in food matrices; however, the molecular mechanisms underlying this activity remain poorly understood. Since initial interactions between beneficial bacteria and pathogens occur mainly at the cell surface [...] Read more.
Background/Objectives. Lactiplantibacillus plantarum CRL681 has previously demonstrated a strong antagonistic effect against Escherichia coli O157:H7 in food matrices; however, the molecular mechanisms underlying this activity remain poorly understood. Since initial interactions between beneficial bacteria and pathogens occur mainly at the cell surface and in the extracellular environment, the characterization of the bacterial secretome is essential for elucidating these mechanisms. In this study, the secretome of L. plantarum CRL681 was comprehensively characterized using an integrated in silico and in vitro approach. Methods. The exoproteome and surfaceome were analyzed by LC-MS/MS under pure culture conditions and during co-culture with E. coli O157:H7. Identified proteins were functionally annotated, classified according to subcellular localization and secretion pathways, and evaluated through protein–protein interaction network analysis. Results. A total of 275 proteins were proposed as components of the CRL681 secretome, including proteins involved in cell surface remodeling, metabolism and nutrient transport, stress response, adhesion, and genetic information processing. Co-culture with EHEC induced significant changes in the expression of proteins associated with energy metabolism, transport systems, and redox homeostasis, indicating a metabolic and physiological adaptation of L. plantarum CRL681 under competitive conditions. Notably, several peptidoglycan hydrolases, ribosomal proteins with reported antimicrobial activity, and moonlighting proteins related to adhesion were identified. Conclusions. Overall, these findings suggest that the antagonistic activity of L. plantarum CRL681 against E. coli O157:H7 would be mediated by synergistic mechanisms involving metabolic adaptation, stress resistance, surface adhesion, and the production of non-bacteriocin antimicrobial proteins, supporting its potential application as a bioprotective and functional probiotic strain. Full article
Show Figures

Figure 1

15 pages, 8399 KB  
Article
Magnolol Ameliorates Cisplatin-Induced Acute Kidney Injury with Activation of Nrf2-Associated Antioxidant Responses
by Mi-Gyeong Gwon, Min Hui Park and Jaechan Leem
Curr. Issues Mol. Biol. 2026, 48(1), 96; https://doi.org/10.3390/cimb48010096 - 17 Jan 2026
Viewed by 63
Abstract
Cisplatin (CDDP) is a cornerstone chemotherapeutic drug, yet its efficacy is frequently compromised by renal toxicity, primarily manifesting as acute kidney injury (AKI). Magnolol (MG) is a polyphenol from Magnolia officinalis and has been widely documented for its pronounced antioxidant and anti-inflammatory properties. [...] Read more.
Cisplatin (CDDP) is a cornerstone chemotherapeutic drug, yet its efficacy is frequently compromised by renal toxicity, primarily manifesting as acute kidney injury (AKI). Magnolol (MG) is a polyphenol from Magnolia officinalis and has been widely documented for its pronounced antioxidant and anti-inflammatory properties. This study evaluated the renoprotective effects of MG in a murine model of CDDP-induced AKI. Male C57BL/6 mice received MG (20 mg/kg) via daily intraperitoneal injection for four consecutive days, starting one day before a single CDDP injection. MG significantly reduced the serum concentrations of blood urea nitrogen and creatinine. Histopathological assessment revealed attenuated tubular damage and reduced expression of tubular injury markers. MG inhibited pro-inflammatory cytokines at both systemic and renal levels, alleviated endoplasmic reticulum stress, and suppressed activation of mitogen-activated protein kinase signaling pathways. Apoptotic damage was mitigated, as shown by the fewer TUNEL-positive cells and lowered expression of pro-apoptotic markers. In parallel, ferroptotic processes were alleviated through downregulation of pro-ferroptotic proteins and preservation of key antioxidant regulators. Importantly, MG restored nuclear factor erythroid 2-related factor 2 activity and upregulated downstream antioxidant effectors. These findings highlight the multi-targeted renoprotective actions of MG and support its possible utility as a therapeutic agent to prevent CDDP-induced renal injury. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatment of Kidney Diseases)
Show Figures

Figure 1

16 pages, 4282 KB  
Article
Expression Profiling of Recombinant Biofilm Surface Layer Protein A in Pichia pastoris Under Constant Dissolved Oxygen and Oxygen-Limited Fermentation
by Lan Yu, Lei Zhang, Junbo Zhou, Yixuan Li, Yuwei Guo and Rongkai Guo
Fermentation 2026, 12(1), 51; https://doi.org/10.3390/fermentation12010051 - 15 Jan 2026
Viewed by 198
Abstract
BslA (Biofilm surface layer protein A), a highly hydrophobic lipoprotein from Bacillus spp., self-assembles at fluid interfaces to form a crystalline film that reduces surface tension. In this study, we selected Pichia pastoris as a eukaryotic system for expressing recombinant BslA identified in [...] Read more.
BslA (Biofilm surface layer protein A), a highly hydrophobic lipoprotein from Bacillus spp., self-assembles at fluid interfaces to form a crystalline film that reduces surface tension. In this study, we selected Pichia pastoris as a eukaryotic system for expressing recombinant BslA identified in Bacillus paralicheniformis BL-1. The secretory expression of recombinant BslA in the P. pastoris GS115 strain under the AOX1 promoter was confirmed in shake-flask cultivation. Next, two fed-batch fermentation strategies, constant dissolved oxygen strategy (DO-stat) and oxygen-limited fed-batch (OLFB) strategy, in a 5 L scale, were compared. The DO-stat process led to late-stage cell death and product degradation, limiting yields. Switching to the OLFB process by removing the glycerol feeding phase mitigated this issue, allowing extended fermentation and increasing the final recombinant BslA concentration to 657 mg/L. This study establishes P. pastoris with an OLFB strategy as an effective system for secreting recombinant BslA protein, providing a basis for future industrial-scale production. Full article
(This article belongs to the Section Yeast)
Show Figures

Figure 1

15 pages, 5941 KB  
Article
Gene Expression as a Guide for the Development of Novel Therapies in Hypertensive and Diabetic Kidney Disease
by Maria Zaimi, Georgios Zagkotsis, Athanasios Kammenos, Eirini Grapsa, Smaragdi Marinaki and Eleni Frangou
J. Clin. Med. 2026, 15(2), 696; https://doi.org/10.3390/jcm15020696 - 15 Jan 2026
Viewed by 120
Abstract
Background/Objectives: Diabetes mellitus and hypertension are the first and second most common causes of chronic kidney disease, respectively. Despite improvements in elucidating the pathophysiology behind these diseases and the expansion of the therapeutic armamentarium, the knowledge about the implicated genes, epigenetics, and [...] Read more.
Background/Objectives: Diabetes mellitus and hypertension are the first and second most common causes of chronic kidney disease, respectively. Despite improvements in elucidating the pathophysiology behind these diseases and the expansion of the therapeutic armamentarium, the knowledge about the implicated genes, epigenetics, and biological pathways is limited. Methods: We sought to define diabetic nephropathy-specific and hypertensive nephropathy-specific gene signatures in human glomeruli through computational systems biology approaches. Results: Gene expression data of human glomeruli from patients with diabetic kidney disease (DKD) and hypertensive nephropathy (HTN) were collected and compared to gene expression patterns from healthy kidneys. Pathways were identified with functional enrichment analysis of DEGs. Transcription factor enrichment analysis, protein–protein interaction network expansion, and kinase enrichment analysis were also performed. Finally, novel drugs and small-molecule compounds that may reverse the kidney-specific phenotype of these disorders have been identified. Conclusions: These data suggest putative expansion of the therapeutic armamentarium in DKD and HTN, underscoring that understanding the molecular mechanisms occurring within tissue in kidney diseases may guide personalized therapy. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

13 pages, 1433 KB  
Article
Presynaptic Terminal Proteins and Nicotinic Receptors Are Depleted from Mouse Parasympathetic Ganglionic Junctions Paralysed with Botulinum Neurotoxin Type A
by Ahmed Al-Sabi and Gary W. Lawrence
Toxins 2026, 18(1), 43; https://doi.org/10.3390/toxins18010043 - 14 Jan 2026
Viewed by 152
Abstract
Plasticity is fundamental to the development, strengthening, and maintenance of healthy synaptic connections and recovery from injury in both the central and peripheral nervous systems. Yet, the processes involved are poorly understood. Herein, using a combination of patch-clamp electrophysiology and immuno-fluorescence confocal microscopy [...] Read more.
Plasticity is fundamental to the development, strengthening, and maintenance of healthy synaptic connections and recovery from injury in both the central and peripheral nervous systems. Yet, the processes involved are poorly understood. Herein, using a combination of patch-clamp electrophysiology and immuno-fluorescence confocal microscopy in adult mice, it is shown that blockade of synaptic transmission at submandibular ganglion junctions exposed to botulinum neurotoxin type A was accompanied by a rapid and striking decline in the abundance of synaptic vesicle markers—SV2, vesicle-associated membrane protein 2, and vesicular acetylcholine transporter—plus SNAP-25 (cleaved and intact) and postsynaptic α7 nicotinic acetylcholine receptors. Such alterations by the neurotoxin of parasympathetic synapses contrast starkly with the stability of postsynaptic proteins at nearby skeletal neuromuscular junctions. Both neurotransmission and the expression of SV2 and α7 nicotinic acetylcholine receptors remained depressed for 4 weeks, with full recovery of synaptic function delayed for more than 8 weeks. These novel findings may explain the relatively slow recovery of autonomic function after botulism or following therapeutic injections to alleviate hypersecretory disorders. Full article
Show Figures

Figure 1

25 pages, 1914 KB  
Review
Mitochondria and Aging: Redox Balance Modulation as a New Approach to the Development of Innovative Geroprotectors (Fundamental and Applied Aspects)
by Ekaterina Mironova, Igor Kvetnoy, Sofya Balazovskaia, Viktor Antonov, Stanislav Poyarkov and Gianluigi Mazzoccoli
Int. J. Mol. Sci. 2026, 27(2), 842; https://doi.org/10.3390/ijms27020842 - 14 Jan 2026
Viewed by 104
Abstract
Redox (reduction–oxidation) processes underlie all forms of life and are a universal regulatory mechanism that maintains homeostasis and adapts the organism to changes in the internal and external environments. From capturing solar energy in photosynthesis and oxygen generation to fine-tuning cellular metabolism, redox [...] Read more.
Redox (reduction–oxidation) processes underlie all forms of life and are a universal regulatory mechanism that maintains homeostasis and adapts the organism to changes in the internal and external environments. From capturing solar energy in photosynthesis and oxygen generation to fine-tuning cellular metabolism, redox reactions are key determinants of life activity. Proteins containing sulfur- and selenium-containing amino acid residues play a crucial role in redox regulation. Their reversible oxidation by physiological oxidants, such as hydrogen peroxide (H2O2), plays the role of molecular switches that control enzymatic activity, protein structure, and signaling cascades. This enables rapid and flexible cellular responses to a wide range of stimuli—from growth factors and nutrient signals to toxins and stressors. Mitochondria, the main energy organelles and also the major sources of reactive oxygen species (ROS), play a special role in redox balance. On the one hand, mitochondrial ROS function as signaling molecules, regulating cellular processes, including proliferation, apoptosis, and immune response, while, on the other hand, their excessive accumulation leads to oxidative stress, damage to biomolecules, and the development of pathological processes. So, mitochondria act not only as a “generator” of redox signals but also as a central link in maintaining cellular and systemic redox homeostasis. Redox signaling forms a multi-layered cybernetic system, which includes signal perception, activation of signaling pathways, the initiation of physiological responses, and feedback regulatory mechanisms. At the molecular level, this is manifested by changes in the activity of redox-regulated proteins of which the redox proteome consists, thereby affecting the epigenetic landscape and gene expression. Physiological processes at all levels of biological organization—from subcellular to systemic—are controlled by redox mechanisms. Studying these processes opens a way to understanding the universal principles of life activity and identifying the biochemical mechanisms whose disruption causes the occurrence and development of pathological reactions. It is important to emphasize that new approaches to redox balance modulation are now actively developed, ranging from antioxidant therapy and targeted intervention on mitochondria to pharmacological and nutraceutical regulation of signaling pathways. This article analyzes the pivotal role of redox balance and its regulation at various levels of living organisms—from molecular and cellular to tissue, organ, and organismal levels—with a special emphasis on the role of mitochondria and modern strategies for influencing redox homeostasis. Full article
(This article belongs to the Special Issue ROS Signalling and Cell Turnover)
Show Figures

Figure 1

21 pages, 7072 KB  
Article
Cold Shock Protein B as an Alternative to DMSO for Oocyte Vitrification
by Xinhai Wang, Jing Guo, Kaiyan Zhang, Yi Fang, Hongyu Liu, He Ding, Yang Lyu, Xin Ma and Wenfa Lyu
Antioxidants 2026, 15(1), 107; https://doi.org/10.3390/antiox15010107 - 14 Jan 2026
Viewed by 211
Abstract
Dimethyl sulfoxide (DMSO) is widely utilized in the vitrification of oocytes, but DMSO exhibits concentration-dependent toxicity, which can compromise oocyte developmental potential by disrupting key cellular processes. This study reports the first successful use of cold shock protein B (CspB protein) as a [...] Read more.
Dimethyl sulfoxide (DMSO) is widely utilized in the vitrification of oocytes, but DMSO exhibits concentration-dependent toxicity, which can compromise oocyte developmental potential by disrupting key cellular processes. This study reports the first successful use of cold shock protein B (CspB protein) as a substitute for DMSO in vitrification solutions for oocyte vitrification. Combining dynamics simulations and experimental validation, we demonstrated CspB’s ability to inhibit ice crystallization and recrystallization by stabilizing its position at the ice–water interface and reducing ice formation rates. Recombinant CspB was successfully expressed and shown to bind to the oolemma. In vitrification solutions, CspB (1–2 mg/mL) effectively reduced ice crystal size and enabled a significant reduction or complete replacement of DMSO. This strategy markedly improved the post-thaw survival rates of both mouse and bovine metaphase II (MII) oocytes. Furthermore, oocytes vitrified with an optimized formulation (15% ethylene glycol + 2 mg/mL CspB) exhibited developmental competence (cleavage and blastocyst rates), oxidative stress markers (ROS, GSH), mitochondrial function (membrane potential and content), and apoptosis levels (Caspase-3/9) comparable to those treated with a standard DMSO-containing system. Transcriptomic analysis revealed that CspB’s cryoprotection involves the modulation of the mTOR signaling pathway. This role was functionally confirmed, as activation of mTOR abolished CspB’s beneficial effects, reinstating oxidative damage, mitochondrial dysfunction, and apoptosis. Thus, the CspB protein replaces DMSO with direct ice crystal formation suppression and mTOR-mediated oxidative stress regulation. This study offers a protein-based alternative to conventional permeable cryoprotectants. This approach holds promise for improving reproductive biotechnologies across species. Full article
Show Figures

Figure 1

Back to TopTop