Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,864)

Search Parameters:
Keywords = probability of presence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10273 KB  
Article
Physiological and Biochemical Mechanisms Behind Enhanced Salinity Tolerance in Limonium irtaense Seedlings Following Recovery from Salt Stress
by Diana-Maria Mircea, Adrián Sapiña-Solano, Eloy Molina, P. Pablo Ferrer-Gallego, Antonio Lidón, Jaime Prohens, Ricardo Mir, Oscar Vicente and Monica Boscaiu
Plants 2026, 15(3), 451; https://doi.org/10.3390/plants15030451 (registering DOI) - 1 Feb 2026
Abstract
Limonium irtaense is an endangered halophyte endemic to coastal Castellón (Spain). This study aimed to support its conservation by assessing the effects of salinity on seed germination and seedling performance, as well as plants’ physiological and biochemical responses to salt stress during early [...] Read more.
Limonium irtaense is an endangered halophyte endemic to coastal Castellón (Spain). This study aimed to support its conservation by assessing the effects of salinity on seed germination and seedling performance, as well as plants’ physiological and biochemical responses to salt stress during early vegetative growth. Seed germination was tested in the presence of 0 to 300 mM NaCl, followed by recovery assays for non-germinated seeds. Seedlings were grown under three salinity levels, by irrigation with water (control), 300 mM NaCl or 600 mM NaCl. Growth parameters, photosynthetic pigments, osmolytes, ion contents, oxidative stress markers and antioxidant compounds were determined in plants derived from the initial germination tests and the recovery of germination assays and subjected to the different salt treatments. Germination was highest in distilled water and declined with increasing salinity; however, salt-inhibited seeds germinated rapidly and efficiently in the recovery assays. Seedlings from salt-primed seeds showed higher survival rates and biomass than those from control germination tests. Salt treatments significantly reduced growth, with plants derived from salt-treated seeds generally showing higher tolerance, probably because of enhanced proline accumulation, more efficient transport and sequestration of toxic ions in leaf vacuoles, and potassium retention. These findings provide insights into L. irtaense adaptation mechanisms and support using salt-priming to improve conservation and translocation efforts for this endangered species. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

21 pages, 20265 KB  
Article
Analysis of Marijuana (Cannabis sativa L.) Cuttings: Morphological and Colorimetric Traits as Predictors for Optimization of Vegetative Reproduction
by Laura G. A. Espósito, Camila Rodrigues, Pedro Pereira, Heitor Mancini Teixeira and Derly Silva
Plants 2026, 15(3), 440; https://doi.org/10.3390/plants15030440 (registering DOI) - 31 Jan 2026
Abstract
Marijuana (Cannabis sativa L.) has a great economic potential due to its phytotherapeutic properties. Its propagation, however, faces numerous challenges due to the limited availability of standardized technical protocols for the crop. Vegetative propagation represents a, or even the, viable method for [...] Read more.
Marijuana (Cannabis sativa L.) has a great economic potential due to its phytotherapeutic properties. Its propagation, however, faces numerous challenges due to the limited availability of standardized technical protocols for the crop. Vegetative propagation represents a, or even the, viable method for multiplying the genetically identical individuals while preserving their phytochemical profile, at lower costs and with shorter production times. This study investigated the morphological and colorimetric attributes associated with vegetative propagation success, aiming to develop sustainable cultivation strategies. Four cutting lengths (5, 10, 15 and 20 cm) were evaluated after 21 days of rooting, considering fresh mass, basal diameter, presence of apical meristem, number of root primordia, root length, and foliar and stem color parameters. Logistic regressions indicated that longer cuttings (p = 0.0101), greater fresh mass (p = 0.073) and the presence of apical meristem (p = 0.065), as well as greener leaves (p = 0.089), were positively associated with rooting probability (p < 0.10). Positive correlations between morphological and colorimetric variables were confirmed by Principal Component Analysis, with the first two principal components explaining 31.2% of the total variance in the dataset. The results provide support for the development of more efficient and low-cost vegetative propagation protocols, promoting uniformity and autonomy in local cutting production of marijuana. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

21 pages, 615 KB  
Article
A New Hybrid Weibull–Exponentiated Rayleigh Distribution: Theory, Asymmetry Properties, and Applications
by Tolulope Olubunmi Adeniji and Akinwumi Sunday Odeyemi
Symmetry 2026, 18(2), 264; https://doi.org/10.3390/sym18020264 (registering DOI) - 31 Jan 2026
Abstract
The choice of probability distribution is strongly data-dependent, as observed in several studies. Given the central role of statistical distribution in predictive analytics, researchers have continued to develop new models that accurately capture underlying data behaviours. This study proposes the Hybrid Weibull–Exponentiated Rayleigh [...] Read more.
The choice of probability distribution is strongly data-dependent, as observed in several studies. Given the central role of statistical distribution in predictive analytics, researchers have continued to develop new models that accurately capture underlying data behaviours. This study proposes the Hybrid Weibull–Exponentiated Rayleigh distribution developed by compounding the Weibull and Exponentiated Rayleigh distributions via the T-X transformation framework. The new three-parameter distribution is formulated to provide a flexible modelling framework capable of handling data exhibiting non-monotone failure rates. The properties of the proposed distribution, such as the cumulative distribution function, probability density function, survival function, hazard function, linear representation, moments, and entropy, are studied. We estimate the parameters of the distribution using the Maximum Likelihood Estimation technique. Furthermore, the impact of the proposed distribution parameters on the distribution’s shape is studied, particularly its symmetry properties. The shape of the distribution varies with its parameter values, thereby enabling it to model diverse data patterns. This flexibility makes it especially useful for describing the presence or absence of symmetry in real-world failure processes. Simulation studies are conducted to assess the behaviour of the estimators under different parameter settings. The proposed distribution is applied to real-world data to demonstrate its performance. Comparative analysis is performed against other well-established models. The results indicate that the proposed distribution outperforms other models in terms of goodness-of-fit, demonstrating its potential as a superior alternative for modelling lifetime data and reliability analysis based on Akaike Information Criterion and Bayesian Information Criterion. Full article
Show Figures

Figure 1

20 pages, 1405 KB  
Article
Predictors and Prognostic Significance of Appropriate Implantable Cardioverter-Defibrillator Therapy in Primary Prevention Patients with Ischemic Cardiomyopathy
by Mateusz Kuśmierz, Jakub Mercik, Marek Śledziona, Barbara Brzezińska, Maria Łoboz-Rudnicka, Bogusława Ołpińska, Krzysztof Dudek, Rafał Wyderka, Krystyna Łoboz-Grudzień and Joanna Jaroch
J. Clin. Med. 2026, 15(3), 1033; https://doi.org/10.3390/jcm15031033 - 28 Jan 2026
Viewed by 79
Abstract
Background: In the population of patients with ischemic cardiomyopathy (IC) and reduced left ventricular ejection fraction, the benefits of prophylactic implantable cardioverter-defibrillator (ICD) therapy are not uniform. Identifying predictors of ventricular arrhythmias to estimate the risk of appropriate therapy is crucial. Methods: Patients [...] Read more.
Background: In the population of patients with ischemic cardiomyopathy (IC) and reduced left ventricular ejection fraction, the benefits of prophylactic implantable cardioverter-defibrillator (ICD) therapy are not uniform. Identifying predictors of ventricular arrhythmias to estimate the risk of appropriate therapy is crucial. Methods: Patients with IC and an ICD for primary prevention implanted between 2006 and 2019 were retrospectively analyzed for appropriate therapy (ATh). The primary objective was to assess predictors of ATh development. The secondary objective was to assess the impact of ATh on survival. Results: Overall, 260 patients (age 67.3 ± 9.4 years, 15.4% female) were analyzed with a follow-up of 4.47 ± 3.02 years. ATh occurred in 79 patients (30.4% of the study group). Independent risk factors for ATh were as follows: non-sustained ventricular tachyarrhythmias (nsVTs) detected before ICD implantation, extensive area of ischemic left ventricular damage on echocardiographic assessment, left ventricular end-diastolic dimension (LVEDd) ≥ 68 mm, history of coronary artery bypass grafting (CABG), and presence of chronic total occlusion (CTO). A multiparameter logit model was created to estimate the probability of ATh. Patients with a score ≥ 0.6 had more than a six-fold higher risk of developing ATh compared with patients with a score < 0.6. Patients after ATh had significantly lower survival compared to patients without intervention (HR 1.69, p = 0.008). Conclusions: Patients with the independent risk factors listed above are at higher risk for ATh. A multiparameter logit model based on these risk factors is effective in estimating the risk of ATh. The occurrence of ATh was associated with a significantly higher risk of all-cause mortality. Full article
Show Figures

Figure 1

14 pages, 2762 KB  
Article
Exploratory Study of Serum IL-22 and CD163+ Macrophages in Glioblastoma Multiforme
by Elina Aleksandrova, Julian Ananiev, Tatyana Vlaykova, Tanya Tacheva, Hristina Petrova and Stefan Valkanov
Medicina 2026, 62(2), 253; https://doi.org/10.3390/medicina62020253 - 25 Jan 2026
Viewed by 152
Abstract
Background and Objectives: Glioblastoma (GBM) is the most aggressive primary tumor of the central nervous system, characterized by high invasiveness and poor prognosis. Inflammation in the tumor microenvironment, including the presence of immunosuppressive M2-macrophages (CD163+), plays a key role in disease progression. The [...] Read more.
Background and Objectives: Glioblastoma (GBM) is the most aggressive primary tumor of the central nervous system, characterized by high invasiveness and poor prognosis. Inflammation in the tumor microenvironment, including the presence of immunosuppressive M2-macrophages (CD163+), plays a key role in disease progression. The aim of this study was to evaluate serum levels of interleukin-22 (IL-22) in Bulgarian patients with GBM and to analyze its diagnostic role, its relationship with systemic inflammatory markers (NLR), metabolic parameters, and the infiltration of CD163+ cells. Materials and Methods: The study included 41 newly diagnosed patients with GBM and 46 healthy controls. Serum IL-22 levels were measured by ELISA, and the density of CD163+ cells in the tumor tissue was analyzed immunohistochemically. Statistical analysis included Mann–Whitney test, ROC analysis, binary logistic regression, and Kaplan–Meier survival analysis. Results: GBM patients showed significantly higher levels of IL-22 compared to healthy controls (p = 0.001). ROC analysis demonstrated moderate diagnostic ability of IL-22 (AUC = 0.713), with high levels being a potential risk factor for the disease (OR= 2.51). A weak inverse correlation was found between IL-22 and neutrophil-to-lymphocyte ratio (NLR) (p = 0.048). Although IL-22 levels alone did not affect overall survival, patients with high levels of the cytokine and dense stromal infiltration of CD163+ macrophages tended to have shorter overall survival (p = 0.080). Conclusions: IL-22 is a potential diagnostic biomarker, probably reflecting the systemic inflammatory response in GBM. Its prognostic value might be contextually dependent on the tumor microenvironment, as high levels of IL-22 in combination with immunosuppressive macrophages may contribute to a more aggressive course of the disease. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

28 pages, 564 KB  
Article
CONFIDE: CONformal Free Inference for Distribution-Free Estimation in Causal Competing Risks
by Quang-Vinh Dang, Ngoc-Son-An Nguyen and Thi-Bich-Diem Vo
Mathematics 2026, 14(2), 383; https://doi.org/10.3390/math14020383 - 22 Jan 2026
Viewed by 51
Abstract
Accurate prediction of individual treatment effects in survival analysis is often complicated by the presence of competing risks and the inherent unobservability of counterfactual outcomes. While machine learning models offer improved discriminative power, they typically lack rigorous guarantees for uncertainty quantification, which are [...] Read more.
Accurate prediction of individual treatment effects in survival analysis is often complicated by the presence of competing risks and the inherent unobservability of counterfactual outcomes. While machine learning models offer improved discriminative power, they typically lack rigorous guarantees for uncertainty quantification, which are essential for safety-critical clinical decision-making. In this paper, we introduce CONFIDE (CONFormal Inference for Distribution-free Estimation), a novel framework that bridges causal inference and conformal prediction to construct valid prediction sets for cause-specific cumulative incidence functions. Unlike traditional confidence intervals for population-level parameters, CONFIDE provides individual-level prediction sets for time-to-event outcomes, which are more clinically actionable for personalized treatment decisions by directly quantifying uncertainty in future patient outcomes rather than uncertainty in population averages. By integrating semi-parametric hazard estimation with targeted bias correction strategies, CONFIDE generates calibrated prediction sets that cover the true potential outcome with a user-specified probability, irrespective of the underlying data distribution. We empirically validate our approach on four diverse medical datasets, demonstrating that CONFIDE achieves competitive discrimination (C-index up to 0.83) while providing robust finite-sample marginal coverage guarantees (e.g., 85.7% coverage on the Bone Marrow Transplant dataset). We note two key limitations: (1) coverage may degrade under heavy censoring (>40%) unless inverse probability of censoring weighted (IPCW) conformal quantiles are used, as demonstrated in our sensitivity analysis; (2) while the method guarantees marginal coverage averaged over the covariate distribution, conditional coverage for specific covariate values is theoretically impossible without structural assumptions, though practical approximations via locally-adaptive calibration can improve conditional performance. Our framework effectively enables trustworthy personalized risk assessment in complex survival settings. Full article
(This article belongs to the Special Issue Statistical Models and Their Applications)
Show Figures

Figure 1

16 pages, 3906 KB  
Article
S3PM: Entropy-Regularized Path Planning for Autonomous Mobile Robots in Dense 3D Point Clouds of Unstructured Environments
by Artem Sazonov, Oleksii Kuchkin, Irina Cherepanska and Arūnas Lipnickas
Sensors 2026, 26(2), 731; https://doi.org/10.3390/s26020731 - 21 Jan 2026
Viewed by 158
Abstract
Autonomous navigation in cluttered and dynamic industrial environments remains a major challenge for mobile robots. Traditional occupancy-grid and geometric planning approaches often struggle in such unstructured settings due to partial observability, sensor noise, and the frequent presence of moving agents (machinery, vehicles, humans). [...] Read more.
Autonomous navigation in cluttered and dynamic industrial environments remains a major challenge for mobile robots. Traditional occupancy-grid and geometric planning approaches often struggle in such unstructured settings due to partial observability, sensor noise, and the frequent presence of moving agents (machinery, vehicles, humans). These limitations seriously undermine long-term reliability and safety compliance—both essential for Industry 4.0 applications. This paper introduces S3PM, a lightweight entropy-regularized framework for simultaneous mapping and path planning that operates directly on dense 3D point clouds. Its key innovation is a dynamics-aware entropy field that fuses per-voxel occupancy probabilities with motion cues derived from residual optical flow. Each voxel is assigned a risk-weighted entropy score that accounts for both geometric uncertainty and predicted object dynamics. This representation enables (i) robust differentiation between reliable free space and ambiguous/hazardous regions, (ii) proactive collision avoidance, and (iii) real-time trajectory replanning. The resulting multi-objective cost function effectively balances path length, smoothness, safety margins, and expected information gain, while maintaining high computational efficiency through voxel hashing and incremental distance transforms. Extensive experiments in both real-world and simulated settings, conducted on a Raspberry Pi 5 (with and without the Hailo-8 NPU), show that S3PM achieves 18–27% higher IoU in static/dynamic segmentation, 0.94–0.97 AUC in motion detection, and 30–45% fewer collisions compared to OctoMap + RRT* and standard probabilistic baselines. The full pipeline runs at 12–15 Hz on the bare Pi 5 and 25–30 Hz with NPU acceleration, making S3PM highly suitable for deployment on resource-constrained embedded platforms. Full article
(This article belongs to the Special Issue Mobile Robots: Navigation, Control and Sensing—2nd Edition)
Show Figures

Figure 1

17 pages, 1337 KB  
Article
The Participation of Acetyl Phosphate, a Microbial and Host Metabolite, in the Regulation of the Calcium Balance in Mitochondria and Cells
by Natalia V. Beloborodova, Alexey V. Berezhnov and Nadezhda I. Fedotcheva
Int. J. Mol. Sci. 2026, 27(2), 1007; https://doi.org/10.3390/ijms27021007 - 20 Jan 2026
Viewed by 141
Abstract
Acetyl phosphate (AcP) is a microbial metabolite acting as a link between cell metabolism and signaling, providing the survival of bacteria in the host. AcP was also identified as an intermediate of pyruvate oxidation in mammalian mitochondria and was found in the human [...] Read more.
Acetyl phosphate (AcP) is a microbial metabolite acting as a link between cell metabolism and signaling, providing the survival of bacteria in the host. AcP was also identified as an intermediate of pyruvate oxidation in mammalian mitochondria and was found in the human blood in some severe pathologies. The possible contribution of circulating AcP to the maintenance of the physiological or pathological states of the body has not been studied. Since AcP can function as a donor of phosphate groups, we have examined in vitro the influence of AcP on calcium signaling in mitochondria and cells by measuring the membrane potential and the calcium retention capacity of mitochondria by selective electrodes and by assaying the cell calcium signaling by Fura-2AM fluorescent radiometry. AcP was shown to induce a concentration-dependent increase in the mitochondrial resistance to calcium ion loading both in the control and in the presence of ADP. This effect was especially pronounced when mitochondria were incubated in a phosphate-free medium; under these conditions, AcP strongly raised the membrane potential and increased the rate of calcium uptake and the calcium retention capacity several times. Moreover, AcP induced similar changes in human cells when calcium signaling was activated by ATP, to a greater extent in neuroblastoma cells than in astrocytes. In the presence of AcP, a tendency for an increase in the amplitude and a decrease in the continuance of the ATP-induced calcium response was observed. These changes are probably associated with the activation of calcium buffering by mitochondria due to the delivery of phosphate during the hydrolysis of AcP. The results show that AcP is involved in the regulation of the Ca2+ balance in cells by activating the accumulation of calcium ions by mitochondria, especially under phosphate deficiency. A shift in calcium signaling mediated by AcP supplementation may be caused by hyperphosphatemia, which is now considered as one of basic contributors to cellular dysfunction and progression of various diseases, including sepsis. Full article
(This article belongs to the Special Issue Mitochondrial Function in Human Health and Disease: 3rd Edition)
Show Figures

Figure 1

32 pages, 950 KB  
Review
Gammaretrovirus Infections in Humans in the Past, Present, and Future: Have We Defeated the Pathogen?
by Antoinette Cornelia van der Kuyl
Pathogens 2026, 15(1), 104; https://doi.org/10.3390/pathogens15010104 - 19 Jan 2026
Viewed by 418
Abstract
Gammaretroviruses are ubiquitous pathogens, often associated with the induction of neoplasia, especially leukemia, lymphoma, and sarcoma, and with a propensity to target the germline. The latter trait has left extensive evidence of their infectious competence in vertebrate genomes, the human genome being no [...] Read more.
Gammaretroviruses are ubiquitous pathogens, often associated with the induction of neoplasia, especially leukemia, lymphoma, and sarcoma, and with a propensity to target the germline. The latter trait has left extensive evidence of their infectious competence in vertebrate genomes, the human genome being no exception. Despite the continuing activity of gammaretroviruses in mammals, including Old World monkeys, apes, and gibbons, humans have apparently evaded novel infections by the virus class for the past 30 million years or so. Nevertheless, from the 1970s onward, cell culture studies repeatedly discovered gammaretroviral components and/or virus replication in human samples. The last novel ‘human’ gammaretrovirus, identified in prostate cancer tissue, culminated in the XMRV frenzy of the 2000s. In the end, that discovery was shown to be due to lab contamination with a murine gammaretrovirus. Contamination is also the likely source of the earlier findings. Complementation between genes of partially defective endogenous proviruses could have been another source of the virions observed. However, the capacity of many gammaretroviruses to replicate in human cell lines, as well as the presence of diverse infectious gammaretroviral species in our animal companions, for instance in mice, cats, pigs, monkeys, chickens, and bats, does not make a transmission to humans an improbable scenario. This review will summarize evidence for, or the lack of, gammaretrovirus infections in humans in the past, present, and near future. Aspects linked to the probabilities of novel gammaretrovirus infections in humans, regarding exposure risk in connection to modern lifestyle, geography, diet, and habitat, together with genetic and immune factors, will also be part of the review, as will be the estimated consequences of such novel infections. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

33 pages, 2270 KB  
Article
Thermal Stress, Energy Anxiety, and Vulnerable Households in a Just Transition Region: Evidence from Western Macedonia, Greece
by Stavros P. Migkos, Androniki Katarachia and Polytimi M. Farmaki
World 2026, 7(1), 8; https://doi.org/10.3390/world7010008 - 13 Jan 2026
Viewed by 232
Abstract
This study investigates thermal stress and energy-related anxiety as lived, multidimensional manifestations of energy poverty in Western Macedonia, Greece, a coal phase-out region undergoing just transition. Using a 261-household survey, we construct a thermal stress index from four Likert-type items capturing seasonal thermal [...] Read more.
This study investigates thermal stress and energy-related anxiety as lived, multidimensional manifestations of energy poverty in Western Macedonia, Greece, a coal phase-out region undergoing just transition. Using a 261-household survey, we construct a thermal stress index from four Likert-type items capturing seasonal thermal adequacy, energy anxiety, and restricted use of rooms. High thermal stress is defined as the upper quartile of the index. Descriptive results indicate that high thermal stress affects 27.2% of households, exceeding a 20% threshold, while energy-related anxiety and restricted room use are widespread. We then estimate logistic regression models to examine whether vulnerability characteristics (disability-related thermal/electric needs, single parenthood, dependent children, benefit receipt, elderly presence), financial stress indicators (arrears, energy debt, frequent forced reductions in consumption), and socio-economic controls (income, employment, tenure, age, gender) predict high thermal stress. Adjusted models show that vulnerability markers do not retain statistically independent associations once controls are included. In contrast, tenure and energy-related financial stress are significantly associated with the probability of high thermal stress. The findings highlight the importance of measurement choices and suggest that experiential indicators capture energy-poverty dynamics that are not reducible to income-based targeting, with implications for just-transition policy design and energy justice. Full article
Show Figures

Figure 1

23 pages, 1141 KB  
Article
Randomized Algorithms and Neural Networks for Communication-Free Multiagent Singleton Set Cover
by Guanchu He, Colton Hill, Joshua H. Seaton and Philip N. Brown
Games 2026, 17(1), 3; https://doi.org/10.3390/g17010003 - 12 Jan 2026
Viewed by 269
Abstract
This paper considers how a system designer can program a team of autonomous agents to coordinate with one another such that each agent selects (or covers) an individual resource with the goal that all agents collectively cover the maximum number of resources. Specifically, [...] Read more.
This paper considers how a system designer can program a team of autonomous agents to coordinate with one another such that each agent selects (or covers) an individual resource with the goal that all agents collectively cover the maximum number of resources. Specifically, we study how agents can formulate strategies without information about other agents’ actions so that system-level performance remains robust in the presence of communication failures. First, we use an algorithmic approach to study the scenario in which all agents lose the ability to communicate with one another, have a symmetric set of resources to choose from, and select actions independently according to a probability distribution over the resources. We show that the distribution that maximizes the expected system-level objective under this approach can be computed by solving a convex optimization problem, and we introduce a novel polynomial-time heuristic based on subset selection. Further, both of the methods are guaranteed to be within 11/e of the system’s optimal in expectation. Second, we use a learning-based approach to study how a system designer can employ neural networks to approximate optimal agent strategies in the presence of communication failures. The neural network, trained on system-level optimal outcomes obtained through brute-force enumeration, generates utility functions that enable agents to make decisions in a distributed manner. Empirical results indicate the neural network often outperforms greedy and randomized baseline algorithms. Collectively, these findings provide a broad study of optimal agent behavior and its impact on system-level performance when the information available to agents is extremely limited. Full article
(This article belongs to the Section Algorithmic and Computational Game Theory)
Show Figures

Figure 1

30 pages, 17519 KB  
Article
Cl-Bearing Mineral Microinclusions in Arc Lavas: An Overview of Recent Findings with Some Metallogenic Implications
by Pavel Kepezhinskas, Nikolai Berdnikov, Irina Voinova, Nikita Kepezhinskas, Nadezhda Potapova and Valeria Krutikova
Geosciences 2026, 16(1), 40; https://doi.org/10.3390/geosciences16010040 - 12 Jan 2026
Viewed by 269
Abstract
Quaternary lavas (ankaramite, basalt, basaltic andesite, andesite, dacite) from the Kamchatka, Kurile, Ecuador and Cascade volcanic arcs contain Cl-bearing mineral microinclusions in rock-forming minerals and groundmass volcanic glass. They are represented by chlorargyrite (with a variable amount of native Ag), Cu, Ag, Sn, [...] Read more.
Quaternary lavas (ankaramite, basalt, basaltic andesite, andesite, dacite) from the Kamchatka, Kurile, Ecuador and Cascade volcanic arcs contain Cl-bearing mineral microinclusions in rock-forming minerals and groundmass volcanic glass. They are represented by chlorargyrite (with a variable amount of native Ag), Cu, Ag, Sn, and Zn compounds with Cl and S, Sn- and Pb-Sb oxychlorides compositionally similar to abhurite and nadorite, as well as bismoclite and Cl-F-apatite. The Cl-bearing compounds with chalcophile metals are best approximated by mixtures of chlorargyrite with Cu sulfides, malachite, or azurite. Some Cl-bearing solid microinclusions in magmatic rock-forming minerals could have formed from Cl-rich melts exsolved from arc magmas during differentiation. Alternatively, specific magmatic microinclusions may record the decomposition of primary sulfides in the presence of Cl-bearing magmatic volatiles. Post-magmatic Cl microminerals found in fractures, pores, grain contacts, and groundmass glass are most probably precipitated from hydrothermal fluids accompanying their emplacement at the surface and post-eruption transformations in active fumarole fields. Assemblages of Cl-bearing microminerals with native metal, alloy, sulfide, oxide, and sulfate microinclusions in arc lavas potentially record late-magmatic to post-magmatic stages of formation of the epithermal and possibly porphyry mineralization beneath arc volcanoes. Full article
Show Figures

Figure 1

19 pages, 1582 KB  
Article
Sticking Efficiency of Microplastic Particles in Terrestrial Environments Determined with Atomic Force Microscopy
by Robert M. Wheeler and Steven K. Lower
Microplastics 2026, 5(1), 6; https://doi.org/10.3390/microplastics5010006 - 9 Jan 2026
Viewed by 203
Abstract
Subsurface deposition determines whether soils, aquifers, or ocean sediment represent a sink or temporary reservoir for microplastics. Deposition is generally studied by applying the Smoluchowski–Levich equation to determine a particle’s sticking efficiency, which relates the number of particles filtered by sediment to the [...] Read more.
Subsurface deposition determines whether soils, aquifers, or ocean sediment represent a sink or temporary reservoir for microplastics. Deposition is generally studied by applying the Smoluchowski–Levich equation to determine a particle’s sticking efficiency, which relates the number of particles filtered by sediment to the probability of attachment occurring from an interaction between particles and sediment. Sticking efficiency is typically measured using column experiments or estimated from theory using the Interaction Force Boundary Layer (IFBL) model. However, there is generally a large discrepancy (orders of magnitude) between the values predicted from IFBL theory and the experimental column measurements. One way to bridge this gap is to directly measure a microparticle’s interaction forces using Atomic Force Microscopy (AFM). Herein, an AFM method is presented to measure sticking efficiency for a model polystyrene microparticle (2 μm) on a model geomaterial surface (glass or quartz) in environmentally relevant, synthetic freshwaters of varying ionic strength (de-ionized water, soft water, hard water). These data, collected over nanometer length scales, are compared to sticking efficiencies determined through traditional approaches. Force measurement results show that AFM can detect extremely low sticking efficiencies, surpassing the sensitivity of column studies. These data also demonstrate that the 75th to 95th percentile, rather than the mean or median force values, provides a better approximation to values measured in model column experiments or field settings. This variability of the methods provides insight into the fundamental mechanics of microplastic deposition and suggests AFM is isolating the physicochemical interactions, while column experiments also include physical interactions like straining. Advantages of AFM over traditional column/field experiments include high throughput, small volumes, and speed of data collection. For example, at a ramp rate of 1 Hz, 60 sticking efficiency measurements could be made in only a minute. Compared to column or field experiments, the AFM requires much less liquid (μL volume) making it effortless to examine the impact of solution chemistry (temperature, pH, ionic strength, valency of dissolved ions, presence of organics, etc.). Potential limitations of this AFM approach are presented alongside possible solutions (e.g., baseline correction, numerical integration). If these challenges are successfully addressed, then AFM would provide a completely new approach to help elucidate which subsurface minerals represent a sink or temporary storage site for microparticles on their journey from terrestrial to oceanic environments. Full article
(This article belongs to the Special Issue Microplastics in Freshwater Ecosystems)
Show Figures

Figure 1

17 pages, 307 KB  
Proceeding Paper
Quantifying Risk Factors of Violence in Maritime Piracy Incidents Using Categorical Association Measures
by Sonia Rozbiewska
Environ. Earth Sci. Proc. 2026, 41(1), 1; https://doi.org/10.3390/eesp2026041001 - 8 Jan 2026
Viewed by 329
Abstract
Maritime piracy remains a persistent security challenge across several global regions, with violent incidents posing the greatest threat to crew safety and vessel operations. This study investigates the relationship between violent escalation in piracy incidents and a set of contextual and operational variables [...] Read more.
Maritime piracy remains a persistent security challenge across several global regions, with violent incidents posing the greatest threat to crew safety and vessel operations. This study investigates the relationship between violent escalation in piracy incidents and a set of contextual and operational variables using classical categorical data statistics. A dataset comprising reported maritime piracy and armed robbery events from 2015–2024 was compiled from IMB, OBP, and IMO sources and analysed through chi-square tests of independence, followed by Cramér’s V to quantify the strength of association. The results demonstrate that violence is not randomly distributed across incident characteristics. Geographic region exhibits the strongest measurable association with violent outcomes, reflecting the influence of regional security dynamics and the presence of organized criminal networks. Attack type and weapon type show additional, though weaker, associations, indicating that close-range engagement and the presence of firearms increase the likelihood of escalation. Vessel type, flag state, and seasonal timing display only marginal effects. Overall, the findings highlight that the probability of violence during piracy events is primarily shaped by spatial context and tactical execution. The study confirms that chi-square and Cramér’s V offer a transparent, interpretable framework for identifying key risk factors and can serve as a foundation for operational threat assessments and maritime security planning. Full article
17 pages, 2458 KB  
Article
Impact of the Transcriptional Regulator SCO7424 Overexpression on Antibiotic Production in Streptomyces coelicolor
by Gladys Vega-Sauceda, Karen Villarreal-Gómez, Beatriz Ruiz-Villafán, Romina Rodríguez-Sanoja and Sergio Sánchez
Antibiotics 2026, 15(1), 70; https://doi.org/10.3390/antibiotics15010070 - 8 Jan 2026
Viewed by 320
Abstract
Background. The genus Streptomyces is known for its capability to produce a wide range of bioactive secondary metabolites. The enzymes required for their synthesis are encoded within biosynthetic gene clusters (BGCs), whose expression can be influenced by various physical and nutritional factors. Among [...] Read more.
Background. The genus Streptomyces is known for its capability to produce a wide range of bioactive secondary metabolites. The enzymes required for their synthesis are encoded within biosynthetic gene clusters (BGCs), whose expression can be influenced by various physical and nutritional factors. Among these nutritional factors, it is worth highlighting carbon catabolic repression (CCR), which prevents the formation of secondary metabolites. It has been shown that transcriptional factors, in turn, regulated by glucose or by the enzyme glucose kinase (Glk), may be involved in this mechanism. It was shown that the expression of some transcriptional factors is regulated by glucose availability and that the enzyme glucose kinase (Glk) may play a role in this process. One of the transcriptional factors most upregulated in the presence of glucose/agar in Streptomyces coelicolor M145 is SCO7424, a member of the MarR family of transcriptional regulators. However, its influence on antibiotic synthesis has never been studied. Objective. In this work, we evaluated the effect of SCO7424 overexpression on the synthesis of actinorhodin (ACT) and undecylprodigiosin (RED), and its impact on growth and glucose consumption. Methods. A copy of the sco7424 gene was cloned into the pIJ702 plasmid, which was then transformed into a wild-type strain of S. coelicolor M145. Growth and antibiotic production were evaluated in the strain with two copies of sco7424 and in the wild-type strain. We also evaluated the expression of the probable target genes by quantitative RT-PCR. Results. We found that overexpression of sco7424 negatively impacts growth, glucose consumption kinetics, and the expression of specific regulators of the ACT and RED biosynthetic pathways, resulting in reduced ACT and RED production. Understanding the function of the regulatory cascades regulated by this family of regulators is crucial for boosting the yields of valuable metabolites produced by industrial strains. Full article
(This article belongs to the Special Issue Antibiotic Synthesis, 2nd Edition)
Show Figures

Figure 1

Back to TopTop