Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (197)

Search Parameters:
Keywords = protein–DNA conjugation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1961 KiB  
Article
A Novel Glycosylated Ferulic Acid Conjugate: Synthesis, Antioxidative Neuroprotection Activities In Vitro, and Alleviation of Cerebral Ischemia–Reperfusion Injury (CIRI) In Vivo
by Jian Chen, Yongjun Yuan, Litao Tong, Manyou Yu, Yongqing Zhu, Qingqing Liu, Junling Deng, Fengzhang Wang, Zhuoya Xiang and Chen Xia
Antioxidants 2025, 14(8), 953; https://doi.org/10.3390/antiox14080953 (registering DOI) - 3 Aug 2025
Viewed by 72
Abstract
Antioxidative neuroprotection is effective at preventing ischemic stroke (IS). Ferulic acid (FA) offers benefits in the treatment of many diseases, mostly due to its antioxidant activities. In this study, a glycosylated ferulic acid conjugate (FA-Glu), with 1,2,3-triazole as a linker and bioisostere between [...] Read more.
Antioxidative neuroprotection is effective at preventing ischemic stroke (IS). Ferulic acid (FA) offers benefits in the treatment of many diseases, mostly due to its antioxidant activities. In this study, a glycosylated ferulic acid conjugate (FA-Glu), with 1,2,3-triazole as a linker and bioisostere between glucose at the C6 position and FA at the C4 position, was designed and synthesized. The hydrophilicity and chemical stability of FA-Glu were tested. FA-Glu’s protection against DNA oxidative cleavage was tested using pBR322 plasmid DNA under the Fenton reaction. The cytotoxicity of FA-Glu was examined via the PC12 cell and bEnd.3 cell tests. Antioxidative neuroprotection was evaluated, in vitro, via a H2O2-induced PC12 cell test, measuring cell viability and ROS levels. Antioxidative alleviation of cerebral ischemia–reperfusion injury (CIRI), in vivo, was evaluated using a rat middle cerebral artery occlusion (MCAO) model. The results indicated that FA-Glu was water-soluble (LogP −1.16 ± 0.01) and chemically stable. FA-Glu prevented pBR322 plasmid DNA cleavage induced via •OH radicals (SC% 88.00%). It was a non-toxic agent based on PC12 cell and bEnd.3 cell tests results. FA-Glu significantly protected against H2O2-induced oxidative damage in the PC12 cell (cell viability 88.12%, 100 μM) and inhibited excessive cell ROS generation (45.67% at 100 μM). FA-Glu significantly reduced the infarcted brain areas measured using TTC stain observation, quantification (FA-Glu 21.79%, FA 28.49%, I/R model 43.42%), and H&E stain histological observation. It sharply reduced the MDA level (3.26 nmol/mg protein) and significantly increased the GSH level (139.6 nmol/mg protein) and SOD level (265.19 U/mg protein). With superior performance to FA, FA-Glu is a safe agent with effective antioxidative DNA and neuronal protective actions and an ability to alleviate CIRI, which should help in the prevention of IS. Full article
Show Figures

Graphical abstract

22 pages, 2075 KiB  
Review
CD320 Receptor and Vitamin B12 as Potential Targets for Anti-Cancer Therapy
by Ainur Tolymbekova and Larissa Lezina
Int. J. Mol. Sci. 2025, 26(12), 5652; https://doi.org/10.3390/ijms26125652 - 12 Jun 2025
Viewed by 1482
Abstract
Despite the development of a wide plethora of different anticancer agents, most of them are not used for patient treatment due to adverse effects caused by untargeted cytotoxicity. To prevent this unwanted toxicity, it is necessary to develop therapies discriminating between healthy and [...] Read more.
Despite the development of a wide plethora of different anticancer agents, most of them are not used for patient treatment due to adverse effects caused by untargeted cytotoxicity. To prevent this unwanted toxicity, it is necessary to develop therapies discriminating between healthy and cancerous cells. One possible method is to target proteins overexpressed in cancer but not in normal cells. CD320 is a receptor responsible for the uptake of the transcobalamin-bound fraction of vitamin B12 (cobalamin), which is necessary for DNA synthesis, and thus, cell proliferation. CD320 was shown to be overexpressed in many cancers and its potential role as an early cancer biomarker was confirmed in several studies. Consequently, CD320 may represent a promising anti-cancer therapy target. This review summarizes the current advances and perspectives of anti-cancer CD320 targeting therapy, including therapeutic conjugates of vitamin B12, CD320-specific antibodies and nanobodies, nanoparticles loaded with cytotoxic drugs, porphyrin, and the potential of targeted CD320 therapy in attenuation of tumor tissues. Given the growing interest in CD320 as a novel target for anti-cancer therapy, further in vivo studies are required for the investigation of CD320 targeting effects on systemic cytotoxicity. Full article
(This article belongs to the Special Issue Targeted Therapy of Cancer: Innovative Drugs and Molecular Tools)
Show Figures

Figure 1

16 pages, 276 KiB  
Review
Personalized Treatment in Ovarian Cancer: A Review of Disease Monitoring, Biomarker Expression, and Targeted Treatments for Advanced, Recurrent Ovarian Cancers
by Victoria M. Ettorre, Abdelrahman AlAshqar, Namrata Sethi and Alessandro D. Santin
Cancers 2025, 17(11), 1822; https://doi.org/10.3390/cancers17111822 - 30 May 2025
Viewed by 1029
Abstract
Background/Objectives: Ovarian cancer is the most lethal gynecologic malignancy due to its late diagnosis, aggressive disease course, and high likelihood of recurrence. In the last few years, with the advent of high-throughput genomic methodologies, our understanding of ovarian cancer genetics and biology [...] Read more.
Background/Objectives: Ovarian cancer is the most lethal gynecologic malignancy due to its late diagnosis, aggressive disease course, and high likelihood of recurrence. In the last few years, with the advent of high-throughput genomic methodologies, our understanding of ovarian cancer genetics and biology has grown. In this review, we discuss current monitoring techniques, as well as biomarker-directed therapies, recently developed for ovarian cancer treatment. Methods: The primary literature and review articles were obtained through PUBMED searches of “ovarian cancer”, “biomarkers”, “CA125”, “circulating tumor DNA”, “BRCA”, “HER2”, “TROP2”, and “FOLR1.” Results and Conclusions: The detection and quantification of CA125, a protein biomarker, remains the primary test used in the clinic for ovarian cancer diagnosis and monitoring. However, liquid biopsy techniques involving circulating tumor DNA, used alone or in combination with CA125, are increasingly used to enhance diagnostic accuracy and provide a more comprehensive picture of tumor genomic changes, including single-nucleotide variants, copy number variations, and epigenetic alterations. In the last few years, the use of BRCA, HER2, TROP2, and FOLR1 as biomarkers for targeted treatment has demonstrated promising results, both preclinically and clinically. The detection of BRCA1/2 mutations is routinely used as a strong predictor of response to PARP inhibitors, while HER2, TROP2, and FOLR1 expressions have emerged as primary targets for the treatment of recurrent ovarian cancer patients using novel antibody–drug conjugates (ADCs). Full article
(This article belongs to the Special Issue Biomarkers of Ovarian Cancer Progression)
22 pages, 6216 KiB  
Article
Efficient Delivery of SARS-CoV-2 Plasmid DNA in HEK-293T Cells Using Chitosan Nanoparticles
by Citlali Cecilia Mendoza-Guevara, Alejandro Martinez-Escobar, María del Pilar Ramos-Godínez, José Esteban Muñoz-Medina and Eva Ramon-Gallegos
Pharmaceuticals 2025, 18(5), 683; https://doi.org/10.3390/ph18050683 - 5 May 2025
Viewed by 803
Abstract
Background/Objectives: Gene therapy has emerged as a promising strategy for treating a wide range of diseases. However, a major challenge remains in developing efficient and safe delivery systems for genetic material. Nanoparticles, particularly chitosan nanoparticles (CNPs), have gained significant attention as a [...] Read more.
Background/Objectives: Gene therapy has emerged as a promising strategy for treating a wide range of diseases. However, a major challenge remains in developing efficient and safe delivery systems for genetic material. Nanoparticles, particularly chitosan nanoparticles (CNPs), have gained significant attention as a potential solution. This study focuses on designing a SARS-CoV-2 plasmid DNA (pDNA) conjugated with CNPs and evaluating its in vitro delivery efficiency. Methods: The Omicron Spike DNA sequence was inserted into the pIRES2-eGFP expression vector, and CNPs were synthesized with optimized physicochemical properties to enhance stability, cellular uptake, and transfection efficiency. The conjugate was characterized using UV-Vis, FT-IR, DLS, and TEM techniques. Transfection efficiency was assessed and compared to the commercially available TurboFect reagent as a control. Results: CNPs-pDNA polyplexes with an average size of 159.0 ± 33.1 nm (TEM), a zeta potential of +19.7 ± 0.3 mV, and 100% ± 0.0 encapsulation efficiency were developed as a non-viral delivery system. CNPs efficiently serve as a delivery vehicle for the constructed pDNA without altering cell morphology, achieving transfection efficiencies of 62–74%, compared to 55–70% for TurboFect. Furthermore, RT-qPCR confirmed the expression of Spike mRNA, and Western blot assays validated the expression of Spike protein. Notably, Spike protein expression from CNPs was found to be two-fold higher than the control at 96 h post-transfection. Conclusions: These findings suggest that CNPs are a promising and versatile platform for delivering genetic material. Importantly, this study highlights the intrinsic properties of chitosan, without the use of additional ligands, as a key factor in achieving efficient gene delivery. Full article
Show Figures

Figure 1

17 pages, 1590 KiB  
Review
Molecular Mechanisms of Tumor Progression and Novel Therapeutic and Diagnostic Strategies in Mesothelioma
by Taketo Kato, Ichidai Tanaka, Heng Huang, Shoji Okado, Yoshito Imamura, Yuji Nomata, Hirofumi Takenaka, Hiroki Watanabe, Yuta Kawasumi, Keita Nakanishi, Yuka Kadomatsu, Harushi Ueno, Shota Nakamura, Tetsuya Mizuno and Toyofumi Fengshi Chen-Yoshikawa
Int. J. Mol. Sci. 2025, 26(9), 4299; https://doi.org/10.3390/ijms26094299 - 1 May 2025
Cited by 1 | Viewed by 1191
Abstract
Mesothelioma is characterized by the inactivation of tumor suppressor genes, with frequent mutations in neurofibromin 2 (NF2), BRCA1-associated protein 1 (BAP1), and cyclin-dependent kinase inhibitor 2A (CDKN2A). These mutations lead to disruptions in the Hippo signaling pathway [...] Read more.
Mesothelioma is characterized by the inactivation of tumor suppressor genes, with frequent mutations in neurofibromin 2 (NF2), BRCA1-associated protein 1 (BAP1), and cyclin-dependent kinase inhibitor 2A (CDKN2A). These mutations lead to disruptions in the Hippo signaling pathway and histone methylation, thereby promoting tumor growth. NF2 mutations result in Merlin deficiency, leading to uncontrolled cell proliferation, whereas BAP1 mutations impair chromatin remodeling and hinder DNA damage repair. Emerging molecular targets in mesothelioma include mesothelin (MSLN), oxytocin receptor (OXTR), protein arginine methyltransferase (PRMT5), and carbohydrate sulfotransferase 4 (CHST4). MSLN-based therapies, such as antibody–drug conjugates and immunotoxins, have shown efficacy in clinical trials. OXTR, upregulated in mesothelioma, is correlated with poor prognosis and represents a novel therapeutic target. PRMT5 inhibition is being explored in tumors with MTAP deletions, commonly co-occurring with CDKN2A loss. CHST4 expression is associated with improved prognosis, potentially influencing tumor immunity. Immune checkpoint inhibitors targeting PD-1/PD-L1 have shown promise in some cases; however, resistance mechanisms remain a challenge. Advances in multi-omics approaches have improved our understanding of mesothelioma pathogenesis. Future research will aim to identify novel therapeutic targets and personalized treatment strategies, particularly in the context of epigenetic therapy and combination immunotherapy. Full article
(This article belongs to the Special Issue Translational Oncology: From Molecular Basis to Therapy)
Show Figures

Figure 1

20 pages, 11184 KiB  
Article
Mechanisms of Exogenous Brassinosteroids and Abscisic Acid in Regulating Maize Cold Stress Tolerance
by Tao Yang, Zelong Zhuang, Jianwen Bian, Zhenping Ren, Wanling Ta and Yunling Peng
Int. J. Mol. Sci. 2025, 26(7), 3326; https://doi.org/10.3390/ijms26073326 - 2 Apr 2025
Cited by 1 | Viewed by 594
Abstract
Exogenous abscisic acid (ABA) and brassinosteroid (BR) play important roles in alleviating cold stress in maize. In this study, two maize inbred lines with differing cold tolerance were treated with exogenous ABA, BR, and their combined solution under cold stress conditions at 10 [...] Read more.
Exogenous abscisic acid (ABA) and brassinosteroid (BR) play important roles in alleviating cold stress in maize. In this study, two maize inbred lines with differing cold tolerance were treated with exogenous ABA, BR, and their combined solution under cold stress conditions at 10 °C to investigate the effects of these treatments on the physiological characteristics of maize seedlings. The results indicated that cold stress significantly inhibited the growth of maize seedlings. Exogenous hormone treatments enhanced antioxidant enzyme activities and promoted the synthesis of osmolytes, thereby alleviating cold stress; however, the combined treatment (AR) did not significantly improve maize cold tolerance. Transcriptomic analysis revealed that pathways including plant hormone signal transduction, fatty acid elongation, and phenylpropanoid biosynthesis were involved in the interaction between ABA and BR. Weighted gene co-expression network analysis (WGCNA) identified four key candidate genes responsive to exogenous ABA and BR under cold stress, namely Zm00001eb343270, Zm00001eb401890, Zm00001eb206790, and Zm00001eb199820. Based on the gene annotation results, we speculate that ubiquitin-conjugating enzyme E2 O, tubulin–tyrosine ligase-like protein 12, the negative regulator of systemic acquired resistance SNI1, and mRNA stability regulators in response to DNA damage may be involved in regulating maize cold tolerance. These findings provide further evidence for the regulatory mechanisms by which exogenous ABA and BR affect maize cold tolerance and elucidate their interaction under cold stress. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

35 pages, 5069 KiB  
Review
Small-Molecule Mitotic Inhibitors as Anticancer Agents: Discovery, Classification, Mechanisms of Action, and Clinical Trials
by Yazmin Salinas, Subhash C. Chauhan and Debasish Bandyopadhyay
Int. J. Mol. Sci. 2025, 26(7), 3279; https://doi.org/10.3390/ijms26073279 - 1 Apr 2025
Cited by 1 | Viewed by 1744
Abstract
Despite decades of research, cancer continues to be a disease of great concern to millions of people around the world. It has been responsible for a total of 609,820 deaths in the U.S. alone in 2023. Over the years, many drugs have been [...] Read more.
Despite decades of research, cancer continues to be a disease of great concern to millions of people around the world. It has been responsible for a total of 609,820 deaths in the U.S. alone in 2023. Over the years, many drugs have been developed to remove or reduce the disease’s impact, all with varying mechanisms of action and side effects. One class of these drugs is small-molecule mitotic inhibitors. These drugs inhibit cancer cell mitosis or self-replication, impeding cell proliferation and eventually leading to cell death. In this paper, small-molecule mitotic inhibitors are discussed and classified through their discovery, underlying chemistry, and mechanism(s) of action. The binding/inhibition of microtubule-related proteins, DNA damage through the inhibition of Checkpoint Kinase 1 protein, and the inhibition of mitotic kinase proteins are discussed in terms of their anticancer activity to provide an overview of a variety of mitotic inhibitors currently commercially available or under investigation, including those in ongoing clinical trial. Clinical trials for anti-mitotic agents are discussed to track research progress, gauge current understanding, and identify possible future prospects. Additionally, antibody–drug conjugates that use mitotic inhibitors as cytotoxic payloads are discussed as possible ways of administering effective anticancer treatments with minimal toxicity. Full article
(This article belongs to the Collection Feature Papers in Molecular Oncology)
Show Figures

Figure 1

26 pages, 4568 KiB  
Article
Insights into Functions of Universal Stress Proteins Encoded by Genomes of Gastric Cancer Pathogen Helicobacter pylori and Related Bacteria
by Raphael D. Isokpehi, Shaneka S. Simmons, Angela U. Makolo, Antoinesha L. Hollman, Solayide A. Adesida, Olabisi O. Ojo and Amos O. Abioye
Pathogens 2025, 14(3), 275; https://doi.org/10.3390/pathogens14030275 - 13 Mar 2025
Viewed by 1014
Abstract
The genes that encode the universal stress protein (USP) family domain (pfam00582) aid the survival of bacteria in specific host or habitat-induced stress conditions. Genome sequencing revealed that the genome of Helicobacter pylori, a gastric cancer pathogen, typically contains one USP gene, [...] Read more.
The genes that encode the universal stress protein (USP) family domain (pfam00582) aid the survival of bacteria in specific host or habitat-induced stress conditions. Genome sequencing revealed that the genome of Helicobacter pylori, a gastric cancer pathogen, typically contains one USP gene, while related helicobacters have one or two distinct USP genes. However, insights into the functions of Helicobacteraceae (Helicobacter and Wolinella) USP genes are still limited to inferences from large-scale genome sequencing. Thus, we have combined bioinformatics and visual analytics approaches to conduct a more comprehensive data investigation of a set of 1045 universal stress protein sequences encoded in 1014 genomes including 785 Helicobacter pylori genomes. The study generated a representative set of 183 USP sequences consisting of 180 Helicobacter sequences, two Wolinella succinogenes sequences, and a sequence from a related campylobacteria. We used the amino acid residues and positions of the 12 possible functional sites in 1030 sequences to identify 25 functional sites patterns for guiding studies on functional interactions of Helicobacteraceae USPs with ATP and other molecules. Genomic context searches and analysis identified USP genes of gastric and enterohepatic helicobacters that are adjacent or in operons with genes for proteins responsive to DNA-damaging oxidative stress (ATP-dependent proteases: ClpS and ClpA); and DNA uptake proteins (natural competence for transformation proteins: ComB6, ComB7, ComB8, ComB9, ComB10, ComBE, and conjugative transfer signal peptidase TraF). Since transcriptomic evidence indicates that oxidative stress and the presence of virulence-associated genes regulate the transcription of H. pylori USP gene, we recommend further research on Helicobacter USP genes and their neighboring genes in oxidative stress response and virulence of helicobacters. To facilitate the reuse of data and research, we produced interactive analytics resources of a dataset composed of values for variables including phylogeography of H. pylori strains, protein sequence features, and gene neighborhood. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

23 pages, 3766 KiB  
Article
Dynamic Spread of Antibiotic Resistance Determinants by Conjugation to a Human-Derived Gut Microbiota in a Transplanted Mouse Model
by Azam A. Sher, Charles E. Whitehead-Tillery, Ashley M. Peer, Julia A. Bell, Daniel B. Vocelle, Joshua T. Dippel, Lixin Zhang and Linda S. Mansfield
Antibiotics 2025, 14(2), 152; https://doi.org/10.3390/antibiotics14020152 - 4 Feb 2025
Cited by 1 | Viewed by 1950
Abstract
Background. Antibiotic-resistant (AR) bacteria pose an increasing threat to public health, but the dynamics of antibiotic resistance gene (ARG) spread in complex microbial communities are poorly understood. Conjugation is a predominant direct cell-to-cell mechanism for the horizontal gene transfer (HGT) of ARGs. We [...] Read more.
Background. Antibiotic-resistant (AR) bacteria pose an increasing threat to public health, but the dynamics of antibiotic resistance gene (ARG) spread in complex microbial communities are poorly understood. Conjugation is a predominant direct cell-to-cell mechanism for the horizontal gene transfer (HGT) of ARGs. We hypothesized that commensal Escherichia coli donor strains would mediate the conjugative transfer of ARGs to phylogenetically distinct bacteria without antibiotic selection pressure in gastrointestinal tracts of mice carrying a human-derived microbiota with undetectable levels of E. coli. Our objective was to identify a mouse model to study the factors regulating AR transfer by conjugation in the gut. Methods. Two donor E. coli strains were engineered to carry chromosomally encoded red fluorescent protein, and an ARG- and green fluorescent protein (GFP)-encoding broad host range RP4 conjugative plasmid. Mice were orally gavaged with two donor strains (1) E. coli MG1655 or (2) human-derived mouse-adapted E. coli LM715-1 and their colonization assessed by culture over time. Fluorescence-activated cell sorting (FACS) and 16S rDNA sequencing were performed to trace plasmid spread to the microbiota. Results. E. coli LM715-1 colonized mice for ten days, while E. coli MG1655 was not recovered after 72 h. Bacterial cells from fecal samples on days 1 and 3 post inoculation were sorted by FACS. Samples from mice given donor E. coli LM715-1 showed an increase in cells expressing green but not red fluorescence compared to pre-inoculation samples. 16S rRNA gene sequencing analysis of FACS GFP positive cells showed that bacterial families Lachnospiraceae, Clostridiaceae, Pseudomonadaceae, Rhodanobacteraceae, Erysipelotrichaceae, Oscillospiraceae, and Butyricicoccaceae were the primary recipients of the RP4 plasmid. Conclusions. Results show this ARG-bearing conjugative RP4 plasmid spread to diverse human gut bacterial taxa within a live animal where they persisted. These fluorescent marker strategies and human-derived microbiota transplanted mice provided a tractable model for investigating the dynamic spread of ARGs within gut microbiota and could be applied rigorously to varied microbiotas to understand conditions facilitating their spread. Full article
(This article belongs to the Special Issue Epidemiology and Mechanism of Bacterial Resistance to Antibiotics)
Show Figures

Figure 1

39 pages, 2817 KiB  
Review
Advances in Biosensor Applications of Metal/Metal-Oxide Nanoscale Materials
by Md Abdus Subhan, Newton Neogi, Kristi Priya Choudhury and Mohammed M. Rahman
Chemosensors 2025, 13(2), 49; https://doi.org/10.3390/chemosensors13020049 - 3 Feb 2025
Cited by 4 | Viewed by 3043
Abstract
Biosensing shows promise in detecting cancer, renal disease, and other illnesses. Depending on their transducing processes, varieties of biosensors can be divided into electrochemical, optical, piezoelectric, and thermal biosensors. Advancements in material production techniques, enzyme/protein designing, and immobilization/conjugation approaches can yield novel nanoparticles [...] Read more.
Biosensing shows promise in detecting cancer, renal disease, and other illnesses. Depending on their transducing processes, varieties of biosensors can be divided into electrochemical, optical, piezoelectric, and thermal biosensors. Advancements in material production techniques, enzyme/protein designing, and immobilization/conjugation approaches can yield novel nanoparticles with further developed functionality. Research in cutting-edge biosensing with multifunctional nanomaterials, and the advancement of practical biochip plans utilizing nano-based sensing material, are of current interest. The miniaturization of electronic devices has enabled the growth of ultracompact, compassionate, rapid, and low-cost sensing technologies. Some sensors can recognize analytes at the molecule, particle, and single biological cell levels. Nanomaterial-based sensors, which can be used for biosensing quickly and precisely, can replace toxic materials in real-time diagnostics. Many metal-based NPs and nanocomposites are favorable for biosensing. Through direct and indirect labeling, metal-oxide NPs are extensively employed in detecting metabolic disorders, such as cancer, diabetes, and kidney-disease biomarkers based on electrochemical, optical, and magnetic readouts. The present review focused on recent developments across multiple biosensing modalities using metal/metal-oxide-based NPs; in particular, we highlighted the specific advancements of biosensing of key nanomaterials like ZnO, CeO2, and TiO2 and their applications in disease diagnostics and environmental monitoring. For example, ZnO-based biosensors recognize uric acid, glucose, cholesterol, dopamine, and DNA; TiO2 is utilized for SARS-CoV-19; and CeO2 for glucose detection. Full article
Show Figures

Figure 1

24 pages, 3174 KiB  
Review
Unraveling the Role of Ubiquitin-Conjugating Enzyme UBE2T in Tumorigenesis: A Comprehensive Review
by Chang Gao, Yan-Jun Liu, Jing Yu, Ran Wang, Jin-Jin Shi, Ru-Yi Chen, Guan-Jun Yang and Jiong Chen
Cells 2025, 14(1), 15; https://doi.org/10.3390/cells14010015 - 26 Dec 2024
Cited by 4 | Viewed by 2004
Abstract
Ubiquitin-conjugating enzyme E2 T (UBE2T) is a crucial E2 enzyme in the ubiquitin-proteasome system (UPS), playing a significant role in the ubiquitination of proteins and influencing a wide range of cellular processes, including proliferation, differentiation, apoptosis, invasion, and metabolism. Its overexpression has been [...] Read more.
Ubiquitin-conjugating enzyme E2 T (UBE2T) is a crucial E2 enzyme in the ubiquitin-proteasome system (UPS), playing a significant role in the ubiquitination of proteins and influencing a wide range of cellular processes, including proliferation, differentiation, apoptosis, invasion, and metabolism. Its overexpression has been implicated in various malignancies, such as lung adenocarcinoma, gastric cancer, pancreatic cancer, liver cancer, and ovarian cancer, where it correlates strongly with disease progression. UBE2T facilitates tumorigenesis and malignant behaviors by mediating essential functions such as DNA repair, apoptosis, cell cycle regulation, and the activation of oncogenic signaling pathways. High levels of UBE2T expression are associated with poor survival outcomes, highlighting its potential as a molecular biomarker for cancer prognosis. Increasing evidence suggests that UBE2T acts as an oncogene and could serve as a promising therapeutic target in cancer treatment. This review aims to provide a detailed overview of UBE2T’s structure, functions, and molecular mechanisms involved in cancer progression as well as recent developments in UBE2T-targeted inhibitors. Such insights may pave the way for novel strategies in cancer diagnosis and treatment, enhancing our understanding of UBE2T’s role in cancer biology and supporting the development of innovative therapeutic approaches. Full article
Show Figures

Figure 1

16 pages, 1916 KiB  
Article
Targeting Transcriptional Regulators Affecting Acarbose Biosynthesis in Actinoplanes sp. SE50/110 Using CRISPRi Silencing
by Saskia Dymek, Lucas Jacob, Alfred Pühler and Jörn Kalinowski
Microorganisms 2025, 13(1), 1; https://doi.org/10.3390/microorganisms13010001 - 24 Dec 2024
Viewed by 1146
Abstract
Acarbose, a pseudo-tetrasaccharide produced by Actinoplanes sp. SE50/110, is an α-glucosidase inhibitor and is used as a medication to treat type 2 diabetes. While the biosynthesis of acarbose has been elucidated, little is known about its regulation. Gene silencing using CRISPRi allows for [...] Read more.
Acarbose, a pseudo-tetrasaccharide produced by Actinoplanes sp. SE50/110, is an α-glucosidase inhibitor and is used as a medication to treat type 2 diabetes. While the biosynthesis of acarbose has been elucidated, little is known about its regulation. Gene silencing using CRISPRi allows for the identification of potential regulators influencing acarbose formation. For this purpose, two types of CRISPRi vectors were established for application in Actinoplanes sp. SE50/110. The pCRISPomyces2i vector allows for reversible silencing, while the integrative pSETT4i vector provides a rapid screening approach for many targets due to its shorter conjugation time into Actinoplanes sp. These vectors were validated by silencing the known acarbose biosynthesis genes acbB and acbV, as well as their regulator, CadC. The reduction in product formation and the diminished relative transcript abundance of the respective genes served as evidence of successful silencing. The vectors were used to create a CRISPRi-based strain library, silencing 50 transcriptional regulators, to investigate their potential influence in acarbose biosynthesis. These transcriptional regulatory genes were selected from previous experiments involving protein–DNA interaction studies or due to their expression profiles. Eleven genes affecting the yield of acarbose were identified. The CRISPRi-mediated knockdown of seven of these genes significantly reduced acarbose biosynthesis, whereas the knockdown of four genes enhanced acarbose production. Full article
(This article belongs to the Special Issue Microbial Metabolic Engineering Technology)
Show Figures

Figure 1

37 pages, 7538 KiB  
Review
Human Cytochrome P450 Cancer-Related Metabolic Activities and Gene Polymorphisms: A Review
by Innokenty M. Mokhosoev, Dmitry V. Astakhov, Alexander A. Terentiev and Nurbubu T. Moldogazieva
Cells 2024, 13(23), 1958; https://doi.org/10.3390/cells13231958 - 26 Nov 2024
Cited by 10 | Viewed by 4887
Abstract
Background: Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. Findings: In our review article, we discuss recent data evidencing that [...] Read more.
Background: Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. Findings: In our review article, we discuss recent data evidencing that the same CYP isoform can be involved in both bioactivation and detoxification reactions and convert the same substrate to different products. Conversely, different CYP isoforms can convert the same substrate, xenobiotic or procarcinogen, into either a more or less toxic product. These phenomena depend on the type of catalyzed reaction, substrate, tissue type, and biological species. Since the CYPs involved in bioactivation (CYP3A4, CYP1A1, CYP2D6, and CYP2C8) are primarily expressed in the liver, their metabolites can induce hepatotoxicity and hepatocarcinogenesis. Additionally, we discuss the role of drugs as CYP substrates, inducers, and inhibitors as well as the implication of nuclear receptors, efflux transporters, and drug–drug interactions in anticancer drug resistance. We highlight the molecular mechanisms underlying the development of hormone-sensitive cancers, including breast, ovarian, endometrial, and prostate cancers. Key players in these mechanisms are the 2,3- and 3,4-catechols of estrogens, which are formed by CYP1A1, CYP1A2, and CYP1B1. The catechols can also produce quinones, leading to the formation of toxic protein and DNA adducts that contribute to cancer progression. However, 2-hydroxy- and 4-hydroxy-estrogens and their O-methylated derivatives along with conjugated metabolites play cancer-protective roles. CYP17A1 and CYP11A1, which are involved in the biosynthesis of testosterone precursors, contribute to prostate cancer, whereas conversion of testosterone to 5α-dihydrotestosterone as well as sustained activation and mutation of the androgen receptor are implicated in metastatic castration-resistant prostate cancer (CRPC). CYP enzymatic activities are influenced by CYP gene polymorphisms, although a significant portion of them have no effects. However, CYP polymorphisms can determine poor, intermediate, rapid, and ultrarapid metabolizer genotypes, which can affect cancer and drug susceptibility. Despite limited statistically significant data, associations between CYP polymorphisms and cancer risk, tumor size, and metastatic status among various populations have been demonstrated. Conclusions: The metabolic diversity and dual character of biological effects of CYPs underlie their implications in, preliminarily, hormone-sensitive cancers. Variations in CYP activities and CYP gene polymorphisms are implicated in the interindividual variability in cancer and drug susceptibility. The development of CYP inhibitors provides options for personalized anticancer therapy. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Tumor Pathogenesis)
Show Figures

Figure 1

14 pages, 4051 KiB  
Communication
Towards Aptamer-Targeted Drug Delivery to Brain Tumors: The Synthesis of Ramified Conjugates of an EGFR-Specific Aptamer with MMAE on a Cathepsin B-Cleavable Linker
by Vladimir A. Brylev, Ekaterina V. Ryabukhina, Ekaterina V. Nazarova, Nadezhda S. Samoylenkova, Evgeny L. Gulyak, Ksenia A. Sapozhnikova, Fatima M. Dzarieva, Alexey V. Ustinov, Igor N. Pronin, Dmitry Y. Usachev, Alexey M. Kopylov, Andrey V. Golovin, Galina V. Pavlova, Dmitry Yu. Ryazantsev and Vladimir A. Korshun
Pharmaceutics 2024, 16(11), 1434; https://doi.org/10.3390/pharmaceutics16111434 - 11 Nov 2024
Viewed by 1994
Abstract
Background/Objectives: Targeted delivery of chemotherapeutic agents is a well-established approach to cancer therapy. Antibody–drug conjugates (ADCs) typically carry toxic payloads attached to a tumor-associated antigen-targeting IgG antibody via an enzyme-cleavable linker that releases the drug inside the cell. Aptamers are a promising alternative [...] Read more.
Background/Objectives: Targeted delivery of chemotherapeutic agents is a well-established approach to cancer therapy. Antibody–drug conjugates (ADCs) typically carry toxic payloads attached to a tumor-associated antigen-targeting IgG antibody via an enzyme-cleavable linker that releases the drug inside the cell. Aptamers are a promising alternative to antibodies in terms of antigen targeting; however, their polynucleotide nature and smaller size result in a completely different PK/PD profile compared to an IgG. This may prove advantageous: owing to their lower molecular weight, aptamer-drug conjugates may achieve better penetration of solid tumors compared to ADCs. Methods: On the way to therapeutic aptamer–drug conjugates, we aimed to develop a versatile and modular approach for the assembly of aptamer–enzymatically cleavable payload conjugates of various drug–aptamer ratios. We chose the epidermal growth factor receptor (EGFR), a transmembrane protein often overexpressed in brain tumors, as the target antigen. We used the 46 mer EGFR-targeting DNA sequence GR-20, monomethylauristatin E (MMAE) on the cathepsin-cleavable ValCit-p-aminobenzylcarbamate linker as the payload, and pentaerythritol-based tetraazide as the branching point for the straightforward synthesis of aptamer–drug conjugates by means of a stepwise Cu-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Results: Branched aptamer conjugates of 1:3, 2:2, and 3:1 stoichiometry were synthesized and showed higher cytotoxic activity compared to a 1:1 conjugate, particularly on several glioma cell lines. Conclusions: This approach is convenient and potentially applicable to any aptamer sequence, as well as other payloads and cleavable linkers, thus paving the way for future development of aptamer–drug therapeutics by easily providing a range of branched conjugates for in vitro and in vivo testing. Full article
Show Figures

Figure 1

13 pages, 1982 KiB  
Article
Deciphering Folate Receptor alphaGene Expression and mRNA Signatures in Ovarian Cancer: Implications for Precision Therapies
by Maria Kfoury, Pascal Finetti, Emilie Mamessier, François Bertucci and Renaud Sabatier
Int. J. Mol. Sci. 2024, 25(22), 11953; https://doi.org/10.3390/ijms252211953 - 7 Nov 2024
Viewed by 2373
Abstract
Antibody–drug conjugates targeting folate receptor alpha (FRα) are a promising treatment for platinum-resistant ovarian cancer (OC) with high FRα expression. Challenges persist in accurately assessing FRα expression levels. Our study aimed to better elucidate FRα gene expression and identify mRNA signatures in OC. [...] Read more.
Antibody–drug conjugates targeting folate receptor alpha (FRα) are a promising treatment for platinum-resistant ovarian cancer (OC) with high FRα expression. Challenges persist in accurately assessing FRα expression levels. Our study aimed to better elucidate FRα gene expression and identify mRNA signatures in OC. We pooled OC gene expression data from 16 public datasets, encompassing 1832 OC and 30 normal ovarian tissues. Additional data included DNA copy number and methylation data from TCGA and protein data from 363 cancer cell lines from the Broad Institute Cancer Cell Line Encyclopedia. FOLR1 mRNA expression was significantly correlated with protein expression in pan-cancer cell lines and ovarian cancer cell lines. FOLR1 expression was higher in OC samples than in normal ovarian tissues (OR = 3.88, p = 6.97 × 10−12). Patients with high FOLR1 expression were more likely to be diagnosed with serous histology, FIGO stage III–IV, and high-grade tumors; however, nearly similar percentages of patients with low FOLR1 expression were also diagnosed with these features. FOLR1 mRNA expression was not correlated with platinum sensitivity or complete surgery, nor with prognosis. However, we identified a 187-gene signature associated with high FOLR1 expression that was significantly associated with improved survival (HR = 0.71, p = 1.18 × 10−6), independently from clinicopathological features. We identified a gene expression signature correlated to high FRα expression and OC prognosis, which may be used to refine therapeutic strategies targeting FRα in OC. These findings warrant validation in larger cohorts. Full article
(This article belongs to the Special Issue Molecular Research in Gynecological Diseases—2nd Edition)
Show Figures

Figure 1

Back to TopTop