Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = propyl alcohol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1325 KiB  
Article
Thermodynamic Behavior of Erythromycin Thiocyanate Dihydrate in Six Pure Solvents and Two Binary Solvents
by Jin Feng, Xunhui Li, Lianjie Zhai, Peizhou Li, Ting Qin, Na Wang, Lu Zhou, Baoxin Zhang, Ting Wang, Xin Huang and Hongxun Hao
Molecules 2025, 30(11), 2424; https://doi.org/10.3390/molecules30112424 - 31 May 2025
Viewed by 448
Abstract
Thermodynamic parameters play a crucial role in analyzing and optimizing crystallization processes. In this investigation, the solubility profiles of erythromycin thiocyanate dihydrate were determined gravimetrically under atmospheric pressure (0.1 MPa) across six monosolvent systems (methanol, n-propanol, methyl acetate, ethyl acetate, propyl acetate, and [...] Read more.
Thermodynamic parameters play a crucial role in analyzing and optimizing crystallization processes. In this investigation, the solubility profiles of erythromycin thiocyanate dihydrate were determined gravimetrically under atmospheric pressure (0.1 MPa) across six monosolvent systems (methanol, n-propanol, methyl acetate, ethyl acetate, propyl acetate, and water) and two binary solvent mixtures (water–methanol and water–n-propanol), spanning a temperature range of 278.15–318.15 K. The results showed that the solubility of erythromycin thiocyanate dihydrate is apparently affected by temperature and solvent type. For pure solvents, erythromycin thiocyanate dihydrate has higher solubility in alcohol solvents, and lower solubility in ester solvents and water. In mixed solvent systems, erythromycin thiocyanate dihydrate exhibits reduced solubility with higher water content. The experimental solubility values in monosolvent systems were correlated using the Apelblat, Yaws, and Van’t Hoff models, with the Apelblat model showing the best fitting effect. The Apelblat model, Apelblat Jouyban Acre model, and CNIBS/R-K model were employed for data correlation in binary solvent systems, with the Apelblat model and CNIBS/R-K model showing better fitting results. Full article
Show Figures

Graphical abstract

16 pages, 2858 KiB  
Article
Heterobimetallic Uranium(V)-Alkali Metal Alkoxides: Expanding the Chemistry of f-Block Elements
by Andreas Lichtenberg, Lidia Inderdühnen, Aida Lichtenberg and Sanjay Mathur
Molecules 2025, 30(11), 2361; https://doi.org/10.3390/molecules30112361 - 29 May 2025
Viewed by 542
Abstract
Heterobimetallic uranium(V) alkoxides incorporating monovalent alkali metal counterions display remarkable structural versatility, dictated by the steric demands of the alkoxide ligands and the ionic radius of the alkali metal. Compounds of the general formula [UM(OtBu)6] (UM-OtBu [...] Read more.
Heterobimetallic uranium(V) alkoxides incorporating monovalent alkali metal counterions display remarkable structural versatility, dictated by the steric demands of the alkoxide ligands and the ionic radius of the alkali metal. Compounds of the general formula [UM(OtBu)6] (UM-OtBu-type: M = Na, K, Rb, Cs) were obtained by: (i) reacting [U(OtBu)5(py)] with equimolar amounts of alkali metal silylamides in tert-butyl alcohol, and (ii) oxidative transformation of [UM2(OtBu)6] (M = Na, K, Rb, Cs) upon reaction with iodine. Trans-alcoholysis of uranium heterobimetallic tert-butoxides with sterically less demanding iso-propyl alcohol yields oligomeric or polymeric iso-propoxide derivatives of the general formula [UM(OiPr)6]n, where the nuclearity depends on the alkali metal (n = 2 for M = Li; n = ∞ for M = Na, K, Rb). The capacity of alkali metal ions to adopt flexible coordination geometries results in different structural types ranging from finite clusters to infinite chains, with [ULi(OiPr)6]2 (ULi-OiPr-1) found to be dimeric, whereas [UM(OiPr)6] (UM-OiPr-2-type, M = Na, K) and [URb(OiPr)6] (URb-OiPr-3) exhibit a polymeric architecture. These findings provide fresh insights into the structure-directing influence of alkali metals on actinide coordination chemistry and broaden the chemistry of actinide alkoxides. All compounds were unambiguously characterized in both solution and solid-state through NMR and IR spectroscopic studies, as well as single crystal X-ray diffraction analysis. Full article
Show Figures

Graphical abstract

13 pages, 2782 KiB  
Article
A Study of the Impact of Additives on the Physicochemical Properties of Eptifibatide-Loaded Microspheres for Drug Delivery
by Anand Kyatanwar and Bala Prabhakar
J. Pharm. BioTech Ind. 2025, 2(2), 8; https://doi.org/10.3390/jpbi2020008 - 14 May 2025
Viewed by 386
Abstract
Poor drug entrapment, burst release, and variable drug release profiles are the most critical challenges associated with biodegradable-polymer-based microspheres. In this study, biodegradable-polymer-based microspheres were used to entrap an antiplatelet drug, eptifibatide, using a single-emulsion solvent evaporation method. Critical challenges associated with biodegradable-polymer-based [...] Read more.
Poor drug entrapment, burst release, and variable drug release profiles are the most critical challenges associated with biodegradable-polymer-based microspheres. In this study, biodegradable-polymer-based microspheres were used to entrap an antiplatelet drug, eptifibatide, using a single-emulsion solvent evaporation method. Critical challenges associated with biodegradable-polymer-based microspheres were addressed by incorporating different additives in the drug or polymer phase. Additives such as hydroxy propyl beta cyclodextrins (HPβCD), carboxy methyl cellulose sodium (Na CMC), and trehalose were added to the drug phase to evaluate their impact on the entrapment and stability of eptifibatide. The effect of the addition of additives such as polyvinyl alcohol (PVA), polyethylene glycol-400 (PEG-400), and methoxy polyethylene glycol phospholipid dimyristoyl phosphatidylethanolamine (mPEG-2000-DMPE, Na) to the polymer phase on the release profile of eptifibatide was evaluated. The inclusion of HPβCD resulted in good drug entrapment and helped control the initial unwanted burst release. Including Na CMC increased eptifibatide entrapment from 75% to 95%. Trehalose helped prevent the degradation of eptifibatide during lyophilization, and including PVA and PEG-400 reduced the lag phase and led to a controlled-release profile. Thus, including additives in the formulation can effectively improve the drug load and address issues associated with biodegradable-polymer-based microspheres. Full article
Show Figures

Figure 1

16 pages, 1869 KiB  
Article
New UB006 Derivatives With Higher Solubility and Cytotoxic Activity in Ovarian Cancer Cells
by Marc Reina, Xavier Ariza, Dolors Serra, Jordi Garcia and Laura Herrero
Pharmaceuticals 2025, 18(2), 194; https://doi.org/10.3390/ph18020194 - 31 Jan 2025
Viewed by 792
Abstract
Background/Objectives: The compound (±)-UB006 ((4SR,5SR)-4-(hydroxymethyl)-3-methylene-5-octyldihydrofuran-2(3H)-one) is a promising anti-cancer molecule. The enantiomer (–)-UB006 displays a potent cytotoxic effect in several tumor cell lines, particularly the ovarian cancer OVCAR-3 cell line, with a 40-fold increase in potency compared with the fatty acid [...] Read more.
Background/Objectives: The compound (±)-UB006 ((4SR,5SR)-4-(hydroxymethyl)-3-methylene-5-octyldihydrofuran-2(3H)-one) is a promising anti-cancer molecule. The enantiomer (–)-UB006 displays a potent cytotoxic effect in several tumor cell lines, particularly the ovarian cancer OVCAR-3 cell line, with a 40-fold increase in potency compared with the fatty acid synthase (FAS) inhibitor C75. Furthermore, in vivo, (–)-UB006 reduced the tumor burden in neuroblastoma xenografts. This effect was attributed to FAS inhibition and upregulation of apoptotic markers. However, CoA adducts of UB006 presented low solubility. Methods: We synthesized several (±)-UB006 derivatives by elongating the carbon chain of the primary alcohol and/or by adding hydroxyl groups with the aim of finding more potent and soluble anti-cancer compounds. Results: Our results showed a decrease in cytotoxicity when the carbon chain was elongated by more than two carbons. However, ethyl or propyl polyhydroxylated four-branched compounds showed an increased or maintained potency and solubility. The most promising compound was (±)-UB035 (IC50: 2.1 ± 0.2 µM), with a 2.5-fold increase in cytotoxicity in the OVCAR-3 cell line and a >4-fold increase in solubility (>2 mM) compared with (±)-UB006. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

16 pages, 3776 KiB  
Article
Study on CO2 Corrosion Behavior of Underground Gas Storage Pipe Columns and Establishment of Corrosion Inhibition System
by Yifeng Ma and Jianwei Gu
Processes 2024, 12(12), 2868; https://doi.org/10.3390/pr12122868 - 14 Dec 2024
Viewed by 839
Abstract
Herein, we take an underground natural gas storage in the Ordos Basin as an example to explore the influence of temperature, CO2 flow rate, CO2 partial pressure, and chloride ion concentration on the corrosion rate of N80 and P110 steels in [...] Read more.
Herein, we take an underground natural gas storage in the Ordos Basin as an example to explore the influence of temperature, CO2 flow rate, CO2 partial pressure, and chloride ion concentration on the corrosion rate of N80 and P110 steels in CaCl2 brine type. Meanwhile, in order to reduce the amount of chemical corrosion inhibitors and improve performance, a novel corrosion inhibitor with a quinoline quaternary ammonium structure named YS-QB was synthesized from 1-methyl-1,2,3,4-tetrahydroisoquinoline, epichlorohydrin, and oleic acid amide propyl dimethylamine. Under normal and high-pressure environments, YS-QB exhibits a superior corrosion inhibition effect to the market product of CX-1. In order to further reduce the amount of corrosion inhibitor and improve the corrosion inhibition effect, orthogonal experiments were conducted to optimize the formula system, and the optimal composite system was finally obtained by forming YS-QB, propargyl alcohol, hexamethylenetetramine, and isopropanol in a mass ratio of 12:1:1:2. At 80 °C, a dosage of 30 mg/L can suppress the CO2 corrosion rate below 0.076 mm/a, while a dosage of 60 mg/L can suppress the CO2 corrosion rate below 0.076 mm/a at a high-pressure environment of 120 °C. Combining weightlessness and electrochemical experiments, it is found that the composite corrosion inhibitor performs best when the dosage reached 100 mg/L, and a further increase in the dosage weakens the corrosion inhibition capacity. Based on the polarization curve changes with the dosage of the composite corrosion inhibitor, it can be determined that the final obtained composite corrosion inhibitor system was a cathodic corrosion inhibitor. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

20 pages, 4065 KiB  
Article
Solid-State Structures and Properties of Lignin Hydrogenolysis Oil Compounds: Shedding a Unique Light on Lignin Valorization
by Oliver J. Driscoll, Kristof Van Hecke, Christophe M. L. Vande Velde, Frank Blockhuys, Maarten Rubens, Tatsuhiro Kuwaba, Daniel J. van de Pas, Walter Eevers, Richard Vendamme and Elias Feghali
Int. J. Mol. Sci. 2024, 25(19), 10810; https://doi.org/10.3390/ijms251910810 - 8 Oct 2024
Viewed by 1691
Abstract
This article explores the important, and yet often overlooked, solid-state structures of selected bioaromatic compounds commonly found in lignin hydrogenolysis oil, a renewable bio-oil that holds great promise to substitute fossil-based aromatic molecules in a wide range of chemical and material industrial applications. [...] Read more.
This article explores the important, and yet often overlooked, solid-state structures of selected bioaromatic compounds commonly found in lignin hydrogenolysis oil, a renewable bio-oil that holds great promise to substitute fossil-based aromatic molecules in a wide range of chemical and material industrial applications. At first, single-crystal X-ray diffraction (SCXRD) was applied to the lignin model compounds, dihydroconiferyl alcohol, propyl guaiacol, and eugenol dimers, in order to elucidate the fundamental molecular interactions present in such small lignin-derived polyols. Then, considering the potential use of these lignin-derived molecules as building blocks for polymer applications, structural analysis was also performed for two chemically modified model compounds, i.e., the methylene-bridging propyl-guaiacol dimer and propyl guaiacol and eugenol glycidyl ethers, which can be used as precursors in phenolic and epoxy resins, respectively, thus providing additional information on how the molecular packing is altered following chemical modifications. In addition to the expected H-bonding interactions, other interactions such as π–π stacking and C–H∙∙∙π were observed. This resulted in unexpected trends in the tendencies towards the crystallization of lignin compounds. This was further explored with the aid of DSC analysis and CLP intermolecular energy calculations, where the relationship between the major interactions observed in all the SCXRD solid-state structures and their physico-chemical properties were evaluated alongside other non-crystallizable lignin model compounds. Beyond lignin model compounds, our findings could also provide important insights into the solid-state structure and the molecular organization of more complex lignin fragments, paving the way to the more efficient design of lignin-based materials with improved properties for industrial applications or improving downstream processing of lignin oils in biorefining processes, such as in enhancing the separation and isolation of specific bioaromatic compounds). Full article
(This article belongs to the Special Issue Valorization of Lignocellulosic Biomass)
Show Figures

Graphical abstract

5 pages, 402 KiB  
Short Note
rac-2-(2′-Ferrocenyl-2′-hydroxy-n-propyl)-1,3-benzothiazole
by Martin G. Zhen, Kathleen L. May and Robert A. Gossage
Molbank 2024, 2024(4), M1893; https://doi.org/10.3390/M1893 - 30 Sep 2024
Viewed by 1063
Abstract
The synthesis and characterisation (UV-Vis, IR, HRESI-MS, 1H and 13C NMR spectroscopies, electrochemistry) is reported of the novel title material (1: alternatively named rac-1-(2′-benzothiazolyl)-2-ferrocenyl-2-propanol): a rare example of a ferrocenyl-benzothiazole hybrid species. Compound 1 is produced by the [...] Read more.
The synthesis and characterisation (UV-Vis, IR, HRESI-MS, 1H and 13C NMR spectroscopies, electrochemistry) is reported of the novel title material (1: alternatively named rac-1-(2′-benzothiazolyl)-2-ferrocenyl-2-propanol): a rare example of a ferrocenyl-benzothiazole hybrid species. Compound 1 is produced by the low temperature reaction of acetylferrocene (3) with a solution of the methyl anion derived via the deprotonation of 2-methyl-1,3-benzothiazole. The yield of 1 is moderate (34%) after purification and is an air and thermally stable solid under ambient conditions. Attempts to sublime 1, however, result in decomposition with one of the products being identified (NMR) as 3. The spectroscopic features of 1 are presented. Attempts to obtain suitable crystalline material of 1 for a single crystal X-ray diffraction study were unfortunately unsuccessful. Compound 1 also does not form stable coordination complexes with various metal salts (e.g., Ni[2+], Co[2+], etc.) under the conditions tested. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Scheme 1

14 pages, 1113 KiB  
Article
Impact of Nitrogen Supplementation and Reduced Particle Size on Alcoholic Fermentation and Aroma in Nitrogen-Poor Apple and Pear Mashes
by Ana Schön, Julia Switulla, Larissa Luksch, Julia Pesl, Ralf Kölling and Daniel Einfalt
Beverages 2024, 10(4), 93; https://doi.org/10.3390/beverages10040093 - 30 Sep 2024
Viewed by 1564
Abstract
The aim of this study was to enhance the nitrogen supply through three different mash treatments and to investigate their effects on fermentation dynamics, yeast biomass accumulation, and the concentration of aroma-active volatiles in nitrogen-poor apple and pear mashes. In terms of nitrogen [...] Read more.
The aim of this study was to enhance the nitrogen supply through three different mash treatments and to investigate their effects on fermentation dynamics, yeast biomass accumulation, and the concentration of aroma-active volatiles in nitrogen-poor apple and pear mashes. In terms of nitrogen supplementation, the addition of diammonium phosphate (DAP) and amino acids (AS) accelerated fermentation and reduced the fermentation duration by 4–6 days in three out of four investigated fruit varieties. One pear variety showed sluggish fermentation, which was slightly improved by reducing the particle size (<3 mm) and significantly improved by nitrogen addition. Notably, AS supplementation resulted in a significant reduction in residual sugar concentrations and led to the highest yeast biomass accumulation across all four fruit mashes. Nitrogen supplementation significantly altered the composition of aroma-active volatiles, notably by increasing higher alcohols such as propyl alcohol, 2-methylpropanol, isoamyl alcohol, and 2-methylbutanol. The addition of AS was more effective in increasing higher alcohols, such as isoamyl alcohol and phenethyl alcohol, while decreasing the off-flavor acetaldehyde. Full article
Show Figures

Figure 1

19 pages, 1957 KiB  
Article
Study of the Optical and Acoustic Parameters and Surface Tensions of 3,4,4′-Trichlorodiphenylurea in Binary Mixtures with Different Organic Solvents between (293.15 and 323.15) K
by Florinela Sirbu, Alina Catrinel Ion and Ion Ion
Molecules 2024, 29(19), 4521; https://doi.org/10.3390/molecules29194521 - 24 Sep 2024
Viewed by 977
Abstract
In the present investigations, the density, refractive index and speed of sound for pure organic solvents and binary liquid mixtures of 3,4,4′-Trichlorodiphenylurea between (293.15 and 323.15) K temperatures have been measured up to the solubility limit. From these experimental results, the acoustic impedance, [...] Read more.
In the present investigations, the density, refractive index and speed of sound for pure organic solvents and binary liquid mixtures of 3,4,4′-Trichlorodiphenylurea between (293.15 and 323.15) K temperatures have been measured up to the solubility limit. From these experimental results, the acoustic impedance, the isentropic compressibility coefficient, the space-filling factor, the specific refraction, the relaxation strength, the intermolecular free length, the surface tension, the solubility and the solvation number of triclocarban in six organic solvents, namely ethyl alcohol, n-Propyl alcohol, n-Butyl alcohol, Tetrahydrofuran, N,N-Dimethylformamide and N,N-Dimethylacetamide have been computed. The studied acoustic and optical parameters and surface tension behavior versus temperature in pure solvents and binary mixtures were useful in understanding the nature and the extent of interaction between the solute and solvent molecules. The results also show the presence of higher degree of interaction between triclocarban and nitrogen-containing solvents in comparison with other solvents. The distribution of triclocarban in water/organic solvent mixtures is frequently encountered in wastewater treatment plants. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

14 pages, 1830 KiB  
Article
Production of Esters in Escherichia coli Using Citrate Synthase Variants
by Jacoby C. Shipmon, Pasupathi Rathinasabapathi, Michael L. Broich, Hemansi and Mark A. Eiteman
Microorganisms 2024, 12(7), 1338; https://doi.org/10.3390/microorganisms12071338 - 29 Jun 2024
Viewed by 1929
Abstract
Acetate esters comprise a wide range of products including fragrances and industrial solvents. Biosynthesis of esters offers a promising alternative to chemical synthesis because such routes use renewable carbohydrate resources and minimize the generation of waste. One biochemical method for ester formation relies [...] Read more.
Acetate esters comprise a wide range of products including fragrances and industrial solvents. Biosynthesis of esters offers a promising alternative to chemical synthesis because such routes use renewable carbohydrate resources and minimize the generation of waste. One biochemical method for ester formation relies on the ATF1 gene from Saccharomyces cerevisiae, which encodes alcohol-O-acyltransferase (AAT) which converts acetyl-CoA and an exogenously supplied alcohol into the ester. In this study, the formation of several acetate esters via AAT was examined in Escherichia coli chromosomally expressing citrate synthase variants, which create a metabolic bottleneck at acetyl-CoA. In shake flask cultures, variant strains generated more acetate esters than the strains expressing the wild-type citrate synthase. In a controlled bioreactor, E. coli GltA[A267T] generated 3.9 g propyl acetate in 13 h, corresponding to a yield of 0.155 g propyl acetate/g glucose, which is 18% greater than that obtained by the wild-type GltA control. These results demonstrate the ability of citrate synthase variants to redistribute carbon from central metabolism into acetyl-CoA-derived biochemicals. Full article
Show Figures

Figure 1

17 pages, 4603 KiB  
Article
Analysis of the Differences in Volatile Organic Compounds in Different Rice Varieties Based on GC-IMS Technology Combined with Multivariate Statistical Modelling
by Jin Chen, Ying Liu, Mi Yang, Xinmin Shi, Yuqin Mei, Juan Li, Chunqi Yang, Shihuang Pu and Jiancheng Wen
Molecules 2023, 28(22), 7566; https://doi.org/10.3390/molecules28227566 - 13 Nov 2023
Cited by 12 | Viewed by 2000
Abstract
In order to investigate the flavour characteristics of aromatic, glutinous, and nonaromatic rice, gas chromatography–ion mobility spectrometry (GC-IMS) was used to analyse the differences in volatile organic compounds (VOCs) amongst different rice varieties. The results showed that 103 signal peaks were detected in [...] Read more.
In order to investigate the flavour characteristics of aromatic, glutinous, and nonaromatic rice, gas chromatography–ion mobility spectrometry (GC-IMS) was used to analyse the differences in volatile organic compounds (VOCs) amongst different rice varieties. The results showed that 103 signal peaks were detected in these rice varieties, and 91 volatile flavour substances were identified. Amongst them, 28 aldehydes (28.89~31.17%), 24 alcohols (34.85~40.52%), 14 ketones (12.26~14.74%), 12 esters (2.30~4.15%), 5 acids (7.80~10.85%), 3 furans (0.30~0.68%), 3 terpenes (0.34~0.64%), and 2 species of ethers (0.80~1.78%) were detected. SIMCA14.1 was used to perform principal component analysis (PCA) and orthogonal partial least squares discriminant analysis, and some potential character markers (VIP > 1) were further screened out of the 91 flavour substances identified based on the variable important projections, including ethanol, 1-hexanol, hexanal, heptanal, nonanal, (E)-2-heptenal, octanal, trans-2-octenal, pentanal, acetone, 6-methyl-5-hepten-2-one, ethyl acetate, propyl acetate, acetic acid, and dimethyl sulphide. Based on the established fingerprint information, combined with principal component analysis and orthogonal partial least squares discriminant analysis, different rice varieties were also effectively classified, and the results of this study provide data references for the improvement in aromatic rice varieties. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

11 pages, 3809 KiB  
Article
Inhibiting Biofilm Formation via Simultaneous Application of Nitric Oxide and Quorum Quenching Bacteria
by Youkyoung Kim, Parthiban Anburajan, Hyeok Kim and Hyun-Suk Oh
Membranes 2023, 13(10), 836; https://doi.org/10.3390/membranes13100836 - 20 Oct 2023
Cited by 2 | Viewed by 2251
Abstract
Membrane biofouling is an inevitable challenge in membrane-based water treatment systems such as membrane bioreactors. Recent studies have shown that biological approaches based on bacterial signaling can effectively control biofilm formation. Quorum quenching (QQ) is known to inhibit biofilm growth by disrupting quorum [...] Read more.
Membrane biofouling is an inevitable challenge in membrane-based water treatment systems such as membrane bioreactors. Recent studies have shown that biological approaches based on bacterial signaling can effectively control biofilm formation. Quorum quenching (QQ) is known to inhibit biofilm growth by disrupting quorum sensing (QS) signaling, while nitric oxide (NO) signaling helps to disperse biofilms. In this study, batch biofilm experiments were conducted to investigate the impact of simultaneously applying NO signaling and QQ for biofilm control using Pseudomonas aeruginosa PAO1 as a model microorganism. The NO treatment involved the injection of NONOates (NO donor compounds) into mature biofilms, while QQ was implemented by immobilizing QQ bacteria (Escherichia coli TOP10-AiiO or Rhodococcus sp. BH4) in alginate or polyvinyl alcohol/alginate beads to preserve the QQ activity. When QQ beads were applied together with (Z)-1-[N-(3-aminopropyl)-N-(n-propyl) amino]diazen-1-ium-1,2-diolate (PAPA NONOate), they achieved a 39.0% to 71.3% reduction in biofilm formation, which was substantially higher compared to their individual applications (16.0% to 54.4%). These findings highlight the significant potential of combining QQ and NO technologies for effective biofilm control across a variety of processes that require enhanced biofilm inhibition. Full article
Show Figures

Figure 1

21 pages, 3765 KiB  
Article
Amine-Grafted Pomegranate Peels for the Simultaneous Removal of Nitrate and Phosphate Anions from Wastewater
by Wafae Abbach, Charaf Laghlimi and Jalal Isaad
Sustainability 2023, 15(18), 13991; https://doi.org/10.3390/su151813991 - 21 Sep 2023
Cited by 4 | Viewed by 1661
Abstract
Pomegranate peel (PP), a by-product of agro-food consumption, has a low adsorption capacity for nitrate and phosphate ions in aqueous media, but its surface is very rich in alcohol functional groups. In this work, the surface of pomegranate peels was functionalized by chemo-grafting [...] Read more.
Pomegranate peel (PP), a by-product of agro-food consumption, has a low adsorption capacity for nitrate and phosphate ions in aqueous media, but its surface is very rich in alcohol functional groups. In this work, the surface of pomegranate peels was functionalized by chemo-grafting 3-(2-Aminoethylamino) propyl] trimethoxy silane (AEAPTES) using the availability of alcohol groups to increase the adsorption capacity of the resulting adsorbent (PP/AEAPTES) towards nitrate and phosphate ions. The prepared PP/AEAPTES adsorbent was analyzed by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Zeta potential, and X-ray photoelectron spectrometry (XPS). Under experimental conditions, the adsorption capacity of PP/AEAPTES has been found to be 124.57 mg/g and 94.65 mg/g for NO3 and PO43−, respectively, at pH 6 over a wide temperature range, and adsorption is exothermic for NO3 and endothermic for PO43−, as well as spontaneous and physical in nature. The adsorptions of NO3 and PO43− were also correctly described by the Langmuir isotherm and followed the pseudo-second-order model. The ability of PP/AEAPTES to adsorb NO3 and PO43− ions under real conditions was evaluated, and efficient regeneration and repetitive use of PP/AEAPTES was successfully achieved up to 5 cycles. Full article
(This article belongs to the Special Issue Emerging Sustainable Materials for Environmental Engineering)
Show Figures

Figure 1

16 pages, 4730 KiB  
Article
Synthesis, Characterization and Evaluation of a Novel Tetraphenolic Compound as a Potential Antioxidant
by Mengqi Xu, Pengcheng Meng, Hongyan Wang, Jun Liu, Tao Guo, Zhenjie Zhu and Yanlan Bi
Antioxidants 2023, 12(7), 1473; https://doi.org/10.3390/antiox12071473 - 22 Jul 2023
Cited by 10 | Viewed by 2839
Abstract
A novel antioxidant containing four hydroxyl groups, namely 2,2′-(2-methylpropane-1,3-diyl)bis(hydroquinone) (MPBHQ), was synthesized using hydroquinone and methylallyl alcohol as the raw materials, phosphoric acid as the catalyst, and toluene as the solvent system. The structure of MPBHQ was characterized by mass spectrometry, nuclear magnetic [...] Read more.
A novel antioxidant containing four hydroxyl groups, namely 2,2′-(2-methylpropane-1,3-diyl)bis(hydroquinone) (MPBHQ), was synthesized using hydroquinone and methylallyl alcohol as the raw materials, phosphoric acid as the catalyst, and toluene as the solvent system. The structure of MPBHQ was characterized by mass spectrometry, nuclear magnetic resonance, ultraviolet spectroscopy, and infrared spectroscopy. The results showed that MPBHQ has a good radical scavenging effect, as measured by the ORAC assay, DPPH radical scavenging assay, ABST radical scavenging assay, and Rancimat test. In fatty acid methyl ester and lard without exogenous antioxidants, MPBHQ showed better antioxidant performance than butylated hydroxytoluene (BHT), hydroquinone (HQ), tert-butyl hydroquinone (TBHQ), and propyl gallate (PG), meeting the need for a new antioxidant with better properties to ensure the oxidative stability of lipids and biodiesel. Full article
(This article belongs to the Special Issue Antioxidants and Oxidative Stability in Fats and Oils)
Show Figures

Graphical abstract

16 pages, 1874 KiB  
Article
Vanadium Complexes Derived from O,N,O-tridentate 6-bis(o-hydroxyalkyl/aryl)pyridines: Structural Studies and Use in the Ring-Opening Polymerization of ε-Caprolactone and Ethylene Polymerization
by Mark R. J. Elsegood, William Clegg and Carl Redshaw
Catalysts 2023, 13(6), 988; https://doi.org/10.3390/catal13060988 - 9 Jun 2023
Cited by 4 | Viewed by 2071
Abstract
Interaction of [VO(OiPr)3] with 6-bis(o-hydroxyaryl)pyridine, 2,6-{HOC(Ph)2CH2}2(NC5H3), LH2, afforded [VO(OiPr)L] (1) in good yield. The reaction of LNa2, generated in-situ [...] Read more.
Interaction of [VO(OiPr)3] with 6-bis(o-hydroxyaryl)pyridine, 2,6-{HOC(Ph)2CH2}2(NC5H3), LH2, afforded [VO(OiPr)L] (1) in good yield. The reaction of LNa2, generated in-situ from LH2 and NaH, with [VCl3(THF)3] led to the isolation of [VL2] (2) in which the pyridyl nitrogen atoms are cis; a regioisomer 3∙2THF, in which the pyridyl nitrogen atoms are trans, was isolated when using [VCl2(TMEDA)2]. The reaction of the 2,6-bis(o-hydroxyalkyl)pyridine {HOC(iPr)2CH2}2(NC5H3), L1H2, with [VO(OR)3] (R = nPr, iPr) led, following work-up, to [VO(OR)L1] (R = nPr (4), iPr (5)). Use of the bis(methylpyridine)-substituted alcohol (tBu)C(OH)[CH2(C5H3Me-5)]2, L2H, with [VO(OR)3] (R = Et, iPr) led to the isolation of [VO(μ-O)(L2)]2 (6). Complexes 1 to 6 have been screened for their ability to act as pre-catalysts for the ring opening polymerization (ROP) of ε-caprolactone (ε-CL), δ-valerolactone (δ-VL), and rac-lactide (r-LA) and compared against the known catalyst [Ti(OiPr)2L] (I). Complexes 1, 46 were also screened as catalysts for the polymerization of ethylene (in the presence of dimethylaluminium chloride/ethyltrichloroacetate). For the ROP of ε-CL, in toluene solution, conversions were low to moderate, affording low molecular weight products, whilst as melts, the systems were more active and afforded higher molecular weight polymers. For δ-VL, the systems run as melts afforded good conversions, but in the case of r-LA, all systems as melts exhibited low conversions (<10%) except for 6 (<54%) and I (<39%). In the case of ethylene polymerization, the highest activity (8600 Kg·mol·V−1bar−1h−1) was exhibited by 1 in dichloromethane, affording high molecular weight, linear polyethylene at 70 °C. In the case of 4 and 5, which contain the propyl-bearing chelates, the activities were somewhat lower (≤1500 Kg·mol·V−1bar−1h−1), whilst 6 was found to be inactive. Full article
(This article belongs to the Special Issue State of the Art in Molecular Catalysis in Europe)
Show Figures

Graphical abstract

Back to TopTop