Mechanical Properties and Functions of Bionic Materials/Structures

A special issue of Biomimetics (ISSN 2313-7673). This special issue belongs to the section "Biomimetics of Materials and Structures".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 4171

Special Issue Editors


E-Mail Website
Guest Editor
School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
Interests: cellular/porous materials; biological materials and hierarchical materials; nano-materials; composite materials; fibrous materials; functional materials
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
Interests: biomechanics; mechanical behavior of biomaterials; numerical simulations of musculoskeletal system; bone mechanics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

After millions of years of evolution, natural living structures always tend to use less available resource/component materials to maximise or optimise mechanical properties or physical/biological functions.  By learning from nature, bio-inspired solutions can enable us to design and develop materials and structures which use as few component materials as possible to maximise mechanical properties and physical or biomedical functions or to optimise the combination of these different properties and functions. This Special Issue thus focuses on the development of biomimetic materials or structures, their mechanical properties, their physical and biological/biomedical functions, and the exploration of their applications in different areas.

The topics of interest include, but are not limited to, the following:

Cellular/porous materials/structures;

Metamaterials;

Smart composite materials/structures;

Functional materials/structures;

Nano materials/structures;

Biomaterials.

Dr. Hanxing Zhu
Dr. Yongtao Lyu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomimetics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cellular/porous structures
  • metamaterials
  • functional materials/structures
  • biomaterials
  • mechanical properties

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 7057 KiB  
Article
Topologically Optimized Anthropomorphic Prosthetic Limb: Finite Element Analysis and Mechanical Evaluation Using Plantogram-Derived Foot Pressure Data
by Ioannis Filippos Kyriakidis, Nikolaos Kladovasilakis, Marios Gavriilopoulos, Dimitrios Tzetzis, Eleftheria Maria Pechlivani and Konstantinos Tsongas
Biomimetics 2025, 10(5), 261; https://doi.org/10.3390/biomimetics10050261 - 24 Apr 2025
Viewed by 271
Abstract
The development of prosthetic limbs has benefited individuals who suffered amputations due to accidents or medical conditions. During the development of conventional prosthetics, several challenges have been observed regarding the functional limitations, the restricted degrees of freedom compared to an actual human limb, [...] Read more.
The development of prosthetic limbs has benefited individuals who suffered amputations due to accidents or medical conditions. During the development of conventional prosthetics, several challenges have been observed regarding the functional limitations, the restricted degrees of freedom compared to an actual human limb, and the biocompatibility issues between the surface of the prosthetic limb and the human tissue or skin. These issues could result in mobility impairments due to failed mimicry of the actual stress distribution, causing discomfort, chronic pain, and tissue damage or possible infections. Especially in cases where underlying conditions exist, such as diabetes, possible trauma, or vascular disease, a failed adaptation of the prosthetic limb could lead to complete abandonment of the prosthetic part. To address these challenges, the insertion of topologically optimized parts with a biomimetic approach has allowed the optimization of the mimicry of the complex functionality behavior of the natural body parts, allowing the development of lightweight efficient anthropomorphic structures. This approach results in unified stress distribution, minimizing the practical limitations while also adding an aesthetic that aids in reducing any possible symptoms related to social anxiety and impaired social functioning. In this paper, the development of a novel anthropomorphic designed prosthetic foot with a novel Thermoplastic Polyurethane-based composite (TPU-Ground Tire Rubber 10 wt.%) was studied. The final designs contain advanced sustainable polymeric materials, gyroid lattice geometries, and Finite Element Analysis (FEA) for performance optimization. Initially, a static evaluation was conducted to replicate the phenomena at the standing process of a conventional replicated above-knee prosthetic. Furthermore, dynamic testing was conducted to assess the mechanical responses to high-intensity exercises (e.g., sprinting, jumping). The evaluation of the dynamic mechanical response of the prosthetic limb was compared to actual plantogram-derived foot pressure data during static phases (standing, light walking) and dynamic phenomena (sprinting, jumping) to address the optimal geometry and density, ensuring maximum compatibility. This innovative approach allows the development of tailored prosthetic limbs with optimal replication of the human motion patterns, resulting in improved patient outcomes and higher success rates. The proposed design presented hysteretic damping factor and energy absorption efficiency adequate for load handling of intense exercises (0.18 loss factor, 57% energy absorption efficiency) meaning that it is suitable for further research and possible upcycling. Full article
(This article belongs to the Special Issue Mechanical Properties and Functions of Bionic Materials/Structures)
Show Figures

Figure 1

16 pages, 3024 KiB  
Article
Establishing a Xanthan Gum–Locust Bean Gum Mucus Mimic for Cystic Fibrosis Models: Yield Stress and Viscoelasticity Analysis
by Rameen Taherzadeh, Nathan Wood, Zhijian Pei and Hongmin Qin
Biomimetics 2025, 10(4), 247; https://doi.org/10.3390/biomimetics10040247 - 17 Apr 2025
Viewed by 191
Abstract
Airway mucus plays a critical role in respiratory health, with diseases such as cystic fibrosis (CF) being characterized by mucus that exhibits increased viscosity and altered viscoelasticity. In vitro models that emulate these properties are essential for understanding the impact of CF mucus [...] Read more.
Airway mucus plays a critical role in respiratory health, with diseases such as cystic fibrosis (CF) being characterized by mucus that exhibits increased viscosity and altered viscoelasticity. In vitro models that emulate these properties are essential for understanding the impact of CF mucus on airway function and for the development of therapeutic strategies. This study characterizes a mucus mimic composed of xanthan gum and locust bean gum, which is designed to exhibit the rheological properties of CF mucus. Mucus concentrations ranging from 0.07% to 0.3% w/v were tested to simulate different states of bacterial infection in CF. Key rheological parameters, including yield stress, storage modulus, loss modulus, and viscosity, were measured using an HR2 rheometer with strain sweep, oscillation frequency, and flow ramp tests. The results show that increasing the concentration enhanced the mimic’s elasticity and yield stress, with values aligning with those reported for CF mucus in pathological states. These findings provide a quantitative framework for tuning the rheological properties of mucus in vitro, allowing for the simulation of CF mucus across a range of concentrations. This mucus mimic is cost-effective, readily cross-linked, and provides a foundation for future studies examining the mechanobiological effects of mucus yield stress on epithelial cell layers, particularly in the context of bacterial infections and airway disease modeling. Full article
(This article belongs to the Special Issue Mechanical Properties and Functions of Bionic Materials/Structures)
Show Figures

Figure 1

15 pages, 7406 KiB  
Article
A Finite Element Study of Simulated Fusion in an L4-L5 Model: Influence of the Combination of Materials in the Screw-and-Rod Fixation System on Reproducing Natural Bone Behavior
by Mario Ceddia, Luciano Lamberti and Bartolomeo Trentadue
Biomimetics 2025, 10(2), 72; https://doi.org/10.3390/biomimetics10020072 - 24 Jan 2025
Cited by 1 | Viewed by 866
Abstract
The mechanical properties of materials for spinal fixation can significantly affect spinal surgical outcomes. Traditional materials such as titanium exhibit high stiffness, which can lead to stress shielding and adjacent segment degeneration. This study investigates the biomechanical performance of titanium and PEEK (polyetheretherketone) [...] Read more.
The mechanical properties of materials for spinal fixation can significantly affect spinal surgical outcomes. Traditional materials such as titanium exhibit high stiffness, which can lead to stress shielding and adjacent segment degeneration. This study investigates the biomechanical performance of titanium and PEEK (polyetheretherketone) in spinal fixation using finite element analysis, through the evaluation of the Shielding Strength Factor (SSF). Methods: A three-dimensional finite element analysis (FEA) model of an L4/L5 functional spinal unit was developed to simulate the mechanical behavior of three fixation systems: titanium screws and rods (model A), titanium screws with PEEK rods (model B), and PEEK screws and rods (model C). The analysis evaluated stress distribution and load transfer under physiological conditions, in comparison with the intact spine (baseline model). Results: The analysis showed that titanium fixation systems resulted in higher stress shielding effects, with a significant difference in stress distribution compared to PEEK. The maximum stress recorded in the neutral position was 24.145 MPa for PEEK, indicating better biomechanical compatibility. Conclusions: The results suggest that PEEK may be an attractive alternative to titanium for spinal fixation, promoting more healthy load transfer and minimizing the risk of stress shielding complications. Full article
(This article belongs to the Special Issue Mechanical Properties and Functions of Bionic Materials/Structures)
Show Figures

Figure 1

20 pages, 5072 KiB  
Article
Study on the Energy Absorption Performance of Triply Periodic Minimal Surface (TPMS) Structures at Different Load-Bearing Angles
by Yongtao Lyu, Tingxiang Gong, Tao He, Hao Wang, Michael Zhuravkov and Yang Xia
Biomimetics 2024, 9(7), 392; https://doi.org/10.3390/biomimetics9070392 - 27 Jun 2024
Cited by 2 | Viewed by 2061
Abstract
As engineering demands for structural energy absorption intensify, triply periodic minimal surface (TPMS) structures, known for their light weight and exceptional energy absorption, are increasingly valued in aerospace, automotive, and shipping engineering. In this study, the energy absorption performance of three typical TPMS [...] Read more.
As engineering demands for structural energy absorption intensify, triply periodic minimal surface (TPMS) structures, known for their light weight and exceptional energy absorption, are increasingly valued in aerospace, automotive, and shipping engineering. In this study, the energy absorption performance of three typical TPMS structures was evaluated (i.e., Gyroid, Diamond, and IWP) using quasi-static compression tests at various load-bearing angles. The results showed that while there is little influence of load-bearing angles on the energy absorption performance of Gyroid structures, its energy absorption is the least of the three structures. In contrast, Diamond structures have notable fluctuation in energy absorption at certain angles. Moreover, IWP (I-graph and Wrapped Package-graph) structures, though highly angle-sensitive, achieve the highest energy absorption. Further analysis of deformation behaviors revealed that structures dominated by bending deformation are stable under multi-directional loads but less efficient in energy absorption. Conversely, structures exhibiting mainly tensile deformation, despite their load direction sensitivity, perform best in energy absorption. By integrating bending and tensile deformations, energy absorption was enhanced through a multi-stage platform response. The data and conclusions revealed in the present study can provide valuable insights for future applications of TPMS structures. Full article
(This article belongs to the Special Issue Mechanical Properties and Functions of Bionic Materials/Structures)
Show Figures

Figure 1

Back to TopTop