Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = proline analogue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1485 KB  
Article
Mode of Action of Toxin 6-Hydroxydopamine in SH-SY5Y Using NMR Metabolomics
by Roktima Tamuli, George D. Mellick, Horst Joachim Schirra and Yunjiang Feng
Molecules 2025, 30(16), 3352; https://doi.org/10.3390/molecules30163352 - 12 Aug 2025
Cited by 1 | Viewed by 1646
Abstract
This study used NMR-based metabolomics to investigate the mode of action (MoA) of 6-hydroxydopamine (6-OHDA) toxicity in the SH-SY5Y neuroblastoma cell model. 6-OHDA, a structural analogue of dopamine, has been used to create a Parkinson’s disease model since 1968. Its selective uptake via [...] Read more.
This study used NMR-based metabolomics to investigate the mode of action (MoA) of 6-hydroxydopamine (6-OHDA) toxicity in the SH-SY5Y neuroblastoma cell model. 6-OHDA, a structural analogue of dopamine, has been used to create a Parkinson’s disease model since 1968. Its selective uptake via catecholaminergic transporters leads to intracellular oxidative stress and mitochondrial dysfunction. SH-SY5Y cells were treated with 6-OHDA at its IC50 concentration of 60 μM, and samples of treated and untreated groups were collected after 24 h. The endo metabolome was extracted using a methanol–water mixture, while the exo metabolome was represented by the culture media. Further, endo- and exo metabolomes of treated and untreated cells were analysed for metabolic changes. Our results demonstrated significantly high levels of glutathione, acetate, propionate, and NAD+, which are oxidative stress markers, enhanced due to ROS production in the system. In addition, alteration of myoinositol, taurine, and o-phosphocholine could be due to oxidative stress-induced membrane potential disturbance. Mitochondrial complex I inhibition causes electron transport chain (ETC) dysfunction. Changes in key metabolites of glycolysis and energy metabolism, such as glucose, pyruvate, lactate, creatine, creatine phosphate, glycine, and methionine, respectively, demonstrated ETC dysfunction. We also identified changes in amino acids such as glutamine, glutamate, and proline, followed by nucleotide metabolism such as uridine and uridine monophosphate levels, which were decreased in the treated group. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

14 pages, 2264 KB  
Article
The Beneficial Impact of a Novel Pancreatic Polypeptide Analogue on Islet Cell Lineage
by Wuyun Zhu, Neil Tanday, Peter R. Flatt and Nigel Irwin
Int. J. Mol. Sci. 2025, 26(9), 4215; https://doi.org/10.3390/ijms26094215 - 29 Apr 2025
Cited by 2 | Viewed by 1231
Abstract
(Proline3)PP, or (P3)PP, is an enzymatically stable, neuropeptide Y4 receptor (NPY4R)-selective, pancreatic polypeptide (PP) analogue with established weight-lowering and pancreatic islet morphology benefits in obesity-diabetes. In the current study, we now investigate the impact of twice-daily (P3)PP administration (25 [...] Read more.
(Proline3)PP, or (P3)PP, is an enzymatically stable, neuropeptide Y4 receptor (NPY4R)-selective, pancreatic polypeptide (PP) analogue with established weight-lowering and pancreatic islet morphology benefits in obesity-diabetes. In the current study, we now investigate the impact of twice-daily (P3)PP administration (25 nmol/kg) for 11 days on islet cell lineage, using streptozotocin (STZ) diabetic Ins1Cre/+;Rosa26-eYFP and GluCreERT2;Rosa26-eYFP transgenic mice with enhanced yellow fluorescent protein (eYFP) labelling of beta-cell and alpha-cells, respectively. (P3)PP had no obvious impact on body weight or blood glucose levels in STZ-diabetic mice at the dose tested, but did return food intake towards control levels in Ins1Cre/+;Rosa26-eYFP mice. Notably, pancreatic insulin content was augmented by (P3)PP treatment in both Ins1Cre/+;Rosa26-eYFP and GluCreERT2;Rosa26-eYFP mice, alongside enhanced beta-cell area and reduced alpha-cell area. Beneficial (P3)PP-induced changes on islet morphology were consistently associated with decreased beta-cell apoptosis, while (P3)PP also augmented beta-cell proliferation in Ins1Cre/+;Rosa26-eYFP mice. Alpha-cell turnover rates were returned towards healthy control levels by (P3)PP intervention in both mouse models. In terms of islet cell lineage, increased transition of alpha- to beta-cells as well as decreased beta- to alpha-cell differentiation were shown to contribute towards the enhancement of beta-cell area in (P3)PP-treated mice. Together these data reveal, for the first time, sustained NPY4R activation positively modulates beta-cell turnover, as well as islet cell plasticity, to help preserve pancreatic islet architecture following STZ-induced metabolic stress. Full article
(This article belongs to the Special Issue Diabetes and Metabolic Dysfunction)
Show Figures

Figure 1

29 pages, 7484 KB  
Review
Proline-Rich Antimicrobial Peptides from Invertebrates
by Sylwia Stączek, Magdalena Kunat-Budzyńska, Małgorzata Cytryńska and Agnieszka Zdybicka-Barabas
Molecules 2024, 29(24), 5864; https://doi.org/10.3390/molecules29245864 - 12 Dec 2024
Cited by 11 | Viewed by 4268
Abstract
Antimicrobial peptides (AMPs) constitute a large and diverse group of molecules with antibacterial, antifungal, antiviral, antiprotozoan, and anticancer activity. In animals, they are key components of innate immunity involved in fighting against various pathogens. Proline-rich (Pr) AMPs are characterized by a high content [...] Read more.
Antimicrobial peptides (AMPs) constitute a large and diverse group of molecules with antibacterial, antifungal, antiviral, antiprotozoan, and anticancer activity. In animals, they are key components of innate immunity involved in fighting against various pathogens. Proline-rich (Pr) AMPs are characterized by a high content of proline (and arginine) residues that can be organized into Pro-Arg-Pro motifs. Such peptides have been described in many invertebrates (annelids, crustaceans, insects, mollusks) and some vertebrates (mammals). The main objective of this review is to present the diversity of invertebrate PrAMPs, which are associated with the presence of cysteine-rich domains or whey acidic protein domains in the molecular structure, in addition to the presence of characteristic proline-rich regions. Moreover, PrAMPs can target intracellular structures in bacteria, e.g., 70S ribosomes and/or heat shock protein DnaK, leading to the inhibition of protein synthesis and accumulation of misfolded polypeptides in the cell. This unique mechanism of action makes it difficult for pathogens to acquire resistance to this type of molecule. Invertebrate PrAMPs have become the basis for the development of new synthetic analogues effective in combating pathogens. Due to their great diversity, new highly active molecules are still being searched for among PrAMPs from invertebrates. Full article
Show Figures

Graphical abstract

14 pages, 2818 KB  
Article
Structure-Activity Relationship Study of Majusculamide D: Overcoming Metabolic Instability and Severe Toxicity with a Fluoro Analogue
by Xiuhe Zhao, Xiaonan Xi, Mingxiao Zhang, Mengxue Lv, Xiang Zhang, Yaxin Lu, Liang Wang and Yue Chen
Mar. Drugs 2024, 22(12), 537; https://doi.org/10.3390/md22120537 - 29 Nov 2024
Cited by 5 | Viewed by 1741
Abstract
Majusculamide D, isolated from the marine cyanobacterium Moorea producens, is an anticancer lipopentapeptide consisting of fatty acid, tripeptide, and pyrrolyl proline moieties. In this work, by utilizing a convergent synthetic approach, late-stage modification, and bioisostere strategy, 26 majusculamide D analogues were synthesized, [...] Read more.
Majusculamide D, isolated from the marine cyanobacterium Moorea producens, is an anticancer lipopentapeptide consisting of fatty acid, tripeptide, and pyrrolyl proline moieties. In this work, by utilizing a convergent synthetic approach, late-stage modification, and bioisostere strategy, 26 majusculamide D analogues were synthesized, and two (1i and 1j) demonstrated IC50 values < 1 nM against PANC-1 cancer cells. The results summarized a preliminary structure-activity relationship mainly at the C23, C4, C34, and C10 sites. A series of in vitro assays, including wound healing, transwell, clone formation, EdU, and western blot, confirmed that majusculamide D inhibited the migration, invasion, and proliferation of pancreatic cancer cells. The optimized fluorinated analogue 1n demonstrated a notable enhancement in stability during the mouse plasma assay (>50% left after 24 h), exhibited tumor-suppressive effects (51.5% at a dosage of 5 mg/kg), and successfully mitigated the severe toxicity (no mouse dead) observed in the group treated with majusculamide D (3 mice dead) in a xenografted mouse model. Full article
Show Figures

Graphical abstract

17 pages, 5117 KB  
Article
Combined Pretreatment with Bioequivalent Doses of Plant Growth Regulators Alleviates Dehydration Stress in Lactuca sativa
by Irina I. Vaseva, Iskren Sergiev, Dessislava Todorova, Martynas Urbutis, Giedrė Samuolienė and Lyudmila Simova-Stoilova
Horticulturae 2024, 10(6), 544; https://doi.org/10.3390/horticulturae10060544 - 23 May 2024
Cited by 1 | Viewed by 2113
Abstract
Plant hormones regulate adaptive responses to various biotic and abiotic stress factors. Applied exogenously, they trigger the natural plant defense mechanisms, a feature that could be implemented in strategies for supporting crop resilience. The potential of the exogenous cytokinin-like acting compound (kinetin), the [...] Read more.
Plant hormones regulate adaptive responses to various biotic and abiotic stress factors. Applied exogenously, they trigger the natural plant defense mechanisms, a feature that could be implemented in strategies for supporting crop resilience. The potential of the exogenous cytokinin-like acting compound (kinetin), the auxin analogue 1-naphtyl acetic acid (NAA), abscisic acid (ABA) and the ethyleneprecursor 1-aminocyclopropane-1-carboxylic acid (ACC) to mitigate dehydration was tested on Lactuca sativa (lettuce) grown on 12% polyethylene glycol (PEG). Priming with different blends containing these plant growth regulators (PGRs) applied in bioequivalent concentrations was evaluated through biometric measurements and biochemical analyses. The combined treatment with the four compounds exhibited the best dehydration protective effect. The antioxidative enzyme profiling of the PGR-primed individuals revealed increased superoxide dismutase (SOD), catalase and peroxidase activity in the leaves. Immunodetection of higher levels of the rate-limiting enzyme for proline biosynthesis (delta-pyroline-5-carboxylate synthase) in the primed plants coincided with a significantly higher content of the amino acid measured in the leaves. These plants also accumulated particular dehydrin types, which may have contributed to the observed stress-relieving effect. The four-component mix applied by spraying or through the roots exerted similar stress-mitigating properties on soil-grown lettuce subjected to moderate drought. Full article
(This article belongs to the Special Issue Horticultural Production under Drought Stress)
Show Figures

Graphical abstract

15 pages, 3633 KB  
Article
Proline and Proline Analogues Improve Development of Mouse Preimplantation Embryos by Protecting Them against Oxidative Stress
by Madeleine L. M. Hardy, Dheerja Lakhiani, Michael B. Morris and Margot L. Day
Cells 2023, 12(22), 2640; https://doi.org/10.3390/cells12222640 - 16 Nov 2023
Cited by 8 | Viewed by 3079
Abstract
The culture of embryos in the non-essential amino acid L-proline (Pro) or its analogues pipecolic acid (PA) and L-4-thiazolidine carboxylic acid (L4T) improves embryo development, increasing the percentage that develop to the blastocyst stage and hatch. Staining of 2-cell and 4-cell embryos with [...] Read more.
The culture of embryos in the non-essential amino acid L-proline (Pro) or its analogues pipecolic acid (PA) and L-4-thiazolidine carboxylic acid (L4T) improves embryo development, increasing the percentage that develop to the blastocyst stage and hatch. Staining of 2-cell and 4-cell embryos with tetramethylrhodamine methyl ester and 2′,7′-dichlorofluorescein diacetate showed that the culture of embryos in the presence of Pro, or either of these analogues, reduced mitochondrial activity and reactive oxygen species (ROS), respectively, indicating potential mechanisms by which embryo development is improved. Inhibition of the Pro metabolism enzyme, proline oxidase, by tetrahydro-2-furoic-acid prevented these reductions and concomitantly prevented the improved development. The ways in which Pro, PA and L4T reduce mitochondrial activity and ROS appear to differ, despite their structural similarity. Specifically, the results are consistent with Pro reducing ROS by reducing mitochondrial activity while PA and L4T may be acting as ROS scavengers. All three may work to reduce ROS by contributing to the GSH pool. Overall, our results indicate that reduction in mitochondrial activity and oxidative stress are potential mechanisms by which Pro and its analogues act to improve pre-implantation embryo development. Full article
Show Figures

Figure 1

40 pages, 32390 KB  
Article
Integrated Transcriptomic and Metabolomics Analyses Reveal Molecular Responses to Cold Stress in Coconut (Cocos nucifera L.) Seedlings
by Lilan Lu, Weibo Yang, Zhiguo Dong, Longxiang Tang, Yingying Liu, Shuyun Xie and Yaodong Yang
Int. J. Mol. Sci. 2023, 24(19), 14563; https://doi.org/10.3390/ijms241914563 - 26 Sep 2023
Cited by 28 | Viewed by 4376
Abstract
Coconut is an important tropical and subtropical fruit and oil crop severely affected by cold temperature, limiting its distribution and application. Thus, studying its low-temperature reaction mechanism is required to expand its cultivation range. We used growth morphology and physiological analyses to characterize [...] Read more.
Coconut is an important tropical and subtropical fruit and oil crop severely affected by cold temperature, limiting its distribution and application. Thus, studying its low-temperature reaction mechanism is required to expand its cultivation range. We used growth morphology and physiological analyses to characterize the response of coconuts to 10, 20, and 30 d of low temperatures, combined with transcriptome and metabolome analysis. Low-temperature treatment significantly reduced the plant height and dry weight of coconut seedlings. The contents of soil and plant analyzer development (SPAD), soluble sugar (SS), soluble protein (SP), proline (Pro), and malondialdehyde (MDA) in leaves were significantly increased, along with the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and the endogenous hormones abscisic acid (ABA), auxin (IAA), zeatin (ZR), and gibberellin (GA) contents. A large number of differentially expressed genes (DEGs) (9968) were detected under low-temperature conditions. Most DEGs were involved in mitogen-activated protein kinase (MAPK) signaling pathway-plant, plant hormone signal transduction, plant–pathogen interaction, biosynthesis of amino acids, amino sugar and nucleotide sugar metabolism, carbon metabolism, starch and sucrose metabolism, purine metabolism, and phenylpropanoid biosynthesis pathways. Transcription factors (TFs), including WRKY, AP2/ERF, HSF, bZIP, MYB, and bHLH families, were induced to significantly differentially express under cold stress. In addition, most genes associated with major cold-tolerance pathways, such as the ICE-CBF-COR, MAPK signaling, and endogenous hormones and their signaling pathways, were significantly up-regulated. Under low temperatures, a total of 205 differentially accumulated metabolites (DAMs) were enriched; 206 DAMs were in positive-ion mode and 97 in negative-ion mode, mainly including phenylpropanoids and polyketides, lipids and lipid-like molecules, benzenoids, organoheterocyclic compounds, organic oxygen compounds, organic acids and derivatives, nucleosides, nucleotides, and analogues. Comprehensive metabolome and transcriptome analysis revealed that the related genes and metabolites were mainly enriched in amino acid, flavonoid, carbohydrate, lipid, and nucleotide metabolism pathways under cold stress. Together, the results of this study provide important insights into the response of coconuts to cold stress, which will reveal the underlying molecular mechanisms and help in coconut screening and breeding. Full article
Show Figures

Figure 1

25 pages, 3926 KB  
Review
Non-Canonical Amino Acids as Building Blocks for Peptidomimetics: Structure, Function, and Applications
by Tarsila G. Castro, Manuel Melle-Franco, Cristina E. A. Sousa, Artur Cavaco-Paulo and João C. Marcos
Biomolecules 2023, 13(6), 981; https://doi.org/10.3390/biom13060981 - 12 Jun 2023
Cited by 36 | Viewed by 10922
Abstract
This review provides a fresh overview of non-canonical amino acids and their applications in the design of peptidomimetics. Non-canonical amino acids appear widely distributed in nature and are known to enhance the stability of specific secondary structures and/or biological function. Contrary to the [...] Read more.
This review provides a fresh overview of non-canonical amino acids and their applications in the design of peptidomimetics. Non-canonical amino acids appear widely distributed in nature and are known to enhance the stability of specific secondary structures and/or biological function. Contrary to the ubiquitous DNA-encoded amino acids, the structure and function of these residues are not fully understood. Here, results from experimental and molecular modelling approaches are gathered to classify several classes of non-canonical amino acids according to their ability to induce specific secondary structures yielding different biological functions and improved stability. Regarding side-chain modifications, symmetrical and asymmetrical α,α-dialkyl glycines, Cα to Cα cyclized amino acids, proline analogues, β-substituted amino acids, and α,β-dehydro amino acids are some of the non-canonical representatives addressed. Backbone modifications were also examined, especially those that result in retro-inverso peptidomimetics and depsipeptides. All this knowledge has an important application in the field of peptidomimetics, which is in continuous progress and promises to deliver new biologically active molecules and new materials in the near future. Full article
Show Figures

Graphical abstract

20 pages, 2031 KB  
Article
No Evidence That Circulating GLP-1 or PYY Are Associated with Increased Satiety during Low Energy Diet-Induced Weight Loss: Modelling Biomarkers of Appetite
by Jia Jiet Lim, Yutong Liu, Louise W. Lu, Ivana R. Sequeira and Sally D. Poppitt
Nutrients 2023, 15(10), 2399; https://doi.org/10.3390/nu15102399 - 20 May 2023
Cited by 2 | Viewed by 8430
Abstract
Bariatric surgery and pharmacology treatments increase circulating glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), in turn promoting satiety and body weight (BW) loss. However, the utility of GLP-1 and PYY in predicting appetite response during dietary interventions remains unsubstantiated. This study investigated whether [...] Read more.
Bariatric surgery and pharmacology treatments increase circulating glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), in turn promoting satiety and body weight (BW) loss. However, the utility of GLP-1 and PYY in predicting appetite response during dietary interventions remains unsubstantiated. This study investigated whether the decrease in hunger observed following low energy diet (LED)-induced weight loss was associated with increased circulating ‘satiety peptides’, and/or associated changes in glucose, glucoregulatory peptides or amino acids (AAs). In total, 121 women with obesity underwent an 8-week LED intervention, of which 32 completed an appetite assessment via a preload challenge at both Week 0 and Week 8, and are reported here. Visual analogue scales (VAS) were administered to assess appetite-related responses, and blood samples were collected over 210 min post-preload. The area under the curve (AUC0-210), incremental AUC (iAUC0-210), and change from Week 0 to Week 8 (∆) were calculated. Multiple linear regression was used to test the association between VAS–appetite responses and blood biomarkers. Mean (±SEM) BW loss was 8.4 ± 0.5 kg (−8%). Unexpectedly, the decrease in ∆AUC0-210 hunger was best associated with decreased ∆AUC0-210 GLP-1, GIP, and valine (p < 0.05, all), and increased ∆AUC0-210 glycine and proline (p < 0.05, both). The majority of associations remained significant after adjusting for BW and fat-free mass loss. There was no evidence that changes in circulating GLP-1 or PYY were predictive of changes in appetite-related responses. The modelling suggested that other putative blood biomarkers of appetite, such as AAs, should be further investigated in future larger longitudinal dietary studies. Full article
(This article belongs to the Special Issue Gastrointestinal Peptides and Human Health)
Show Figures

Graphical abstract

14 pages, 1329 KB  
Article
Effects of Auxin-Type Plant Growth Regulators and Cold Stress on the Endogenous Polyamines in Pea Plants
by Elžbieta Jankovska-Bortkevič, Zornitsa Katerova, Dessislava Todorova, Jurga Jankauskienė, Rima Mockevičiūtė, Iskren Sergiev and Sigita Jurkonienė
Horticulturae 2023, 9(2), 244; https://doi.org/10.3390/horticulturae9020244 - 10 Feb 2023
Cited by 14 | Viewed by 3410
Abstract
The effect of pre-application of structural auxin analogues TA-12 (1-[2-chloroethoxycarbonyl-methyl]-4-naphthalenesulfonic acid calcium salt) and TA-14 (1-[2-dimethylaminoethoxicarbonylmethyl] naphthalenechlormethylate) on biochemical parameters of pea (Pisum sativum L. cv. Jablo) plants subjected to low temperature (LT, −1 °C, for 24h) was studied. For the first [...] Read more.
The effect of pre-application of structural auxin analogues TA-12 (1-[2-chloroethoxycarbonyl-methyl]-4-naphthalenesulfonic acid calcium salt) and TA-14 (1-[2-dimethylaminoethoxicarbonylmethyl] naphthalenechlormethylate) on biochemical parameters of pea (Pisum sativum L. cv. Jablo) plants subjected to low temperature (LT, −1 °C, for 24h) was studied. For the first time the effects of these auxin analogues, applied with or without LT were investigated on the endogenous polyamine (PA) content. The LT treatment increased free and bound putrescine (Put) and spermine (Spm), conjugated and bound spermidine (Spd), accompanied by a decrease in conjugated Put and Spm, and free Spd. Stress biomarkers hydrogen peroxide (H2O2) and malondialdehyde (MDA) as well as proline were augmented by LT treatment. The TAs application decreased conjugated polyamines (Put, Spm and Spd), free Spd, H2O2 and MDA but increased bound Spm and proline in pea plants. The application of TAs before LT lessened the alterations in PAs (mainly in free and bound fractions) and stress biomarkers content caused by LT, and enhanced conjugated Spd and phenolics, which contributed to increased plant cold tolerance. Full article
(This article belongs to the Special Issue Horticultural Crop Physiology under Biotic and Abiotic Stresses)
Show Figures

Figure 1

16 pages, 3994 KB  
Article
Collagen Type II—Chitosan Interactions as Dependent on Hydroxylation and Acetylation Inferred from Molecular Dynamics Simulations
by Maciej Przybyłek, Piotr Bełdowski, Florian Wieland, Piotr Cysewski and Alina Sionkowska
Molecules 2023, 28(1), 154; https://doi.org/10.3390/molecules28010154 - 24 Dec 2022
Cited by 11 | Viewed by 3472
Abstract
Chitosan–collagen blends have been widely applied in tissue engineering, joints diseases treatment, and many other biomedical fields. Understanding the affinity between chitosan and collagen type II is particularly relevant in the context of mechanical properties modulation, which is closely associated with designing biomaterials [...] Read more.
Chitosan–collagen blends have been widely applied in tissue engineering, joints diseases treatment, and many other biomedical fields. Understanding the affinity between chitosan and collagen type II is particularly relevant in the context of mechanical properties modulation, which is closely associated with designing biomaterials suitable for cartilage and synovial fluid regeneration. However, many structural features influence chitosan’s affinity for collagen. One of the most important ones is the deacetylation degree (DD) in chitosan and the hydroxylation degree (HD) of proline (PRO) moieties in collagen. In this paper, combinations of both factors were analyzed using a very efficient molecular dynamics approach. It was found that DD and HD modifications significantly affect the structural features of the complex related to considered types of interactions, namely hydrogen bonds, hydrophobic, and ionic contacts. In the case of hydrogen bonds both direct and indirect (water bridges) contacts were examined. In case of the most collagen analogues, a very good correlation between binding free energy and DD was observed. Full article
(This article belongs to the Special Issue New Insights into Biomolecular Structures and Interactions)
Show Figures

Figure 1

12 pages, 287 KB  
Article
Effect of Methionine Analogues on Growth Performance, Serum Biochemical Parameters, Serum Free Amino Acids and Rumen Fermentation of Yaks
by Xirui Zhang, Zizhen Zuo, Yao Liu, Chenxi Wang, Zhongli Peng, Jincheng Zhong, Ming Zhang and Haibo Wang
Animals 2022, 12(22), 3175; https://doi.org/10.3390/ani12223175 - 16 Nov 2022
Cited by 12 | Viewed by 2414
Abstract
This experiment was conducted to investigate the effects of methionine analogues 2-hydroxy-4-methylthio butanoic acid isopropyl ester (HBMi) on growth performance, nutrient apparent digestibility, serum metabolite, serum free amino acids, and rumen fermentation parameters of yaks. Twenty-four male Maiwa yaks (252.79 ± 15.95 kg) [...] Read more.
This experiment was conducted to investigate the effects of methionine analogues 2-hydroxy-4-methylthio butanoic acid isopropyl ester (HBMi) on growth performance, nutrient apparent digestibility, serum metabolite, serum free amino acids, and rumen fermentation parameters of yaks. Twenty-four male Maiwa yaks (252.79 ± 15.95 kg) were randomly allocated to four dietary treatments: basic diet (CON), or three HBMi (MetaSmart (MS); Adisseo Inc., Antony, France) supplementation treatments: MS1 (5 g), MS2 (10 g), and MS3 (15 g). The results showed that the increase in the supplemented MS levels linearly increased the average daily gain (p < 0.05), while the serum alkaline phosphatase activity and malondialdehyde content were increased when yaks were fed with 15 g/d MS (p < 0.05). The diet supplemented with MS linearly increased the percentages of glutamic acid and proline, and linearly or quadratically decreased the percentages of isoleucine, phenylalanine, and valine (p < 0.05). Furthermore, supplementation of 10 g/d and 15 g/d MS increased ruminal microbial crude protein (p < 0.05). The ratio of acetate to propionate in the MS2 group was lower than those in CON and MS1 groups (p < 0.05). In summary, a diet supplemented with 10 g/d MS could be an effective way to improve the growth performance of fattening yaks without negative effects. Full article
(This article belongs to the Special Issue Feed Evaluation for Animal Health and Product Quality)
18 pages, 2276 KB  
Article
Effect of Plant Growth Regulators on Osmotic Regulatory Substances and Antioxidant Enzyme Activity of Nitraria tangutorum
by Dom Alizet Didi, Shiping Su, Faisal Eudes Sam, Richard John Tiika and Xu Zhang
Plants 2022, 11(19), 2559; https://doi.org/10.3390/plants11192559 - 28 Sep 2022
Cited by 31 | Viewed by 5427
Abstract
Plant growth regulators (PGRs) are natural hormones and synthetic hormone analogues. At low concentrations, PGRs have the ability to influence cell division, cell expansion, and cell structure and function, in addition to mediating environmental stress. In this study, experiments were conducted to determine [...] Read more.
Plant growth regulators (PGRs) are natural hormones and synthetic hormone analogues. At low concentrations, PGRs have the ability to influence cell division, cell expansion, and cell structure and function, in addition to mediating environmental stress. In this study, experiments were conducted to determine how exogenous PGRs indole acetic acid (IAA), abscisic acid (ABA), and gibberellic acid (GA) influenced osmotic regulatory substances and activity of antioxidant enzymes in Nitraria tangutorum. Using a completely randomized design, IAA, ABA, and GA3 were applied as foliar spray at concentrations of 50 mg/L, 100 mg/L, 150 mg/L, and 200 mg/L to N. tangutorum shrubs. Some selected shrubs did not receive any treatment and served as the control (Ck). The results showed that the foliar spray of IAA, ABA, and GA3 significantly increased the content of osmotic regulatory substances (soluble sugar, soluble protein, and proline) and antioxidant enzymes (SOD and POD) at most concentrations. In addition, the malondialdehyde (MDA) content significantly reduced after treatment, but after regrowth of coppiced shrubs, lipid peroxidation increased and was still lower than Ck. Our study provides evidence that 100 mg/L 150 mg/L, and 200 mg/L concentrations of IAA, ABA, and GA3 treatments are effective for enhancing osmotic regulatory substances and the activity of antioxidant enzymes in N. tangutorum, which offers an effective strategy not only for increasing tolerance to abiotic and biotic stresses, but also improving the adaptability of N. tangutorum shrubs to the environment. Full article
Show Figures

Figure 1

11 pages, 4327 KB  
Article
Metabolomic Analysis of Wheat Grains after Tilletia laevis Kühn Infection by Using Ultrahigh-Performance Liquid Chromatography–Q-Exactive Mass Spectrometry
by Muhammad Jabran, Delai Chen, Ghulam Muhae-Ud-Din, Taiguo Liu, Wanquan Chen, Changzhong Liu and Li Gao
Metabolites 2022, 12(9), 805; https://doi.org/10.3390/metabo12090805 - 28 Aug 2022
Cited by 6 | Viewed by 2468
Abstract
Tilletia laevis causes common bunt disease in wheat, with severe losses of production yield and seed quality. Metabolomics studies provide detailed information about the biochemical changes at the cell and tissue level of the plants. Ultrahigh-performance liquid chromatography–Q-exactive mass spectrometry (UPLC-QE-MS) was used [...] Read more.
Tilletia laevis causes common bunt disease in wheat, with severe losses of production yield and seed quality. Metabolomics studies provide detailed information about the biochemical changes at the cell and tissue level of the plants. Ultrahigh-performance liquid chromatography–Q-exactive mass spectrometry (UPLC-QE-MS) was used to examine the changes in wheat grains after T. laevis infection. PCA analysis suggested that T. laevis-infected and non-infected samples were scattered separately during the interaction. In total, 224 organic acids and their derivatives, 170 organoheterocyclic compounds, 128 lipids and lipid-like molecules, 85 organic nitrogen compounds, 64 benzenoids, 31 phenylpropanoids and polyketides, 21 nucleosides, nucleotides, their analogues, and 10 alkaloids and derivatives were altered in hyphal-infected grains. According to The Kyoto Encyclopedia of Genes and genomes analysis, the protein digestion and absorption, biosynthesis of amino acids, arginine and proline metabolism, vitamin digestion and absorption, and glycine, serine, and threonine metabolism pathways were activated in wheat crops after T. laevis infection. Full article
Show Figures

Figure 1

31 pages, 5493 KB  
Article
Design and Synthesis of Novel Bis-Imidazolyl Phenyl Butadiyne Derivatives as HCV NS5A Inhibitors
by Jehad Hamdy, Nouran Emadeldin, Mostafa M. Hamed, Efseveia Frakolaki, Sotirios Katsamakas, Niki Vassilaki, Grigoris Zoidis, Anna K. H. Hirsch, Mohammad Abdel-Halim and Ashraf H. Abadi
Pharmaceuticals 2022, 15(5), 632; https://doi.org/10.3390/ph15050632 - 20 May 2022
Cited by 2 | Viewed by 3829
Abstract
In today’s global plan to completely eradicate hepatitis C virus (HCV), the essential list of medications used for HCV treatment are direct-acting antivirals (DAAs), as interferon-sparing regimens have become the standard-of-care (SOC) treatment. HCV nonstructural protein 5A (NS5A) inhibitors are a very common [...] Read more.
In today’s global plan to completely eradicate hepatitis C virus (HCV), the essential list of medications used for HCV treatment are direct-acting antivirals (DAAs), as interferon-sparing regimens have become the standard-of-care (SOC) treatment. HCV nonstructural protein 5A (NS5A) inhibitors are a very common component of these regimens. Food and Drug Administration (FDA)-approved NS5A inhibitors, although very potent, do not have the same potency against all eight genotypes of HCV. Therefore, this study aims to synthesize NS5A inhibitor analogues with high potency pan-genotypic activity and high metabolic stability. Starting from an NS5A inhibitor scaffold previously identified by our research group, we made several modifications. Two series of compounds were created to test the effect of changing the length and spatial conformation (para-para vs. meta-meta-positioned bis-imidazole-proline-carbamate), replacing amide groups in the linker with imidazole groups, as well as different end-cap compositions and sizes. The frontrunner inhibits genotype 1b (Con1) replicon, with an EC50 value in the picomolar range, and showed high genotypic coverage with nanomolar range EC50 values against four more genotypes. This together with its high metabolic stability (t½ > 120 min) makes it a potential preclinical candidate. Full article
(This article belongs to the Special Issue Antiviral Drugs 2021)
Show Figures

Graphical abstract

Back to TopTop