Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = prosthetic foot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7203 KiB  
Article
The Combined Role of Coronal and Toe Joint Compliance in Transtibial Prosthetic Gait: A Study in Non-Amputated Individuals
by Sergio Galindo-Leon, Hideki Kadone, Modar Hassan and Kenji Suzuki
Prosthesis 2025, 7(4), 82; https://doi.org/10.3390/prosthesis7040082 - 14 Jul 2025
Viewed by 375
Abstract
Background/Objectives: The projected rise in limb amputations highlights the need for advancements in prosthetic technology. Current transtibial prosthetic designs primarily focus on sagittal plane kinematics but often neglect both the ankle kinematics and kinetics in the coronal plane, and the metatarsophalangeal joint, [...] Read more.
Background/Objectives: The projected rise in limb amputations highlights the need for advancements in prosthetic technology. Current transtibial prosthetic designs primarily focus on sagittal plane kinematics but often neglect both the ankle kinematics and kinetics in the coronal plane, and the metatarsophalangeal joint, which play critical roles in gait stability and efficiency. This study aims to evaluate the combined effects of compliance in the coronal plane and a flexible toe joint on prosthetic gait using non-amputated participants as a model. Methods: We conducted gait trials on ten non-amputated individuals in the presence and absence of compliance in the coronal plane and toe compliance, using a previously developed three-degree-of-freedom (DOF) prosthetic foot with a prosthetic simulator. We recorded and analyzed sagittal and coronal kinematic data, ground reaction forces, and electromyographic signals from muscles involved in the control of gait. Results: The addition of compliance in the coronal plane and toe compliance had significant kinematic and muscular effects. Notably, this compliance combination reduced peak pelvis obliquity by 27%, preserved the swing stance/ratio, and decreased gluteus medius’ activation by 34% on the non-prosthetic side, compared to the laterally rigid version of the prosthesis without toe compliance. Conclusions: The results underscore the importance of integrating compliance in the coronal plane and toe compliance in prosthetic feet designs as they show potential in improving gait metrics related to mediolateral movements and balance, while also decreasing muscle activation. Still, these findings remain to be validated in people with transtibial amputations. Full article
(This article belongs to the Section Orthopedics and Rehabilitation)
Show Figures

Figure 1

33 pages, 39638 KiB  
Article
Effects of a Semi-Active Two-Keel Variable-Stiffness Prosthetic Foot (VSF-2K) on Prosthesis Characteristics and Gait Metrics: A Model-Based Design and Simulation Study
by Zhengcan Wang and Peter G. Adamczyk
Prosthesis 2025, 7(3), 61; https://doi.org/10.3390/prosthesis7030061 - 29 May 2025
Viewed by 602
Abstract
Background/Objectives: Semi-active prosthetic feet present a promising solution that enhances adaptability while maintaining modest size, weight, and cost. We propose a semi-active Two-Keel Variable-Stiffness Foot (VSF-2K), the first prosthetic foot where both the hindfoot and forefoot stiffness can be independently and actively [...] Read more.
Background/Objectives: Semi-active prosthetic feet present a promising solution that enhances adaptability while maintaining modest size, weight, and cost. We propose a semi-active Two-Keel Variable-Stiffness Foot (VSF-2K), the first prosthetic foot where both the hindfoot and forefoot stiffness can be independently and actively modulated. We present a model-based analysis of the effects of different VSF-2K settings on prosthesis characteristics and gait metrics. Methods: The study introduces a simulation model for the VSF-2K: (1) one sub-model to optimize the design of the keels of VSF-2K to maximize compliance, (2) another sub-model to simulate the stance phase of walking with different stiffness setting pairs and ankle alignment angles (dorsiflexion/plantarflexion), and (3) a third sub-model to simulate the keel stiffness of the hindfoot and forefoot keels comparably to typical mechanical testing. We quantitatively analyze how the VSF-2K’s hindfoot and forefoot stiffness settings and ankle alignments affect gait metrics: Roll-over Shape (ROS), Effective Foot Length Ratio (EFLR), and Dynamic Mean Ankle Moment Arm (DMAMA). We also introduce an Equally Spaced Resampling Algorithm (ESRA) to address the unequal-weight issue in the least-squares circle fit of the Roll-over Shape. Results: We show that the optimal-designed VSF-2K successfully achieves controlled stiffness that approximates the stiffness range observed in prior studies of commercial prostheses. Our findings suggest that stiffness modulation significantly affects gait metrics, and it can mimic or counteract ankle angle adjustments, enabling adaptation to sloped terrain. We show that DMAMA is the most promising metric for use as a control parameter in semi-active or variable-stiffness prosthetic feet. We identify the limitations in ROS and EFLR, including their nonmonotonic relationship with hindfoot/forefoot stiffness, insensitivity to hindfoot stiffness, and inconsistent trends across ankle alignments. We also validate that the angular stiffness of a two-independent-keel prosthetic foot can be predicted using either keel stiffness from our model or from a standardized test. Conclusions: These findings show that semi-active variation of hindfoot and forefoot stiffness based on single-stride metrics such as DMAMA is a promising control approach to enabling prostheses to adapt to a variety of terrain and alignment challenges. Full article
Show Figures

Figure 1

19 pages, 7057 KiB  
Article
Topologically Optimized Anthropomorphic Prosthetic Limb: Finite Element Analysis and Mechanical Evaluation Using Plantogram-Derived Foot Pressure Data
by Ioannis Filippos Kyriakidis, Nikolaos Kladovasilakis, Marios Gavriilopoulos, Dimitrios Tzetzis, Eleftheria Maria Pechlivani and Konstantinos Tsongas
Biomimetics 2025, 10(5), 261; https://doi.org/10.3390/biomimetics10050261 - 24 Apr 2025
Viewed by 748
Abstract
The development of prosthetic limbs has benefited individuals who suffered amputations due to accidents or medical conditions. During the development of conventional prosthetics, several challenges have been observed regarding the functional limitations, the restricted degrees of freedom compared to an actual human limb, [...] Read more.
The development of prosthetic limbs has benefited individuals who suffered amputations due to accidents or medical conditions. During the development of conventional prosthetics, several challenges have been observed regarding the functional limitations, the restricted degrees of freedom compared to an actual human limb, and the biocompatibility issues between the surface of the prosthetic limb and the human tissue or skin. These issues could result in mobility impairments due to failed mimicry of the actual stress distribution, causing discomfort, chronic pain, and tissue damage or possible infections. Especially in cases where underlying conditions exist, such as diabetes, possible trauma, or vascular disease, a failed adaptation of the prosthetic limb could lead to complete abandonment of the prosthetic part. To address these challenges, the insertion of topologically optimized parts with a biomimetic approach has allowed the optimization of the mimicry of the complex functionality behavior of the natural body parts, allowing the development of lightweight efficient anthropomorphic structures. This approach results in unified stress distribution, minimizing the practical limitations while also adding an aesthetic that aids in reducing any possible symptoms related to social anxiety and impaired social functioning. In this paper, the development of a novel anthropomorphic designed prosthetic foot with a novel Thermoplastic Polyurethane-based composite (TPU-Ground Tire Rubber 10 wt.%) was studied. The final designs contain advanced sustainable polymeric materials, gyroid lattice geometries, and Finite Element Analysis (FEA) for performance optimization. Initially, a static evaluation was conducted to replicate the phenomena at the standing process of a conventional replicated above-knee prosthetic. Furthermore, dynamic testing was conducted to assess the mechanical responses to high-intensity exercises (e.g., sprinting, jumping). The evaluation of the dynamic mechanical response of the prosthetic limb was compared to actual plantogram-derived foot pressure data during static phases (standing, light walking) and dynamic phenomena (sprinting, jumping) to address the optimal geometry and density, ensuring maximum compatibility. This innovative approach allows the development of tailored prosthetic limbs with optimal replication of the human motion patterns, resulting in improved patient outcomes and higher success rates. The proposed design presented hysteretic damping factor and energy absorption efficiency adequate for load handling of intense exercises (0.18 loss factor, 57% energy absorption efficiency) meaning that it is suitable for further research and possible upcycling. Full article
(This article belongs to the Special Issue Mechanical Properties and Functions of Bionic Materials/Structures)
Show Figures

Figure 1

28 pages, 400 KiB  
Review
Emerging Concepts for the Treatment of Biofilm-Associated Bone and Joint Infections with IV Fosfomycin: A Literature Review
by Sara Tedeschi, Efthymia Giannitsioti and Christian Mayer
Microorganisms 2025, 13(5), 963; https://doi.org/10.3390/microorganisms13050963 - 23 Apr 2025
Cited by 1 | Viewed by 1108
Abstract
Due to the involvement of biofilms in the pathogenesis of bone and joint infections (BJI), the treatment of these infections is often challenging, especially when multidrug- or extensively drug-resistant (MDR/XDR) pathogens are involved. Intravenous fosfomycin (FOS) is a phosphoenolpyruvate analogue with a unique [...] Read more.
Due to the involvement of biofilms in the pathogenesis of bone and joint infections (BJI), the treatment of these infections is often challenging, especially when multidrug- or extensively drug-resistant (MDR/XDR) pathogens are involved. Intravenous fosfomycin (FOS) is a phosphoenolpyruvate analogue with a unique mode of action and broad-spectrum activity against both Gram-positive (GP) and Gram-negative (GN) pathogens. It is used in various severe and deep-seated infections, including BJIs. This review article focuses on preclinical and clinical data surrounding the use of FOS for biofilm-related BJIs. Data from several in vitro and animal models of infection demonstrated that FOS, especially in combination with other antibiotics, is effective against biofilms of (methicillin-resistant) Staphylococcus spp., (vancomycin-resistant) Enterococcus spp., carbapenem-resistant and extended-spectrum beta-lactamase-producing Enterobacterales, and MDR Pseudomonas aeruginosa. Data from clinical studies, mostly retrospective observational studies and case reports/case series, revealed that FOS was typically used in combination with other antibiotics for the treatment of various BJI, including acute and chronic osteomyelitis, prosthetic joint infections, and fracture-related infections, in adult and pediatric patients. Success rates often exceeded 80%. FOS exhibits good and fast penetration into bone tissue and is generally well tolerated, with only a few adverse drug reactions, such as gastrointestinal disorders and electrolyte imbalances. Collectively, the data indicate that FOS is a valuable option as part of combination regimens for the treatment of BJIs caused by both GP and GN bacteria. Full article
(This article belongs to the Special Issue Challenges of Biofilm-Associated Bone and Joint Infections)
14 pages, 12491 KiB  
Article
Biomechanical Evaluation of Elliptical Leaf Spring Prosthetics for Unilateral Transtibial Amputees During Dynamic Activities
by Qiu-Qiong Shi, Kit-Lun Yick, Chu-Hao Li, Chi-Yung Tse and Chi-Hang Hui
Technologies 2025, 13(4), 129; https://doi.org/10.3390/technologies13040129 - 30 Mar 2025
Cited by 1 | Viewed by 652
Abstract
This study explores the biomechanical impact of an elliptical leaf spring (ELS) foot on individuals with unilateral below-knee amputation. The ELS-foot, constructed with carbon fiber leaf springs and an ethylene-vinyl acetate rocker bottom sole, aims to balance energy storge and dissipation for effective [...] Read more.
This study explores the biomechanical impact of an elliptical leaf spring (ELS) foot on individuals with unilateral below-knee amputation. The ELS-foot, constructed with carbon fiber leaf springs and an ethylene-vinyl acetate rocker bottom sole, aims to balance energy storge and dissipation for effective cushioning and energy management. Six participants were recruited and visited the laboratory twice within a 3-to-5-day interval. The ELS-foot is compared with their own prosthesis through various mobility and balance tests, including the Timed Up and Go test, Four Square Step Test, 10 m walk test, Berg Balance Test, eyes-closed standing test, Tandem Test, jumping and walking test, and a subjective evaluation. Passive-reflective markers are placed on the participants according to the plug-in full body model. An eight-camera motion capture system synced with two force plates mounted under a walkway is used for the gait analysis. The results show that participants move faster during the Four Square Step Test and demonstrate better balance during the eyes-closed standing test and Tandem Test and jump higher with the ELS-foot. The unique ELS-foot design mechanism and rocker bottom sole facilitates better energy transfer and stability, thus enhancing the postural stability. These findings offer valuable insights for future prosthetic technology advancements. Full article
(This article belongs to the Special Issue Breakthroughs in Bioinformatics and Biomedical Engineering)
Show Figures

Graphical abstract

16 pages, 5144 KiB  
Article
Gait Analysis with an Upper Limb Prosthesis in a Child with Thrombocytopenia–Absent Radius Syndrome
by Sebastian Glowinski, Sebastian Pecolt, Andrzej Błażejewski, Igor Maciejewski and Tomasz Królikowski
J. Clin. Med. 2025, 14(7), 2245; https://doi.org/10.3390/jcm14072245 - 25 Mar 2025
Cited by 1 | Viewed by 2525
Abstract
Background/Objectives: Thrombocytopenia–absent radius (TAR) syndrome is a rare genetic disorder characterized by the bilateral absence of the radius and thrombocytopenia, often leading to functional limitations and gait asymmetries. Prosthetic devices are sometimes employed to improve mobility and posture, but their impact on [...] Read more.
Background/Objectives: Thrombocytopenia–absent radius (TAR) syndrome is a rare genetic disorder characterized by the bilateral absence of the radius and thrombocytopenia, often leading to functional limitations and gait asymmetries. Prosthetic devices are sometimes employed to improve mobility and posture, but their impact on gait mechanics in pediatric patients remains poorly understood. Methods: The methodology used is based on a study that evaluated the gait parameters of a 10-year-old child with TAR syndrome under static and dynamic conditions, both with and without the use of a custom-designed upper limb prosthesis. The analysis focused on assessing the prosthesis’s impact on gait symmetry and biomechanics. A key aspect of the methodology involved studying the distribution of pressure forces on the ground during walking using the FreeMed EXTREME Maxi baropodometric platform. Results: Gait analysis demonstrated asymmetries between the left and right feet. In the absence of the prosthesis, the patient exhibited excessive forward loading and uneven pressure distributions. The use of a custom prosthesis, particularly with counterbalancing features, improved gait symmetry but led to increased reliance on the left foot. This foot experienced higher pressures (738–852 g/cm2) and longer ground contact times (690–865 ms) compared to the right foot (619–748 g/cm2 and 673–771 ms). The left foot displayed elevated forefoot pressures (61–65%), while the right foot bore weight laterally (66–74%). Conclusions: The custom prosthesis influenced gait mechanics by redistributing plantar pressures and modifying ground contact times, partially improving gait symmetry. However, compensatory strategies, such as increased loading on the left foot, could contribute to musculoskeletal strain over time. Individualized rehabilitation programs and prosthetic designs are essential for optimizing gait mechanics, improving mobility, and minimizing long-term complications in TAR syndrome patients. Full article
(This article belongs to the Section Hematology)
Show Figures

Figure 1

25 pages, 42227 KiB  
Article
“The Foot Can Do It”: Controlling the “Persistence” Prosthetic Arm Using the “Infinity-2” Foot Controller
by Peter L. Bishay, Gerbert Funes Alfaro, Ian Sherrill, Isaiah Reoyo, Elihu McMahon, Camron Carter, Cristian Valdez, Naweeth M. Riyaz, Sara Ali, Adrian Lima, Abel Nieto and Jared Tirone
Technologies 2025, 13(3), 98; https://doi.org/10.3390/technologies13030098 - 1 Mar 2025
Viewed by 1710
Abstract
The “Infinity” foot controller for controlling prosthetic arms has been improved in this paper in several ways, including a foot sleeve that enables barefoot use, an improved sensor-controller unit design, and a more intuitive control scheme that allows gradual control of finger actuation. [...] Read more.
The “Infinity” foot controller for controlling prosthetic arms has been improved in this paper in several ways, including a foot sleeve that enables barefoot use, an improved sensor-controller unit design, and a more intuitive control scheme that allows gradual control of finger actuation. Furthermore, the “Persistence Arm”, a novel transradial prosthetic arm prototype, is introduced. This below-the-elbow arm has a direct-drive wrist actuation system, a thumb design with two degrees of freedom, and carbon fiber tendons for actuating the four forefingers. The manufactured prototype arm and foot controller underwent various tests to verify their efficacy. Wireless transmission speed tests showed that the maximum time delay is less than 165 ms, giving almost instantaneous response from the arm to any user’s foot control signal. Gripping tests quantified the grip and pulling forces of the arm prototype as 2.8 and 12.7 kg, respectively. The arm successfully gripped various household items of different shapes, weights, and sizes. These results highlight the potential of foot control as an alternative prosthetic arm control method and the possibility of new 3D-printed prosthetic arm designs to replace costly prostheses in the market, which could potentially reduce the high rejection rates of upper limb prostheses. Full article
Show Figures

Graphical abstract

14 pages, 1087 KiB  
Article
Simulation-Based Design of a Cam-Driven Hydraulic Prosthetic Ankle
by Anna Pace, James Gardiner and David Howard
Prosthesis 2025, 7(1), 14; https://doi.org/10.3390/prosthesis7010014 - 28 Jan 2025
Viewed by 976
Abstract
Background/Objectives: A cam-driven hydraulic prosthetic ankle was designed to overcome the weaknesses of commercial prostheses and research prototypes, which largely fail to mimic the energy-recycling behaviour of an intact ankle, resulting in poor walking performance for lower-limb prosthesis users. Methods: This novel device [...] Read more.
Background/Objectives: A cam-driven hydraulic prosthetic ankle was designed to overcome the weaknesses of commercial prostheses and research prototypes, which largely fail to mimic the energy-recycling behaviour of an intact ankle, resulting in poor walking performance for lower-limb prosthesis users. Methods: This novel device exploits miniature hydraulics to capture the negative work performed during stance, prior to push-off, in a hydraulic accumulator, and return positive work during push-off for forward body propulsion. Two cams are used to replicate intact ankle torque profiles based on experimental data. The design process for the new prosthesis used a design programme, implemented in MATLAB, based on a simulation of the main components of the prosthetic ankle. Results: In this paper, we present the design programme and explain how it is used to determine the cam profiles required to replicate intact ankle torque, as well as to size the cam follower return springs. Moreover, a constraint-based preliminary design investigation is described, which was conducted to size other key components affecting the device’s size, performance, and energy efficiency. Finally, the feasible design alternatives are compared in terms of their energy losses to determine the best design with regard to minimising both energy losses and device size. Conclusions: Such a design approach not only documents the design of a particular novel prosthetic ankle, but can also provide a systematic framework for decomposing complex design challenges into a series of sub-problems, providing a more effective alternative to heuristic approaches in prosthetic design. Full article
(This article belongs to the Special Issue Recent Advances in Foot Prosthesis and Orthosis)
Show Figures

Figure 1

25 pages, 7189 KiB  
Article
Design Optimization of the Mechanics of a Metamaterial-Based Prosthetic Foot
by Agata Mrozek-Czajkowska and Tomasz Stręk
Materials 2025, 18(1), 96; https://doi.org/10.3390/ma18010096 - 29 Dec 2024
Viewed by 957
Abstract
This paper is dedicated to the analysis of a foot prosthesis optimization process, with a particular focus on the application of optimization algorithms and unconventional materials, such as auxetic materials. The study aims to enhance prosthesis performance by minimizing the difference between the [...] Read more.
This paper is dedicated to the analysis of a foot prosthesis optimization process, with a particular focus on the application of optimization algorithms and unconventional materials, such as auxetic materials. The study aims to enhance prosthesis performance by minimizing the difference between the ground reaction force generated by the prosthetic foot and that of a natural limb. In the initial part of the study, the basic topics concerning the parameterization of the foot prosthesis geometry and the preparation of a finite element model for human gait are discussed. In the subsequent part of the study, the focus is on the optimization process, in which algorithms were applied to adjust the prosthesis structure to the patient’s individual needs. The optimization process utilized a finite element method gait model. After validating the FEM, an algorithm generating the prosthesis geometry based on the given parameters was developed. These parameters were optimized using the VOA, comparing FEM gait model data on vertical ground reaction force with experimental results. The results of the foot prosthesis optimization are presented through a comparison of different structural models. The study also demonstrates the application of auxetic materials, which, due to their unique mechanical properties, can enhance foot prosthesis efficiency. Simulations were performed using multi-material topology optimization. The results obtained for different gait phases were compared. Full article
(This article belongs to the Special Issue Modelling of Deformation Characteristics of Materials or Structures)
Show Figures

Figure 1

16 pages, 2606 KiB  
Article
Effectiveness of a New Microprocessor-Controlled Knee–Ankle–Foot System for Transfemoral Amputees: A Randomized Controlled Trial
by Christelle Requena, Joseph Bascou, Isabelle Loiret, Xavier Bonnet, Marie Thomas-Pohl, Clément Duraffourg, Laurine Calistri and Hélène Pillet
Prosthesis 2024, 6(6), 1591-1606; https://doi.org/10.3390/prosthesis6060115 - 18 Dec 2024
Cited by 1 | Viewed by 1691
Abstract
Background: Advances in prosthetic technology, especially microprocessor-controlled knees (MPKs), have helped enhance gait symmetry and reduce fall risks for individuals who have undergone transfemoral amputation. However, challenges remain in walking in constrained situations due to the limitations of passive prosthetic feet, lacking ankle [...] Read more.
Background: Advances in prosthetic technology, especially microprocessor-controlled knees (MPKs), have helped enhance gait symmetry and reduce fall risks for individuals who have undergone transfemoral amputation. However, challenges remain in walking in constrained situations due to the limitations of passive prosthetic feet, lacking ankle mobility. This study investigates the benefits of SYNSYS®, a new microprocessor-controlled knee–ankle–foot system (MPKA_NEW), designed to synergize knee and ankle movements. Methods: A randomized crossover trial was conducted on 12 male participants who had undergone transfemoral amputation who tested both the MPKA_NEW and their usual MPK prosthesis. Biomechanical parameters were evaluated using quantitative gait analysis in various walking conditions. Participants also completed self-reported questionnaires on their quality of life, locomotor abilities, and prosthesis satisfaction. Results: The MPKA_NEW showed a significant reduction in the risk of slipping and tripping compared to standard MPK prostheses, as evidenced by increased flat-foot time and minimum toe clearance during gait analysis. The MPKA_NEW also improved physical component scores in quality-of-life assessments (Short-Form 36 General Health Questionnaire), suggesting enhanced stability and reduced cognitive load during walking. Conclusions: The MPKA_NEW offers significant improvements in gait safety and quality of life for people who have undergone TFA, particularly in challenging conditions. Further studies are needed to assess the long-term benefits and adaptability across diverse amputee populations. Full article
Show Figures

Figure 1

18 pages, 4786 KiB  
Article
Impact of Gait-Synchronized Vibrotactile Sensory Feedback on Gait in Lower Limb Amputees
by Magnus N. Kalff, Victor Hoursch, Lara Jopp, Viktoria Witowski, Meike Wilke, Alexander Gardetto, Kyle R. Eberlin, Stephan Sehmisch and Jennifer Ernst
Appl. Sci. 2024, 14(23), 11247; https://doi.org/10.3390/app142311247 - 2 Dec 2024
Viewed by 1902
Abstract
Background: Research on sensory feedback systems for prosthetic devices aims to enhance sensory capabilities to better meet user needs. Feedback systems for lower limb amputees (LLA) have been shown to reduce cognitive efforts, metabolic cost and phantom limb pain. This study evaluated the [...] Read more.
Background: Research on sensory feedback systems for prosthetic devices aims to enhance sensory capabilities to better meet user needs. Feedback systems for lower limb amputees (LLA) have been shown to reduce cognitive efforts, metabolic cost and phantom limb pain. This study evaluated the effect of a non-invasive, gait-synchronized, vibrotactile feedback system (VTFS) on the gait parameters of LLA. Methods: Four stimulators applied vibrotactile stimulation to the thigh of LLA during walking, corresponding to four pressure sensors located at the fore- and hindfoot embedded in a sock worn on the prosthetic foot. Standardized gait tests, such as the Timed “Up and Go” Test (TUG), the Four Square Step Test (FSST), the 10 Meter Walk Test (10 MWT) and the 2 Minute Walk Test (2 MWT), were performed to assess the risk of falling, coordination, walking speed and endurance before and after intervention. Results: After an average of 61.5 days using the VTFS, gait stability (TUG) improved significantly. Coordination (FSST) improved in 36% of subjects, while 45% showed a clinically relevant increase in gait speed (10 MWT). Conclusions: The results suggest an improved gait performance in the cohort. Though FSST lacked statistical significance, a p-value near 0.05 indicates a trend toward meaningful improvement. Notably, the participant with Targeted Sensory Reinnervation demonstrated the most favorable outcomes. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

16 pages, 2793 KiB  
Article
Design of a Lower Limb Prosthesis for Ballet Practice
by Blanca Monge Pérez, Cristina Alía García and Juan David Cano-Moreno
Appl. Sci. 2024, 14(20), 9591; https://doi.org/10.3390/app14209591 - 21 Oct 2024
Viewed by 1373
Abstract
Ballet is a discipline that combines art and sport in a harmonious way. It is a practice that has high physical and mental demands to achieve the proper body precision. During this activity, numerous muscles, including those in the legs, need to be [...] Read more.
Ballet is a discipline that combines art and sport in a harmonious way. It is a practice that has high physical and mental demands to achieve the proper body precision. During this activity, numerous muscles, including those in the legs, need to be exercised. Therefore, individuals who have lost part of their lower limb due to amputation face numerous significant challenges when it comes to practicing ballet. Throughout this article, the key aspects that influence the design of a lower limb prosthesis specifically adapted for ballet practice will be analyzed. New materials will be explored with the goal of designing an optimal model that ensures maximum performance and comfort for the users. Additionally, the prosthesis will be customized using 3D-printing technology, and a prototype will be presented. This study will merge biomechanics, ergonomics, and design. Its goal is to find a solution that improves the quality of life for lower limb amputees whose passion is ballet. The aim is to overcome physical and emotional barriers and provide a way to reintegrate amputee dancers into the world of dance. It is important to highlight the novelty of this work: combining different disciplines to provide a solution for individuals who engage in dance as a hobby rather than professionally. The proposed methodology aims to enable users with disabilities to access a personalized, complex, and potentially costly product. Full article
Show Figures

Figure 1

5 pages, 169 KiB  
Editorial
Editorial Board Members’ Collection Series: Biomimetic Design, Constructions and Devices in Times of Change I
by Ille C. Gebeshuber
Biomimetics 2024, 9(10), 614; https://doi.org/10.3390/biomimetics9100614 - 10 Oct 2024
Viewed by 1352
Abstract
In light of recent global crises, including climate change, species extinction, the COVID-19 pandemic, social upheavals and energy supply challenges, this Special Issue of Biomimetics, entitled “Editorial Board Members’ Collection Series: Biomimetic Design, Constructions and Devices in Times of Change”, aims to [...] Read more.
In light of recent global crises, including climate change, species extinction, the COVID-19 pandemic, social upheavals and energy supply challenges, this Special Issue of Biomimetics, entitled “Editorial Board Members’ Collection Series: Biomimetic Design, Constructions and Devices in Times of Change”, aims to explore innovative solutions through biomimetics. This collection features research on various biomimetic applications, such as the peptide-based detection of SARS-CoV-2 antibodies, ergonomic improvements for prolonged sitting, biomimicry industry trends, prosthetic foot functionality and agricultural machinery efficiency. The methods employed include peptide synthesis for diagnostics, simulation software for ergonomic designs, patent analysis for biomimicry trends and engineering discrete element methods for agricultural applications. The findings highlight significant advancements in health diagnostics, ergonomic safety, technological development, prosthetics and sustainable agriculture. The research underscores the potential of biomimetic approaches to address contemporary challenges by leveraging nature-inspired designs and processes. These insights contribute to a broader understanding of how biomimetic principles can lead to adaptive and sustainable solutions in times of change, promoting resilience and innovation across various fields. Full article
18 pages, 2031 KiB  
Article
Parametric Design of an Advanced Multi-Axial Energy-Storing-and-Releasing Ankle–Foot Prosthesis
by Marco Leopaldi, Tommaso Maria Brugo, Johnnidel Tabucol and Andrea Zucchelli
Prosthesis 2024, 6(4), 726-743; https://doi.org/10.3390/prosthesis6040051 - 24 Jun 2024
Cited by 3 | Viewed by 2610
Abstract
The ankle joint is pivotal in prosthetic feet, especially in Energy-Storing-and-Releasing feet, favoured by individuals with moderate to high mobility (K3/K4) due to their energy efficiency and simple construction. ESR feet, mainly designed for sagittal-plane motion, often exhibit high stiffness in other planes, [...] Read more.
The ankle joint is pivotal in prosthetic feet, especially in Energy-Storing-and-Releasing feet, favoured by individuals with moderate to high mobility (K3/K4) due to their energy efficiency and simple construction. ESR feet, mainly designed for sagittal-plane motion, often exhibit high stiffness in other planes, leading to difficulties in adapting to varied ground conditions, potentially causing discomfort or pain. This study aims to present a systematic methodology for modifying the ankle joint’s stiffness properties across its three motion planes, tailored to individual user preferences, and to decouple the sagittal-plane behaviour from the frontal and transverse ones. To integrate the multi-axial ankle inside the MyFlex-η, the designing of experiments using finite element analysis was conducted to explore the impact of geometric parameters on the joint’s properties with respect to design constraints and to reach the defined stiffness targets on the three ankle’s motion planes. A prototype of the multi-axial ankle joint was then manufactured and tested under FEA-derived load conditions to validate the final configuration chosen. Composite elastic elements and complementary parts of the MyFlex-η, incorporating the multi-axial ankle joint, were developed, and the prosthesis was biomechanically tested according to lower limb prosthesis ISO standards and guidelines from literature and the American Orthotic and Prosthetic Association (AOPA). Experimental tests showed strong alignment with numerical predictions. Moreover, implementing the multi-axial ankle significantly increased frontal-plane compliance by 414% with respect to the same prosthesis with only one degree of freedom on the sagittal plane without affecting the main plane of locomotion performance. Full article
(This article belongs to the Special Issue Recent Advances in Foot Prosthesis and Orthosis)
Show Figures

Graphical abstract

13 pages, 1965 KiB  
Article
In Vivo Total Ankle Arthroplasty Kinematic Evaluation: A Prospective Radiostereometric Analysis
by Silvio Caravelli, Laura Bragonzoni, Raffaele Zinno, Emanuele Vocale, Erika Pinelli, Giuseppe Barone, Giulio Vara, Stefano Di Paolo, Stefano Zaffagnini and Massimiliano Mosca
Biomedicines 2024, 12(4), 705; https://doi.org/10.3390/biomedicines12040705 - 22 Mar 2024
Cited by 4 | Viewed by 1489
Abstract
Ankle osteoarthritis (OA) represents a significant social burden and is one of the main causes of chronic disability in a rapidly growing part of the world’s population. Total ankle arthroplasty (TAA) has become increasingly popular despite the poor results obtained with the first [...] Read more.
Ankle osteoarthritis (OA) represents a significant social burden and is one of the main causes of chronic disability in a rapidly growing part of the world’s population. Total ankle arthroplasty (TAA) has become increasingly popular despite the poor results obtained with the first dedicated designs. The purpose of this paper was to evaluate the ankle kinematics, in vivo and under weight-bearing conditions, of a TAA through a dynamic model-based radiostereometric analysis (MB-RSA). The clinical evaluation was performed by administering the American Orthopaedic Foot and Ankle Society ankle–hindfoot score and Short Form-36 questionnaires. The kinematic evaluation was conducted through MB-RSA during the execution of an open kinetic chain and a closed kinetic chain motor task. Double radiographic images of the ankle joint were processed using dedicated software to obtain a 3D reconstruction of the ankle prosthetic components’ motion. Eighteen patients (five females) completed the clinical and instrumental preoperative and postoperative evaluations (age 59.1 ± 10.3). All clinical scores showed a marked improvement (p < 0.005). During the closed kinetic chain motor tasks, the ankle showed a total range of motion (ROM) in dorsi-plantarflexion of 19.84°. The parameters in varus–valgus were recorded. Physiological motion can be achieved in TAA, characterized by a wide range of motion and coupling of movements on the three planes. The results of the present work may help to understand the real movement of a widespread TAA model and possibly to improve future designs and instrumentation. Full article
(This article belongs to the Special Issue Advanced Research on Muscle and Bone Diseases)
Show Figures

Figure 1

Back to TopTop