Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = prolidase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 390 KB  
Article
The Role of Serum Prolidase Activity, MMP-1, MMP-7, and TGF-β Values in the Prediction of Early Fibrosis in Patients with Moderate to Severe COVID-19
by Didem Dogu Zengin, Dilek Ergun, Burcu Yormaz, Recai Ergun, Halil Guven, Muslu Kazim Korez, Halil Ozer, Ali Unlu, Baykal Tulek and Fikret Kanat
Viruses 2025, 17(7), 954; https://doi.org/10.3390/v17070954 - 6 Jul 2025
Viewed by 830
Abstract
Background: This study aims to identify predictive factors for pulmonary fibrosis development in COVID-19 patients by analyzing thorax CT (computed tomography) findings, serum prolidase activity, MMP-1, MMP-7, TGF-β values, laboratory findings, and demographic characteristics. Materials and methods: The investigation involved 68 patients, both [...] Read more.
Background: This study aims to identify predictive factors for pulmonary fibrosis development in COVID-19 patients by analyzing thorax CT (computed tomography) findings, serum prolidase activity, MMP-1, MMP-7, TGF-β values, laboratory findings, and demographic characteristics. Materials and methods: The investigation involved 68 patients, both male and female, aged 18 years and older, who were volunteers and had been diagnosed with confirmed COVID-19. The pulmonologist and the radiologist evaluated the thorax CT by consensus. Patients were evaluated in two categories, group 1 and group 2, based on the status of fibrotic changes, and 3-month fibrosis scores were calculated. Findings in both lungs were calculated and noted for the lobes, considering lobar spread. Correlations between quantitative parameters were assessed with Spearman’s rho correlation coefficient. Comparisons between independent samples were evaluated using either the independent sample t-test or the Mann–Whitney U test. We evaluated the relationship between categorical variables using the Pearson chi-square test and Fisher’s exact test. Results: Serum prolidase activity, MMP-1, MMP-7, and TGF-β biomarkers were not statistically significant among groups. LDH was found to be significantly high in the group with fibrotic changes. Additionally, the group with fibrotic changes also had higher levels of fibrinogen. The percentage of neutrophils, the severity of the disease, muscle–joint pain and fatigue symptoms, and the length of hospitalization stay were correlated with the total scores of fibrosis at the third month. In the group with fibrotic changes, the duration of muscle–joint pain and fatigue symptoms and the length of hospitalization were longer than in the other group. Conclusions: The group with fibrotic changes showed an increase in biomarkers. However, this increase did not reach a statistically significant level, suggesting that the third month may be an early period for these changes. The group with fibrotic changes showed high levels of LDH, one of the most important laboratory parameters of pulmonary fibrosis risk factors, along with fibrinogen, suggesting that these parameters are valuable in predicting pulmonary fibrosis. Patients with fibrotic changes can experience specific symptoms, commonly seen in COVID-19. Full article
(This article belongs to the Special Issue SARS-CoV-2, COVID-19 Pathologies, Long COVID, and Anti-COVID Vaccines)
Show Figures

Figure 1

17 pages, 4185 KB  
Article
Squalane as a Promising Agent Protecting UV-Induced Inhibition of Collagen Biosynthesis and Wound Healing in Human Dermal Fibroblast
by Katarzyna Wolosik, Magda Chalecka, Gabriela Gasiewska, Jerzy Palka and Arkadiusz Surazynski
Molecules 2025, 30(9), 1964; https://doi.org/10.3390/molecules30091964 - 29 Apr 2025
Cited by 1 | Viewed by 4838
Abstract
Squalane, a highly stable derivative of squalene, has received attention for its potential application in dermatology and cosmetics due to its biocompatibility, moisturizing properties, and antioxidant activity. This study investigates the effects of squalane on UVA-induced oxidative stress, inflammation, deregulation of collagen metabolism, [...] Read more.
Squalane, a highly stable derivative of squalene, has received attention for its potential application in dermatology and cosmetics due to its biocompatibility, moisturizing properties, and antioxidant activity. This study investigates the effects of squalane on UVA-induced oxidative stress, inflammation, deregulation of collagen metabolism, and some growth signaling pathways in human dermal fibroblasts (HDFs). It has been found that squalane at concentrations of 0.005–0.015% counteracted the UVA-induced inhibition of oxidative stress, collagen biosynthesis, prolidase activity, expression of the β1-integrin receptor, insulin-like growth factor-I receptor (IGFR), transforming growth factor-β (TGF-β), phosphorylated kinases ERK1/2, and increase in the expression of p38 kinase in HDFs. Moreover, squalane at the studied concentrations counteracted UVA-induced increase in the expression of NF-κB and COX-2 in HDFs, suggesting its anti-inflammatory activity. Interestingly, squalane augmented the UVA-induced expression of nuclear factor erythroid 2-related factor 2 (Nrf2). The functional significance of squalane activities was found in a model of wound healing in HDFs. Squalane at the studied concentrations stimulated fibroblast migration, facilitating the repair process following exposure of the cells to UVA radiation. These results demonstrate the ability of squalane to counteract UVA-induced cell damage and suggest its potential to support skin regeneration, highlighting its application in anti-aging, post-sun repair, and regenerative care formulations. Full article
Show Figures

Figure 1

19 pages, 9200 KB  
Article
A Novel Butyrate Derivative, Zinc Dibutyroyllysinate, Blunts Microphthalmia-Associated Transcription Factor Expression and Up-Regulates Retinol and Differentiation Pathway mRNAs in a Full-Thickness Human Skin Model
by William R. Swindell, Krzysztof Bojanowski, Geovani Quijas and Ratan K. Chaudhuri
Int. J. Mol. Sci. 2025, 26(6), 2442; https://doi.org/10.3390/ijms26062442 - 9 Mar 2025
Viewed by 1389
Abstract
Lysine, butyric acid, and zinc play important roles in skin homeostasis, which involves aging, inflammation, and prevention of skin barrier disruption. This bioactivity spectrum is not replicated by any one topical compound currently in use. Our purpose in this study was to characterize [...] Read more.
Lysine, butyric acid, and zinc play important roles in skin homeostasis, which involves aging, inflammation, and prevention of skin barrier disruption. This bioactivity spectrum is not replicated by any one topical compound currently in use. Our purpose in this study was to characterize a novel compound, zinc dibutyroyllysinate (ZDL), consisting of zinc with lysine and butyric acid moieties. We used RNA-seq to evaluate its effect on gene expression in a full-thickness skin model. We show that lysine alone has minimal effects on gene expression, whereas ZDL had greater transcriptional bioactivity. The effects of ZDL included an increased expression of genes promoting epidermal differentiation and retinol metabolism, along with a decreased expression of microphthalmia-associated transcription factor (MITF) and other melanogenesis genes. These effects were not replicated by an alternative salt compound (i.e., calcium dibutyroyllysinate). ZDL additionally led to a dose-dependent increase in skin fibroblast extracellular matrix proteins, including collagen I, collagen IV, and prolidase. Loss of melanin secretion was also seen in ZDL-treated melanocytes. These results provide an initial characterization of ZDL as a novel topical agent. Our findings support a rationale for the development of ZDL as a skincare ingredient, with potential applications for diverse conditions, involving melanocyte hyperactivity, pigmentation, inflammation, or aging. Full article
(This article belongs to the Special Issue New Advances in Bioactive Compounds in Health and Disease)
Show Figures

Figure 1

8 pages, 294 KB  
Case Report
Multiorgan Failure and Sepsis in an ICU Patient with Prolidase Enzyme Deficiency—The Specificity of Treatment and Care: A Case Report
by Katarzyna Wojnar-Gruszka, Ilona Nowak-Kózka, Jakub Cichoń, Aleksandra Ogryzek and Lucyna Płaszewska-Żywko
Medicina 2024, 60(6), 1006; https://doi.org/10.3390/medicina60061006 - 20 Jun 2024
Viewed by 2393
Abstract
Background and Objectives: Prolidase deficiency (PD) is a rare, life-threatening, genetically determined disease with an incidence of 1–2 cases per 1 million births. The disease inhibits collagen synthesis, which leads to organ and systems failure, including hepato- and splenomegaly, immune disorders, chronic [...] Read more.
Background and Objectives: Prolidase deficiency (PD) is a rare, life-threatening, genetically determined disease with an incidence of 1–2 cases per 1 million births. The disease inhibits collagen synthesis, which leads to organ and systems failure, including hepato- and splenomegaly, immune disorders, chronic ulcerative wounds, respiratory infections, and pulmonary fibrosis. The complexity of the problems associated with this disease necessitates a comprehensive approach and the involvement of an interdisciplinary team. The objective was to present the treatment and care plan, as well as complications of PD, in a young woman following admission to an intensive care unit (ICU). Materials and Methods: A retrospective observational single-case study. Results: A 26-year-old woman with PD was hospitalized in the ICU for acute respiratory failure. The presence of difficult-to-heal extensive leg ulcers and the patient’s immunocompromised condition resulted in the development of sepsis with multiple organ failure (respiratory and circulatory, liver and kidney failure). Complex specialized treatment consisting of wound preparation, limb amputation, the minimization of neuropathic pain, mechanical ventilation, renal replacement therapy, circulatory stabilization, and the prevention of complications of the disease and of therapy were applied. On the 83rd day of hospitalization, the patient expired. Conclusions: Despite the use of complex treatment and care, due to the advanced nature of the disease and the lack of therapies with proven efficacy, treatment was unsuccessful. There is a need for evidence-based research to develop effective treatment guidelines for PD. Full article
(This article belongs to the Section Intensive Care/ Anesthesiology)
19 pages, 4390 KB  
Article
Proline Metabolism in WHO G4 Gliomas Is Altered as Compared to Unaffected Brain Tissue
by Magdalena M. Sawicka, Karol Sawicki, Marek Jadeszko, Katarzyna Bielawska, Elżbieta Supruniuk, Joanna Reszeć, Izabela Prokop-Bielenia, Barbara Polityńska, Mateusz Jadeszko, Magdalena Rybaczek, Eryk Latoch, Krzysztof Gorbacz, Tomasz Łysoń and Wojciech Miltyk
Cancers 2024, 16(2), 456; https://doi.org/10.3390/cancers16020456 - 21 Jan 2024
Cited by 5 | Viewed by 2690
Abstract
Proline metabolism has been identified as a significant player in several neoplasms, but knowledge of its role in gliomas is limited despite it providing a promising line of pursuit. Data on proline metabolism in the brain are somewhat historical. This study aims to [...] Read more.
Proline metabolism has been identified as a significant player in several neoplasms, but knowledge of its role in gliomas is limited despite it providing a promising line of pursuit. Data on proline metabolism in the brain are somewhat historical. This study aims to investigate alterations of proline metabolism in gliomas of WHO grade 4 (GG4) in the context of the brain. A total of 20 pairs of samples were studied, consisting of excised tumor and unaffected brain tissue, obtained when partial brain resection was required to reach deep-seated lesions. Levels of proline oxidase/proline dehydrogenase (POX/PRODH), Δ1-pyrroline-5-carboxylate reductases (PYCR1/2/3), prolidase (PEPD), and metalloproteinases (MMP-2, MMP-9) were assessed, along with the concentration of proline and proline-related metabolites. In comparison to normal brain tissue, POX/PRODH expression in GG4 was found to be suppressed, while PYCR1 expression and activity of PEPD, MMP-2, and -9 were upregulated. The GG4 proline concentration was 358% higher. Hence, rewiring of the proline metabolism in GG4 was confirmed for the first time, with a low-POX/PRODH/high-PYCR profile. High PEPD and MMPs activity is in keeping with GG4-increased collagen turnover and local aggressiveness. Further studies on the mechanisms of the interplay between altered proline metabolism and the GG4 microenvironment are warranted. Full article
(This article belongs to the Special Issue Novel Insights into Glioblastoma and Brain Metastases)
Show Figures

Graphical abstract

17 pages, 2926 KB  
Article
Amaranthus cruentus L. Seed Oil Counteracts UVA-Radiation-Induced Inhibition of Collagen Biosynthesis and Wound Healing in Human Skin Fibroblasts
by Katarzyna Wolosik, Magda Chalecka, Jerzy Palka, Blanka Mitera and Arkadiusz Surazynski
Int. J. Mol. Sci. 2024, 25(2), 925; https://doi.org/10.3390/ijms25020925 - 11 Jan 2024
Cited by 3 | Viewed by 2724
Abstract
The effect of Amaranthus cruentus L. seed oil (AmO) on collagen biosynthesis and wound healing was studied in cultured human dermal fibroblasts exposed to UVA radiation. It was found that UVA radiation inhibited collagen biosynthesis, prolidase activity, and expression of the β1-integrin receptor, [...] Read more.
The effect of Amaranthus cruentus L. seed oil (AmO) on collagen biosynthesis and wound healing was studied in cultured human dermal fibroblasts exposed to UVA radiation. It was found that UVA radiation inhibited collagen biosynthesis, prolidase activity, and expression of the β1-integrin receptor, and phosphorylated ERK1/2 and TGF-β, while increasing the expression of p38 kinase. The AmO at 0.05–0.15% counteracted the above effects induced by UVA radiation in fibroblasts. UVA radiation also induced the expression and nuclear translocation of the pro-inflammatory NF-κB factor and enhanced the COX-2 expression. AmO effectively suppressed the expression of these pro-inflammatory factors induced by UVA radiation. Expressions of β1 integrin and IGF-I receptors were decreased in the fibroblasts exposed to UVA radiation, while AmO counteracted the effects. Furthermore, AmO stimulated the fibroblast’s migration in a wound healing model, thus facilitating the repair process following exposure of fibroblasts to UVA radiation. These data suggest the potential of AmO to counteract UVA-induced skin damage. Full article
Show Figures

Figure 1

15 pages, 3585 KB  
Article
Biochemical Characterization of a Novel Alkaline-Tolerant Xaa-Pro Dipeptidase from Aspergillus phoenicis
by Zixing Dong, Shuangshuang Yang, Kun Zhang, Cunduo Tang, Yunchao Kan and Lunguang Yao
Fermentation 2023, 9(11), 978; https://doi.org/10.3390/fermentation9110978 - 15 Nov 2023
Cited by 3 | Viewed by 2273
Abstract
Xaa-Pro dipeptidase (XPD, EC 3.4.13.9; also known as prolidase) catalyzes the hydrolysis of the iminopeptide bond in the trans-Xaa-Pro dipeptides (Xaa represents any amino acid except proline), which makes it find wide applications in food, medical and environmental protection fields. In the present [...] Read more.
Xaa-Pro dipeptidase (XPD, EC 3.4.13.9; also known as prolidase) catalyzes the hydrolysis of the iminopeptide bond in the trans-Xaa-Pro dipeptides (Xaa represents any amino acid except proline), which makes it find wide applications in food, medical and environmental protection fields. In the present study, a novel Xaa-Pro dipeptidase from Aspergillus phoenicis ATCC 14332 (ApXPD) was heterologously expressed and biochemically characterized. Reclassification based on phylogenetic analysis and the version 12.5 MEROPS database showed that this enzyme was the only fungal XPD in the unassigned subfamily that shared the highest sequence identity with Xanthomonas campestris prolidase but not with that from the more related fungal species A. niudulans. As compared with other prolidases, ApXPD also contained a long N-terminal tail (residues 1–63) and an additional region (PAPARLREKL) and used a different arginine residue for dipeptide selectivity. After heterologous expression and partial purification, recombinant ApXPD was highly active and stable over the alkaline range from 8.5 to 10.0, with maximum activity at pH 9.0 and more than 80% activity retained after 1 h incubation at pHs of 8.5–10.0 (55 °C). It also had an apparent optimum temperature of 55 °C and remained stable at 20–30 °C. Moreover, this enzyme was a cobalt-dependent prolidase that only cleaved dipeptides Lys-Pro, Gly-Pro, and Ala-Pro rather than other dipeptides, tripeptides, and tetrapeptides. All these distinct features make A. phoenicis ATCC 14332 XPD unique among currently known prolidases, thus defining a novel Xaa-Pro dipeptidase subfamily. Full article
(This article belongs to the Special Issue Enzymes, Biocatalysis and Biosynthesis)
Show Figures

Figure 1

18 pages, 4118 KB  
Article
Recombinant Human Prolidase (rhPEPD) Induces Wound Healing in Experimental Model of Inflammation through Activation of EGFR Signalling in Fibroblasts
by Weronika Baszanowska, Magdalena Niziol, Ilona Oscilowska, Justyna Czyrko-Horczak, Wojciech Miltyk and Jerzy Palka
Molecules 2023, 28(2), 851; https://doi.org/10.3390/molecules28020851 - 14 Jan 2023
Cited by 7 | Viewed by 2712
Abstract
The potential of recombinant human prolidase (rhPEPD) to induce wound healing in an experimental model of IL-1β-induced inflammation in human fibroblasts was studied. It was found that rhPEPD significantly increased cell proliferation and viability, as well as the expression of the epidermal growth [...] Read more.
The potential of recombinant human prolidase (rhPEPD) to induce wound healing in an experimental model of IL-1β-induced inflammation in human fibroblasts was studied. It was found that rhPEPD significantly increased cell proliferation and viability, as well as the expression of the epidermal growth factor receptor (EGFR) and downstream signaling proteins, such as phosphorylated PI3K, AKT, and mTOR, in the studied model. Moreover, rhPEPD upregulated the expression of the β1 integrin receptor and its downstream signaling proteins, such as p-FAK, Grb2 and p-ERK 1/2. The inhibition of EGFR signaling by gefitinib abolished rhPEPD-dependent functions in an experimental model of inflammation. Subsequent studies showed that rhPEPD augmented collagen biosynthesis in IL-1β-treated fibroblasts as well as in a wound healing model (wound closure/scratch test). Although IL-1β treatment of fibroblasts increased cell migration, rhPEPD significantly enhanced this process. This effect was accompanied by an increase in the activity of MMP-2 and MMP-9, suggesting extracellular matrix (ECM) remodeling during the inflammatory process. The data suggest that rhPEPD may play an important role in EGFR-dependent cell growth in an experimental model of inflammation in human fibroblasts, and this knowledge may be useful for further approaches to the treatment of abnormalities of wound healing and other skin diseases. Full article
Show Figures

Figure 1

12 pages, 2391 KB  
Article
The Highly Efficient Expression System of Recombinant Human Prolidase and the Effect of N-Terminal His-Tag on the Enzyme Activity
by Justyna Czyrko-Horczak, Magdalena Nizioł, Antonella Forlino, Roberta Besio and Wojciech Miltyk
Cells 2022, 11(20), 3284; https://doi.org/10.3390/cells11203284 - 19 Oct 2022
Viewed by 2384
Abstract
Prolidase is an enzyme hydrolyzing dipeptides containing proline or hydroxyprolineat the C-terminus and plays an important role in collagen turnover. Human prolidase is active as a dimer with the C-terminal domain containing two Mn2+ ions in its active site. The study aimed [...] Read more.
Prolidase is an enzyme hydrolyzing dipeptides containing proline or hydroxyprolineat the C-terminus and plays an important role in collagen turnover. Human prolidase is active as a dimer with the C-terminal domain containing two Mn2+ ions in its active site. The study aimed to develop a highly efficient expression system of recombinant human prolidase (rhPEPD) and to evaluate the effect of the N-terminal His-Tag on its enzymatic and biological activity. An optimized bacterial expression system and an optimized purification procedure for rhPEPD included the two-step rhPEPD purification procedure based on (i) affinity chromatography on an Ni2+ ion-bound chromatography column and (ii) gel filtration with the possibility of tag removal by selective digestion with protease Xa. As the study showed, a high concentration of IPTGand high temperature of induction led to a fast stimulation of gene expression, which as a result forced the host into an intensive and fast production of rhPEPD. The results demonstrated that a slow induction of gene expression (low concentration of inducing factor, temperature, and longer induction time) led to efficient protein production in the soluble fraction. Moreover, the study proved that the presence of His-Tag changed neither the expression pattern of EGFR-downstream signaling proteins nor the prolidase catalytic activity. Full article
Show Figures

Figure 1

33 pages, 1172 KB  
Review
Atopic Dermatitis-like Genodermatosis: Disease Diagnosis and Management
by Chaolan Pan, Anqi Zhao and Ming Li
Diagnostics 2022, 12(9), 2177; https://doi.org/10.3390/diagnostics12092177 - 9 Sep 2022
Cited by 14 | Viewed by 5489
Abstract
Eczema is a classical characteristic not only in atopic dermatitis but also in various genodermatosis. Patients suffering from primary immunodeficiency diseases such as hyper-immunoglobulin E syndromes, Wiskott-Aldrich syndrome, immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, STAT5B deficiency, Omenn syndrome, atypical complete DiGeorge syndrome; metabolic [...] Read more.
Eczema is a classical characteristic not only in atopic dermatitis but also in various genodermatosis. Patients suffering from primary immunodeficiency diseases such as hyper-immunoglobulin E syndromes, Wiskott-Aldrich syndrome, immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, STAT5B deficiency, Omenn syndrome, atypical complete DiGeorge syndrome; metabolic disorders such as acrodermatitis enteropathy, multiple carboxylase deficiency, prolidase deficiency; and other rare syndromes like severe dermatitis, multiple allergies and metabolic wasting syndrome, Netherton syndrome, and peeling skin syndrome frequently perform with eczema-like lesions. These genodermatosis may be misguided in the context of eczematous phenotype. Misdiagnosis of severe disorders unavoidably affects appropriate treatment and leads to irreversible outcomes for patients, which underlines the importance of molecular diagnosis and genetic analysis. Here we conclude clinical manifestations, molecular mechanism, diagnosis and management of several eczema-related genodermatosis and provide accessible advice to physicians. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

17 pages, 2099 KB  
Systematic Review
Proline Metabolism in Malignant Gliomas: A Systematic Literature Review
by Magdalena M. Sawicka, Karol Sawicki, Tomasz Łysoń, Barbara Polityńska and Wojciech Miltyk
Cancers 2022, 14(8), 2030; https://doi.org/10.3390/cancers14082030 - 17 Apr 2022
Cited by 15 | Viewed by 5340
Abstract
Background: Proline has attracted growing interest because of its diverse influence on tumor metabolism and the discovery of the regulatory mechanisms that appear to be involved. In contrast to general oncology, data on proline metabolism in central nervous system malignancies are limited. Materials [...] Read more.
Background: Proline has attracted growing interest because of its diverse influence on tumor metabolism and the discovery of the regulatory mechanisms that appear to be involved. In contrast to general oncology, data on proline metabolism in central nervous system malignancies are limited. Materials and Methods: We performed a systematic literature review of the MEDLINE and EMBASE databases according to PRISMA guidelines, searching for articles concerning proline metabolism in malignant glial tumors. From 815 search results, we identified 14 studies pertaining to this topic. Results: The role of the proline cycle in maintaining redox balance in IDH-mutated gliomas has been convincingly demonstrated. Proline is involved in restoring levels of glutamate, the main glial excitatory neurotransmitter. Proline oxidase influences two major signaling pathways: p53 and NF- κB. In metabolomics studies, the metabolism of proline and its link to the urea cycle was found to be a prognostic factor for survival and a marker of malignancy. Data on the prolidase concentration in the serum of glioblastoma patients are contradictory. Conclusions: Despite a paucity of studies in the literature, the available data are interesting enough to encourage further research, especially in terms of extrapolating what we have learned of proline functions from other neoplasms to malignant gliomas. Full article
Show Figures

Figure 1

18 pages, 3474 KB  
Article
NSAIDs Induce Proline Dehydrogenase/Proline Oxidase-Dependent and Independent Apoptosis in MCF7 Breast Cancer Cells
by Adam Kazberuk, Magda Chalecka, Jerzy Palka, Katarzyna Bielawska and Arkadiusz Surazynski
Int. J. Mol. Sci. 2022, 23(7), 3813; https://doi.org/10.3390/ijms23073813 - 30 Mar 2022
Cited by 8 | Viewed by 3648
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are considered in cancer therapy for their inhibitory effect on cyclooxygenase-2 (COX-2), which is overexpressed in most cancers. However, we found that NSAIDs as ligands of peroxisome proliferator-activated receptor-γ (PPARγ)-induced apoptosis independent of the COX-2 inhibition, and the process [...] Read more.
Non-steroidal anti-inflammatory drugs (NSAIDs) are considered in cancer therapy for their inhibitory effect on cyclooxygenase-2 (COX-2), which is overexpressed in most cancers. However, we found that NSAIDs as ligands of peroxisome proliferator-activated receptor-γ (PPARγ)-induced apoptosis independent of the COX-2 inhibition, and the process was mediated through activation of proline dehydrogenase/proline oxidase (PRODH/POX)-dependent generation of reactive oxygen species (ROS). This mitochondrial enzyme converts proline to ∆1-pyrroline-5-carboxylate (P5C) during which ATP or ROS is generated. To confirm the role of PRODH/POX in the mechanism of NSAID-induced apoptosis we obtained an MCF7 CRISPR/Cas9 PRODH/POX knockout breast cancer cell model (MCF7POK-KO). Interestingly, the studied NSAIDs (indomethacin and diclofenac) in MCF7POK-KO cells contributed to a more pronounced pro-apoptotic phenotype of the cells than in PRODH/POX-expressing MCF7 cells. The observed effect was independent of ROS generation, but it was related to the energetic disturbances in the cells as shown by an increase in the expression of AMPKα (sensor of cell energy status), GLUD1/2 (proline producing enzyme from glutamate), prolidase (proline releasing enzyme), PPARδ (growth supporting transcription factor) and a decrease in the expression of proline cycle enzymes (PYCR1, PYCRL), mammalian target of rapamycin (mTOR), and collagen biosynthesis (the main proline utilizing process). The data provide evidence that the studied NSAIDs induce PRODH/POX-dependent and independent apoptosis in MCF7 breast cancer cells. Full article
(This article belongs to the Special Issue Mitochondrial Plasticity in Cancer)
Show Figures

Figure 1

15 pages, 3842 KB  
Review
Understanding the Role of Estrogen Receptor Status in PRODH/POX-Dependent Apoptosis/Survival in Breast Cancer Cells
by Sylwia Lewoniewska, Ilona Oscilowska, Antonella Forlino and Jerzy Palka
Biology 2021, 10(12), 1314; https://doi.org/10.3390/biology10121314 - 10 Dec 2021
Cited by 16 | Viewed by 4560
Abstract
It has been suggested that activation of estrogen receptor α (ER α) stimulates cell proliferation. In contrast, estrogen receptor β (ER β) has anti-proliferative and pro-apoptotic activity. Although the role of estrogens in estrogen receptor-positive breast cancer progression has been well established, the [...] Read more.
It has been suggested that activation of estrogen receptor α (ER α) stimulates cell proliferation. In contrast, estrogen receptor β (ER β) has anti-proliferative and pro-apoptotic activity. Although the role of estrogens in estrogen receptor-positive breast cancer progression has been well established, the mechanism of their effect on apoptosis is not fully understood. It has been considered that ER status of breast cancer cells and estrogen availability might determine proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis. PRODH/POX is a mitochondrial enzyme that converts proline into pyrroline-5-carboxylate (P5C). During this process, ATP (adenosine triphosphate) or ROS (reactive oxygen species) are produced, facilitating cell survival or death, respectively. However, the critical factor in driving PRODH/POX-dependent functions is proline availability. The amount of this amino acid is regulated at the level of prolidase (proline releasing enzyme), collagen biosynthesis (proline utilizing process), and glutamine, glutamate, α-ketoglutarate, and ornithine metabolism. Estrogens were found to upregulate prolidase activity and collagen biosynthesis. It seems that in estrogen receptor-positive breast cancer cells, prolidase supports proline for collagen biosynthesis, limiting its availability for PRODH/POX-dependent apoptosis. Moreover, lack of free proline (known to upregulate the transcriptional activity of hypoxia-inducible factor 1, HIF-1) contributes to downregulation of HIF-1-dependent pro-survival activity. The complex regulatory mechanism also involves PRODH/POX expression and activity. It is induced transcriptionally by p53 and post-transcriptionally by AMPK (AMP-activated protein kinase), which is regulated by ERs. The review also discusses the role of interconversion of proline/glutamate/ornithine in supporting proline to PRODH/POX-dependent functions. The data suggest that PRODH/POX-induced apoptosis is dependent on ER status in breast cancer cells. Full article
Show Figures

Figure 1

18 pages, 2266 KB  
Article
Troglitazone-Induced PRODH/POX-Dependent Apoptosis Occurs in the Absence of Estradiol or ERβ in ER-Negative Breast Cancer Cells
by Sylwia Lewoniewska, Ilona Oscilowska, Thi Yen Ly Huynh, Izabela Prokop, Weronika Baszanowska, Katarzyna Bielawska and Jerzy Palka
J. Clin. Med. 2021, 10(20), 4641; https://doi.org/10.3390/jcm10204641 - 10 Oct 2021
Cited by 10 | Viewed by 2480
Abstract
The impact of estradiol on troglitazone (TGZ)-induced proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis was studied in wild-type and PRODH/POX-silenced estrogen receptor (ER) dependent MCF-7 cells and ER-independent MDA-MB-231 cells. DNA and collagen biosynthesis were determined by radiometric method, prolidase activity evaluated by colorimetric method, [...] Read more.
The impact of estradiol on troglitazone (TGZ)-induced proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis was studied in wild-type and PRODH/POX-silenced estrogen receptor (ER) dependent MCF-7 cells and ER-independent MDA-MB-231 cells. DNA and collagen biosynthesis were determined by radiometric method, prolidase activity evaluated by colorimetric method, ROS production was measured by fluorescence assay. Protein expression was determined by Western blot and proline concentration by LC/MS analysis. PRODH/POX degrades proline yielding reactive oxygen species (ROS). Estrogens stimulate collagen biosynthesis utilizing free proline and limiting its availability for PRODH/POX-dependent apoptosis. TGZ cytotoxicity was highly pronounced in wild-type MDA-MB-231 cells cultured in medium without estradiol or in the cells cultured in medium with estradiol but deprived of ERβ (by ICI-dependent degradation), while in PRODH/POX-silenced cells the process was not affected. The TGZ cytotoxicity was accompanied by increase in PRODH/POX expression, ROS production, expression of cleaved caspase-3, caspase-9 and PARP, inhibition of collagen biosynthesis, prolidase activity and decrease in intracellular proline concentration. The phenomena were not observed in PRODH/POX-silenced cells. The data suggest that TGZ-induced apoptosis in MDA-MB-231 cells cultured in medium without estradiol or deprived of ERβ is mediated by PRODH/POX and the process is facilitated by proline availability for PRODH/POX by TGZ-dependent inhibition of collagen biosynthesis. It suggests that combined TGZ and antiestrogen treatment could be considered in experimental therapy of estrogen receptor negative breast cancers. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

14 pages, 1698 KB  
Review
Structure-Function and Industrial Relevance of Bacterial Aminopeptidase P
by Muhamad Nadzmi Omar, Raja Noor Zaliha Raja Abd Rahman, Noor Dina Muhd Noor, Wahhida Latip, Victor Feizal Knight and Mohd Shukuri Mohamad Ali
Catalysts 2021, 11(10), 1157; https://doi.org/10.3390/catal11101157 - 26 Sep 2021
Cited by 7 | Viewed by 4855
Abstract
Aminopeptidase P (APPro, E.C 3.4.11.9) cleaves N-terminal amino acids from peptides and proteins where the penultimate residue is proline. This metal-ion-dependent enzyme shares a similar fold, catalytic mechanism, and substrate specificity with methionine aminopeptidase and prolidase. It adopts a canonical pita bread fold [...] Read more.
Aminopeptidase P (APPro, E.C 3.4.11.9) cleaves N-terminal amino acids from peptides and proteins where the penultimate residue is proline. This metal-ion-dependent enzyme shares a similar fold, catalytic mechanism, and substrate specificity with methionine aminopeptidase and prolidase. It adopts a canonical pita bread fold that serves as a structural basis for the metal-dependent catalysis and assembles as a tetramer in crystals. Similar to other metalloaminopeptidase, APPro requires metal ions for its maximal enzymatic activity, with manganese being the most preferred cation. Microbial aminopeptidase possesses unique characteristics compared with aminopeptidase from other sources, making it a great industrial enzyme for various applications. This review provides a summary of recent progress in the study of the structure and function of aminopeptidase P and describes its various applications in different industries as well as its significance in the environment. Full article
(This article belongs to the Special Issue Hydrolases in Genomic Era: Mining, Structure and Function)
Show Figures

Figure 1

Back to TopTop