Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = pro-contractile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7615 KiB  
Article
Novel 2D/3D Hybrid Organoid System for High-Throughput Drug Screening in iPSC Cardiomyocytes
by Jordann Lewis, Basil Yaseen, Haodi Wu and Anita Saraf
Therapeutics 2025, 2(3), 11; https://doi.org/10.3390/therapeutics2030011 - 27 Jun 2025
Cited by 1 | Viewed by 354
Abstract
Background: Human induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) allow for high-throughput evaluation of cardiomyocyte (CM) physiology in health and disease. While multimodality testing provides a large breadth of information related to electrophysiology, contractility, and intracellular signaling in small populations of iPSC-CMs, current technologies [...] Read more.
Background: Human induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) allow for high-throughput evaluation of cardiomyocyte (CM) physiology in health and disease. While multimodality testing provides a large breadth of information related to electrophysiology, contractility, and intracellular signaling in small populations of iPSC-CMs, current technologies for analyzing these parameters are expensive and resource-intensive. Methods: We have designed a novel 2D/3D hybrid organoid system that can harness optical imaging techniques to assess electromechanical properties and calcium dynamics across CMs in a high-throughput manner. We validated our methods using a doxorubicin-based system, as the drug has well-characterized cardiotoxic, pro-arrhythmic effects. Results: This novel hybrid system provides the functional benefit of 3D organoids while minimizing optical interference from multilayered cellular systems through our cell-culture techniques that propagate organoids outwards into 2D iPSC-CM sheets. The organoids recapitulate contractile forces that are more robust in 3D structures and connectivity, while 2D CMs facilitate analysis at an individual cellular level, which recreated numerous doxorubicin-induced electrophysiologic and propagation abnormalities. Conclusions: Thus, we have developed a novel 2D/3D hybrid organoid model that employs an integrated optical analysis platform to provide a reliable high-throughput method for studying cardiotoxicity, providing valuable data on calcium, contractility, and signal propagation. Full article
Show Figures

Figure 1

19 pages, 3569 KiB  
Article
Bladder p75NTR-Mediated Anti-Inflammatory Response via the TLR4/TRAF6/NF-κB Axis
by Claudia Covarrubias, Abubakr H. Mossa, Laura R. Yan, Benjamin Desormeau, Philippe G. Cammisotto, H. Uri Saragovi and Lysanne Campeau
Life 2025, 15(6), 957; https://doi.org/10.3390/life15060957 - 14 Jun 2025
Viewed by 2640
Abstract
Recurrent bacterial cystitis in women can lead to interstitial cystitis or bladder pain syndrome (IC/BPS). Activation of Toll-like receptor 4 (TLR4) by LPS can upregulate signaling of the pro-inflammatory receptor p75NTR. The aim of the presented study was to assess whether [...] Read more.
Recurrent bacterial cystitis in women can lead to interstitial cystitis or bladder pain syndrome (IC/BPS). Activation of Toll-like receptor 4 (TLR4) by LPS can upregulate signaling of the pro-inflammatory receptor p75NTR. The aim of the presented study was to assess whether p75NTR antagonist THX-B can modulate LPS-mediated inflammation in bladder cells. In vitro expression and LPS-activation of p75NTR were confirmed in urothelial (URO) and smooth muscle (SMC) cells. In UROs, p75NTR antagonism abolished the LPS-elicited rise in membrane-bound and soluble TNF-α. However, it could not prevent LPS-induced rise in phosphorylated ERK nor decrease in phosphorylated p38MAPK, nor the increase in iNOS and nitric oxide (NO) content. On the other hand, in SMCs, LPS increased phosphorylation of JNK, nuclear translocation of NF-κB, and association of TRAF6 to p75NTR, outcomes prevented by p75NTR antagonism. In UROs, LPS decreased the expression of tight junction proteins, ZO-1 and occludin, with the latter rescued by p75NTR antagonism. Intraurethral instillation of LPS increased inflammation in the lamina propria, activation of JNK, and contractile activity of bladder tissue. Alternatively, intraperitoneal THX-B injections prevented LPS-induced inflammation but not enhanced muscle contraction. Our results suggest that inhibition of p75NTR could help in reducing bladder symptoms during cystitis. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

13 pages, 2092 KiB  
Article
Evaluation of the Effects of the Sodium–Glucose Cotransporter 2 Inhibitors and Sacubitril/Valsartan Combined Therapy in Patients with HFrEF: An Echocardiographic Study
by Isabella Fumarulo, Annalisa Pasquini, Giulia La Vecchia, Bianca Pellizzeri, Andriy Sten, Barbara Garramone, Marcello Vaccarella, Salvatore Emanuele Ravenna, Antonella Lombardo, Francesco Burzotta, Dario Pitocco and Nadia Aspromonte
Int. J. Mol. Sci. 2025, 26(12), 5651; https://doi.org/10.3390/ijms26125651 - 12 Jun 2025
Viewed by 938
Abstract
Sodium–glucose cotransporter 2 inhibitors (iSGLT2) have become the fourth pillar of the medical treatment for heart failure with reduced ejection fraction (HFrEF). However, the mechanisms of action of iSGLT2 remain poorly understood. The effectiveness of combined ARNI and iSGLT2 therapy in left ventricular [...] Read more.
Sodium–glucose cotransporter 2 inhibitors (iSGLT2) have become the fourth pillar of the medical treatment for heart failure with reduced ejection fraction (HFrEF). However, the mechanisms of action of iSGLT2 remain poorly understood. The effectiveness of combined ARNI and iSGLT2 therapy in left ventricular (LV) remodeling is still under study. We aim to investigate the effects of ARNI + iSGLT2 combination therapy in patients affected by HFrEF in terms of ventricular remodeling using speckle tracking echocardiography (STE). In this observational study, 136 patients with HFrEF taking ARNI were enrolled. All patients were evaluated at baseline (before iSGLT2), at 3 months and at 12 months from the beginning of iSGLT2 therapy. Echocardiographic parameters, including STE analysis and volumetric and LV contractile function indices, were collected at the three timepoints. The objectives were (1) to evaluate the effects of ARNI + iSGLT2 combination therapy on ultrasound (US) measurements; (2) to evaluate the effects on the variation of laboratory data indicative of HF (NT-pro-BNP); and (3) to evaluate the medium-long term impact of the ARNI + iSGLT2 combination therapy in terms of major cardiovascular events (MACVE). After only three months of combined ARNI + iSGLT2 therapy, we reported a significant improvement in ventricular and atrial volumetric indices, systolic function indices and myocardial deformation parameters assessed by STE. We also reported a significant decrease in NTproBNP levels. This trend was confirmed at 12 months follow-up. Furthermore, narrowing down the analysis to patients who were already treated with ARNI when they started taking iSGLT2, we reported similar results in the improvement of US parameters and NTproBNP levels. Our study has shown that the ARNI + iSGLT2 combination therapy leads to a clinical improvement and positive ventricular remodeling. Even the single introduction of additional iSGLT-2 in HFrEF patients on an otherwise optimized therapy resulted in a significant improvement in US and laboratory variables. The results of our study suggest implementing iSGLT-2 therapy as soon as possible, as the structural and functional cardiac improvements achieved by these drugs are achieved in the short term and maintained in the long term. Full article
(This article belongs to the Special Issue Molecular Insights into Heart Failure: From Bench to Bedside)
Show Figures

Figure 1

18 pages, 19397 KiB  
Article
Myofibroblast-like Cells and Junctional Complex Development Play a Role in Mouse Pubic Symphysis Remodeling During Pregnancy and Postpartum
by Viviane Souza Rosa, Bianca Gazieri Castelucci, Monica Moreira, Paulo Pinto Joazeiro and Sílvio Roberto Consonni
Int. J. Mol. Sci. 2025, 26(11), 5307; https://doi.org/10.3390/ijms26115307 - 31 May 2025
Viewed by 526
Abstract
During mouse pregnancy, the pubic symphysis (PS) undergoes a gradual transitioning into an interpubic ligament (IpL) for a successful delivery. After birth, this IpL is rapidly remodeled, returning to the non-pregnant morphology. The PS fibrocartilaginous cells acquire a myofibroblast-like phenotype, characterized by extracellular [...] Read more.
During mouse pregnancy, the pubic symphysis (PS) undergoes a gradual transitioning into an interpubic ligament (IpL) for a successful delivery. After birth, this IpL is rapidly remodeled, returning to the non-pregnant morphology. The PS fibrocartilaginous cells acquire a myofibroblast-like phenotype, characterized by extracellular matrix (ECM) secretion, expression of α-smooth muscle actin (α-SMA), and vimentin. While the presence of myofibroblast-like cells during the IpL remodeling is well described, cell–cell interactions and how this might contribute to the delivery remains poorly understood. This study uses ultrastructure and molecular approaches to investigate cell–cell and cell–ECM junctions during mouse pregnancy and postpartum. Our findings reveal that the intercellular contacts between adjacent IpL myofibroblast-like cells, particularly at late pregnancy stages, are characterized as adherens and GAP junctions. The acquisition of contractile elements by IpL cells, coupled with neighboring cells and the surrounding ECM via junctional complexes, suggests an important role in supporting changes in the mechanical forces generated by pubic bone movements during mouse pregnancy and also in tying the pelvic bones together, which may help the birth canal closure after delivery. Further studies in PS biology may investigate fibroblast to myofibroblast differentiation signaling cascades, which regulate the expression of pro-fibrotic proteins and may provide new insights for preterm labor. Full article
(This article belongs to the Special Issue Latest Advances in Reproduction Biology)
Show Figures

Figure 1

17 pages, 2384 KiB  
Article
The Contractile Function of Ventricular Cardiomyocytes Is More Sensitive to Acute 17β-Estradiol Treatment Compared to Atrial Cardiomyocytes
by Tatiana A. Myachina, Xenia A. Butova, Raisa A. Simonova, Denis A. Volzhaninov, Anastasia M. Kochurova, Galina V. Kopylova, Daniil V. Shchepkin and Anastasia D. Khokhlova
Cells 2025, 14(8), 561; https://doi.org/10.3390/cells14080561 - 8 Apr 2025
Viewed by 622
Abstract
17β-estradiol (E2) is the most active metabolite of estrogen with a wide range of physiological action on cardiac muscle. Previous studies have reported E2 effects predominantly for the ventricles, while the E2 impact on the atria has been less examined. In this study, [...] Read more.
17β-estradiol (E2) is the most active metabolite of estrogen with a wide range of physiological action on cardiac muscle. Previous studies have reported E2 effects predominantly for the ventricles, while the E2 impact on the atria has been less examined. In this study, we focused on the direct E2 effects on atrial and ventricular contractility at the cellular and molecular levels. Single atrial and ventricular cardiomyocytes (CM) from adult (24 weeks-old) female Wistar rats were incubated with 10 nM E2 for 15 min. Sarcomere length and cytosolic [Ca2+]i transients were measured in mechanically non-loaded CM, and the tension–length relationship was studied in CM mechanically loaded by carbon fibers. The actin–myosin interaction and sarcomeric protein phosphorylation were analyzed using an in vitro motility assay and gel electrophoresis with Pro-Q Diamond phosphoprotein stain. E2 had chamber-specific effects on the contractile function of CM with a pronounced influence on ventricular CM. The characteristics of [Ca2+]i transients did not change in both atrial and ventricular CM. However, in ventricular CM, E2 reduced the amplitude and maximum velocity of sarcomere shortening and decreased the slope of the passive tension–length relationship that was associated with increased TnI and cMyBP-C phosphorylation. E2 treatment accelerated the cross-bridge cycle of both atrial and ventricular myosin that was associated with increased phosphorylation of the myosin essential light chain. This study shows that E2 impairs the mechanical function of the ventricular myocardium while atrial contractility remains mostly preserved. Hormonal replacement therapy (HRT) with estrogen is by far the most effective therapy for treating climacteric symptoms experienced during menopause. Here we found a chamber specificity of myocardial contractile function to E2 that should be taken into account for the potential side effects of HRT. Full article
Show Figures

Figure 1

22 pages, 4793 KiB  
Article
Activin A Inhibitory Peptides Suppress Fibrotic Pathways by Targeting Epithelial–Mesenchymal Transition and Fibroblast–Myofibroblast Transformation in Idiopathic Pulmonary Fibrosis
by Victor Alexandre F. Bastos, Patrícia Tiemi Fujimura, Aline Gomes de Souza, Emília Rezende Vaz, Natieli Saito, Robinson Sabino-Silva, Luiz Ricardo Goulart and Thulio Marquez Cunha
Int. J. Mol. Sci. 2025, 26(6), 2705; https://doi.org/10.3390/ijms26062705 - 17 Mar 2025
Cited by 1 | Viewed by 1139
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and incurable chronic interstitial lung disease characterized by excessive fibrosis and impaired lung function. Current treatments, such as pirfenidone and nintedanib, slow disease progression but fail to halt or reverse fibrosis, highlighting the need for novel [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a progressive and incurable chronic interstitial lung disease characterized by excessive fibrosis and impaired lung function. Current treatments, such as pirfenidone and nintedanib, slow disease progression but fail to halt or reverse fibrosis, highlighting the need for novel approaches. Activin A, which belongs to the TGF-β superfamily, is implicated in various fibrosis-related mechanisms, including epithelial–mesenchymal transition (EMT), a process where epithelial cells acquire mesenchymal characteristics, and fibroblast–myofibroblast transformation (FMT), in which fibroblasts differentiate into contractile myofibroblasts. It also promotes inflammatory cytokine release and extracellular matrix buildup. This study aimed to inhibit Activin A activity using synthetic peptides identified through phage display screening. Of the ten peptides isolated, A7, B9, and E10 demonstrated high binding affinity and inhibitory activity. Computational modeling confirmed that these peptides target the receptor-binding domain of Activin A, with peptide E10 exhibiting superior efficacy. Functional assays showed that E10 reduced cell migration, inhibited EMT in A549 cells, and suppressed FMT in fibroblast cultures, even under pro-fibrotic stimulation with TGF-β. These findings underscore the therapeutic potential of targeting Activin A with synthetic peptides, offering a promising avenue for IPF treatment and expanding the arsenal of anti-fibrotic strategies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 4258 KiB  
Article
Lysine Demethylase 1 Has Demethylase-Dependent and Non-Canonical Functions in Myofibroblast Activation in Systemic Sclerosis
by Christopher W. Wasson, Esther Perez Barreiro, Francesco Del Galdo and Natalia A. Riobo-Del Galdo
Cells 2025, 14(6), 433; https://doi.org/10.3390/cells14060433 - 14 Mar 2025
Viewed by 811
Abstract
Systemic sclerosis (SSc) is an autoimmune disease of unknown aetiology characterised by vasculopathy with progressive fibrosis of the skin and internal organs. Tissue fibrosis is driven by activated fibroblasts (myofibroblasts) with exacerbated contractile and secretory properties. We previously reported that the long non-coding [...] Read more.
Systemic sclerosis (SSc) is an autoimmune disease of unknown aetiology characterised by vasculopathy with progressive fibrosis of the skin and internal organs. Tissue fibrosis is driven by activated fibroblasts (myofibroblasts) with exacerbated contractile and secretory properties. We previously reported that the long non-coding RNA HOTAIR is a key driver of SSc fibroblast activation. HOTAIR interacts with the chromatin modifiers, the polycomb repressor complex (PRC2) and coREST complex, promoting expression of pro-fibrotic genes. In this study, we show that acute activation of dermal fibroblasts from healthy subjects or SSc patients with transforming growth factor-β and other fibrotic stimuli requires the activity of the lysine-specific demethylase 1 (LSD1) subunit of the co-REST complex. Unexpectedly, LSD1 catalytic activity plays a minor role in fibrotic gene expression in HOTAIR-overexpressing fibroblasts and in maintenance of the stable myofibroblast phenotype of SSc fibroblasts. However, silencing of LSD1 in SSc fibroblasts has a profound effect on pro-fibrotic gene expression, supporting a non-canonical scaffolding function. Our study shows for the first time an essential non-canonical role for LSD1 in pro-fibrotic gene expression in SSc; however, given that this function is insensitive to LSD1 inhibitors, the therapeutic opportunities will depend on future identification of a targetable mediator. Full article
Show Figures

Figure 1

18 pages, 5736 KiB  
Article
Acute Chikungunya Infection Induces Vascular Dysfunction by Directly Disrupting Redox Signaling in Endothelial Cells
by José Teles de Oliveira-Neto, Juliano de P. Souza, Daniel Rodrigues, Mirele R. Machado, Juliano V. Alves, Paula R. Barros, Alecsander F. Bressan, Josiane F. Silva, Tiago J. Costa, Rafael M. Costa, Daniella Bonaventura, Eurico de Arruda-Neto, Rita C. Tostes and Emiliana P. Abrão
Cells 2024, 13(21), 1770; https://doi.org/10.3390/cells13211770 - 25 Oct 2024
Cited by 3 | Viewed by 1757
Abstract
Chikungunya virus (CHIKV) infection is characterized by febrile illness, severe joint pain, myalgia, and cardiovascular complications. Given that CHIKV stimulates reactive oxygen species (ROS) and pro- and anti-inflammatory cytokines, events that disrupt vascular homeostasis, we hypothesized that CHIKV induces arterial dysfunction by directly [...] Read more.
Chikungunya virus (CHIKV) infection is characterized by febrile illness, severe joint pain, myalgia, and cardiovascular complications. Given that CHIKV stimulates reactive oxygen species (ROS) and pro- and anti-inflammatory cytokines, events that disrupt vascular homeostasis, we hypothesized that CHIKV induces arterial dysfunction by directly impacting redox-related mechanisms in vascular cells. Wild-type (WT) and iNOS knockout (iNOS−/−) mice were administered either CHIKV (1.0 × 106 PFU/µL) or Mock vehicle via the intracaudal route. In vivo, CHIKV infection induced vascular dysfunction (assessed by a wire myograph), decreased systolic blood pressure (tail-cuff plethysmography), increased IL-6 and IFN-γ, but not TNF-α levels (determined by ELISA), and increased protein content by Western blot. Marked contractile hyporesponsiveness to phenylephrine was observed 48 h post-infection, which was restored by endothelium removal. L-NAME, 1400W, Tiron, and iNOS gene deletion prevented phenylephrine hyporesponsiveness. CHIKV infection increased vascular nitrite concentration (Griess reaction) and superoxide anion (O2•−) generation (lucigenin chemiluminescence), and decreased hydrogen peroxide (H2O2, by Amplex Red) levels 48 h post-infection, alongside increased TBARS levels. In vitro, CHIKV infected endothelial cells (EA.hy926) and upregulated ICAM-1 and iNOS protein expression (determined by Western blot). These data support the conclusion that CHIKV-induced alterations in vascular ROS/NF-kB/iNOS/NO signaling potentially contribute to cardiovascular events associated with Chikungunya infection. Full article
Show Figures

Graphical abstract

20 pages, 11193 KiB  
Article
Single-Cell Hypertrophy Promotes Contractile Function of Cultured Human Airway Smooth Muscle Cells via Piezo1 and YAP Auto-Regulation
by Kai Ni, Bo Che, Rong Gu, Chunhong Wang, Yan Pan, Jingjing Li, Lei Liu, Mingzhi Luo and Linhong Deng
Cells 2024, 13(20), 1697; https://doi.org/10.3390/cells13201697 - 14 Oct 2024
Cited by 1 | Viewed by 1869
Abstract
Severe asthma is characterized by increased cell volume (hypertrophy) and enhanced contractile function (hyperresponsiveness) of the airway smooth muscle cells (ASMCs). The causative relationship and underlying regulatory mechanisms between them, however, have remained unclear. Here, we manipulated the single-cell volume of in vitro [...] Read more.
Severe asthma is characterized by increased cell volume (hypertrophy) and enhanced contractile function (hyperresponsiveness) of the airway smooth muscle cells (ASMCs). The causative relationship and underlying regulatory mechanisms between them, however, have remained unclear. Here, we manipulated the single-cell volume of in vitro cultured human ASMCs to increase from 2.7 to 5.2 and 8.2 × 103 μm3 as a simulated ASMC hypertrophy by culturing the cells on micropatterned rectangular substrates with a width of 25 μm and length from 50 to 100 and 200 μm, respectively. We found that as the cell volume increased, ASMCs exhibited a pro-contractile function with increased mRNA expression of contractile proteins, increased cell stiffness and traction force, and enhanced response to contractile stimulation. We also uncovered a concomitant increase in membrane tension and Piezo1 mRNA expression with increasing cell volume. Perhaps more importantly, we found that the enhanced contractile function due to cell volume increase was largely attenuated when membrane tension and Piezo1 mRNA expression were downregulated, and an auto-regulatory loop between Piezo1 and YAP mRNA expression was also involved in perpetuating the contractile function. These findings, thus, provide convincing evidence of a direct link between hypertrophy and enhanced contractile function of ASMCs that was mediated via Piezo1 mRNA expression, which may be specifically targeted as a novel therapeutic strategy to treat pulmonary diseases associated with ASMC hypertrophy such as severe asthma. Full article
Show Figures

Figure 1

15 pages, 3518 KiB  
Article
The Mechanism Involved in the Inhibition of Resveratrol and Genistein on the Contractility of Isolated Rat Uterus Smooth Muscle
by Qin Ma, Yudong Wang, Wei Zhang, Zhongrui Du, Zhifeng Tian and Hongfang Li
Nutrients 2024, 16(19), 3417; https://doi.org/10.3390/nu16193417 - 9 Oct 2024
Cited by 1 | Viewed by 1478
Abstract
Purpose: This study aimed to compare the effects of the phytoestrogens resveratrol (RES) and genistein (GEN) on the contractility of isolated uterine smooth muscle from rats, focusing on both spontaneous and stimulated contractions, and to investigate the underlying mechanisms. Methods: Uterine strips were [...] Read more.
Purpose: This study aimed to compare the effects of the phytoestrogens resveratrol (RES) and genistein (GEN) on the contractility of isolated uterine smooth muscle from rats, focusing on both spontaneous and stimulated contractions, and to investigate the underlying mechanisms. Methods: Uterine strips were suspended vertically in perfusion chambers containing Kreb’s solution, various concentrations of RES and GEN were added to the ex vivo uterine strips, and contractions were measured before and after incubation with RES or GEN. Results: (1) Both RES and GEN inhibited K+-induced contractions in a dose-dependent manner; the β/β2-adrenoceptor antagonist propranolol (PRO), ICI118551, the ATP-dependent K+ channel blocker glibenclamide (HB-419) and the NO synthase inhibitor N-nitro-L-arginine (L-NNA) diminished the inhibitory effects of RES and GEN on K+-induced contractions. (2) RES and GEN also dose-dependently inhibited PGF-induced uterine contractions. (3) The inhibitory effects of RES and GEN were observed in spontaneous contractile activities as well; PRO, ICI118551, HB-419 and L-NNA attenuated the inhibitory effects of RES and GEN on the spontaneous contractions of isolated uterine muscle strips. (4) RES and GEN significantly decreased the cumulative concentration response of Ca2+ and shifted the Ca2+ cumulative concentration–response curves to the right in high-K+ Ca2+-free Kreb’s solution. (5) RES and GEN markedly reduced the first phasic contraction induced by oxytocin, acetylcholine, and prostaglandin F but did not alter the second phasic contraction caused by CaCl2 in Ca2+-free Kreb’s solution. Conclusions: RES and GEN can directly inhibit both spontaneous and activated contractions of isolated uterine smooth muscle. The mechanisms underlying the inhibitory effects of RES and GEN likely involve β adrenergic receptor activation, reduced Ca2+ influx and release, the activation of ATP-dependent K+ channels and increased NO production. Full article
(This article belongs to the Special Issue Nutritional Value and Health Benefits of Dietary Bioactive Compounds)
Show Figures

Figure 1

16 pages, 1688 KiB  
Article
Perivascular Adipose Tissue Becomes Pro-Contractile and Remodels in an IL10−/− Colitis Model of Inflammatory Bowel Disease
by Samuel W. Jenkins, Elizabeth A. Grunz, Kassandra R. Ramos and Erika M. Boerman
Int. J. Mol. Sci. 2024, 25(19), 10726; https://doi.org/10.3390/ijms251910726 - 5 Oct 2024
Cited by 1 | Viewed by 1269
Abstract
Inflammatory Bowel Diseases (IBDs) are associated with aberrant immune function, widespread inflammation, and altered intestinal blood flow. Perivascular adipose tissue (PVAT) surrounding the mesenteric vasculature can modulate vascular function and control the local immune cell population, but its structure and function have never [...] Read more.
Inflammatory Bowel Diseases (IBDs) are associated with aberrant immune function, widespread inflammation, and altered intestinal blood flow. Perivascular adipose tissue (PVAT) surrounding the mesenteric vasculature can modulate vascular function and control the local immune cell population, but its structure and function have never been investigated in IBD. We used an IL10−/− mouse model of colitis that shares features with human IBD to test the hypothesis that IBD is associated with (1) impaired ability of PVAT to dilate mesenteric arteries and (2) changes in PVAT resident adipocyte and immune cell populations. Pressure myography and electrical field stimulation of isolated mesenteric arteries show that PVAT not only loses its anti-contractile effect but becomes pro-contractile in IBD. Quantitative immunohistochemistry and confocal imaging studies found significant adipocyte hyperplasia and increased PVAT leukocytes, particularly macrophages, in IBD. PCR arrays suggest that these changes occur alongside the altered cytokine and chemokine gene expression associated with altered NF-κB signaling. Collectively, these results show that the accumulation of macrophages in PVAT during IBD pathogenesis may lead to local inflammation, which ultimately contributes to increased arterial constriction and decreased intestinal blood flow with IBD. Full article
Show Figures

Figure 1

23 pages, 3752 KiB  
Article
Differentiation and Growth-Arrest-Related lncRNA (DAGAR): Initial Characterization in Human Smooth Muscle and Fibroblast Cells
by Benjamin de la Cruz-Thea, Lautaro Natali, Hung Ho-Xuan, Astrid Bruckmann, Núria Coll-Bonfill, Nicholas Strieder, Víctor I. Peinado, Gunter Meister and Melina M. Musri
Int. J. Mol. Sci. 2024, 25(17), 9497; https://doi.org/10.3390/ijms25179497 - 31 Aug 2024
Cited by 1 | Viewed by 2058
Abstract
Vascular smooth muscle cells (SMCs) can transition between a quiescent contractile or “differentiated” phenotype and a “proliferative-dedifferentiated” phenotype in response to environmental cues, similar to what in occurs in the wound healing process observed in fibroblasts. When dysregulated, these processes contribute to the [...] Read more.
Vascular smooth muscle cells (SMCs) can transition between a quiescent contractile or “differentiated” phenotype and a “proliferative-dedifferentiated” phenotype in response to environmental cues, similar to what in occurs in the wound healing process observed in fibroblasts. When dysregulated, these processes contribute to the development of various lung and cardiovascular diseases such as Chronic Obstructive Pulmonary Disease (COPD). Long non-coding RNAs (lncRNAs) have emerged as key modulators of SMC differentiation and phenotypic changes. In this study, we examined the expression of lncRNAs in primary human pulmonary artery SMCs (hPASMCs) during cell-to-cell contact-induced SMC differentiation. We discovered a novel lncRNA, which we named Differentiation And Growth Arrest-Related lncRNA (DAGAR) that was significantly upregulated in the quiescent phenotype with respect to proliferative SMCs and in cell-cycle-arrested MRC5 lung fibroblasts. We demonstrated that DAGAR expression is essential for SMC quiescence and its knockdown hinders SMC differentiation. The treatment of quiescent SMCs with the pro-inflammatory cytokine Tumor Necrosis Factor (TNF), a known inducer of SMC dedifferentiation and proliferation, elicited DAGAR downregulation. Consistent with this, we observed diminished DAGAR expression in pulmonary arteries from COPD patients compared to non-smoker controls. Through pulldown experiments followed by mass spectrometry analysis, we identified several proteins that interact with DAGAR that are related to cell differentiation, the cell cycle, cytoskeleton organization, iron metabolism, and the N-6-Methyladenosine (m6A) machinery. In conclusion, our findings highlight DAGAR as a novel lncRNA that plays a crucial role in the regulation of cell proliferation and SMC differentiation. This paper underscores the potential significance of DAGAR in SMC and fibroblast physiology in health and disease. Full article
(This article belongs to the Special Issue RNA in Biology and Medicine)
Show Figures

Figure 1

22 pages, 9852 KiB  
Article
X-ray Radiotherapy Impacts Cardiac Dysfunction by Modulating the Sympathetic Nervous System and Calcium Transients
by Justyne Feat-Vetel, Nadine Suffee, Florence Bachelot, Morgane Dos Santos, Nathalie Mougenot, Elise Delage, Florian Saliou, Sabrina Martin, Isabelle Brunet, Pierre Sicard and Virginie Monceau
Int. J. Mol. Sci. 2024, 25(17), 9483; https://doi.org/10.3390/ijms25179483 - 31 Aug 2024
Cited by 1 | Viewed by 1642
Abstract
Recent epidemiological studies have shown that patients with right-sided breast cancer (RBC) treated with X-ray irradiation (IR) are more susceptible to developing cardiovascular diseases, such as arrhythmias, atrial fibrillation, and conduction disturbances after radiotherapy (RT). Our aim was to investigate the mechanisms induced [...] Read more.
Recent epidemiological studies have shown that patients with right-sided breast cancer (RBC) treated with X-ray irradiation (IR) are more susceptible to developing cardiovascular diseases, such as arrhythmias, atrial fibrillation, and conduction disturbances after radiotherapy (RT). Our aim was to investigate the mechanisms induced by low to moderate doses of IR and to evaluate changes in the cardiac sympathetic nervous system (CSNS), atrial remodeling, and calcium homeostasis involved in cardiac rhythm. To mimic the RT of the RBC, female C57Bl/6J mice were exposed to X-ray doses ranging from 0.25 to 2 Gy targeting 40% of the top of the heart. At 60 weeks after RI, Doppler ultrasound showed a significant reduction in myocardial strain, ejection fraction, and atrial function, with a significant accumulation of fibrosis in the epicardial layer and apoptosis at 0.5 mGy. Calcium transient protein expression levels, such as RYR2, NAK, Kir2.1, and SERCA2a, increased in the atrium only at 0.5 Gy and 2 Gy at 24 h, and persisted over time. Interestingly, 3D imaging of the cleaned hearts showed an early reduction of CSNS spines and dendrites in the ventricles and a late reorientation of nerve fibers, combined with a decrease in SEMA3a expression levels. Our results showed that local heart IR from 0.25 Gy induced late cardiac and atrial dysfunction and fibrosis development. After IR, ventricular CSNS and calcium transient protein expression levels were rearranged, which affected cardiac contractility. The results are very promising in terms of identifying pro-arrhythmic mechanisms and preventing arrhythmias during RT treatment in patients with RBC. Full article
(This article belongs to the Special Issue The Effect of Ionizing Radiation on Human Cells)
Show Figures

Figure 1

12 pages, 2787 KiB  
Article
IQGAP1 Regulates Actin Polymerization and Contributes to Bleomycin-Induced Lung Fibrosis
by Tanjina Akter, Ilia Atanelishvili, Richard M. Silver and Galina S. Bogatkevich
Int. J. Mol. Sci. 2024, 25(10), 5244; https://doi.org/10.3390/ijms25105244 - 11 May 2024
Cited by 4 | Viewed by 1448
Abstract
We previously found IQ motif containing GTPase activating protein (IQGAP1) to be consistently elevated in lung fibroblasts (LF) isolated from patients with scleroderma (systemic sclerosis, SSc)-associated interstitial lung disease (ILD) and reported that IQGAP1 contributed to SSc by regulating expression and organization of [...] Read more.
We previously found IQ motif containing GTPase activating protein (IQGAP1) to be consistently elevated in lung fibroblasts (LF) isolated from patients with scleroderma (systemic sclerosis, SSc)-associated interstitial lung disease (ILD) and reported that IQGAP1 contributed to SSc by regulating expression and organization of α-smooth muscle actin (SMA) in LF. The aim of this study was to compare the development of ILD in the presence and absence of IQGAP1. Pulmonary fibrosis was induced in IQGAP1 knockout (KO) and wild-type (WT) mice by a single-intratracheal instillation of bleomycin. Two and three weeks later, mice were euthanized and investigated. We observed that the IQGAP1 KO mouse was characterized by a reduced rate of actin polymerization with reduced accumulation of actin in the lung compared to the WT mouse. After exposure to bleomycin, the IQGAP1 KO mouse demonstrated decreased contractile activity of LF, reduced expression of SMA, TGFβ, and collagen, and lowered overall fibrosis scores compared to the WT mouse. The numbers of inflammatory cells and expression of pro-inflammatory cytokines in lung tissue were not significantly different between IQGAP1 KO and WT mice. We conclude that IQGAP1 plays an important role in the development of lung fibrosis induced by bleomycin, and the absence of IQGAP1 reduces the contractile activity of lung fibroblast and bleomycin-induced pulmonary fibrosis. Thus, IQGAP1 may be a potential target for novel anti-fibrotic therapies for lung fibrosis. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 2262 KiB  
Article
The Effect of an Elevated Dietary Copper Level on the Vascular Contractility and Oxidative Stress in Middle-Aged Rats
by Klaudia Kitala-Tańska, Katarzyna Socha, Jerzy Juśkiewicz, Magdalena Krajewska-Włodarczyk and Michał Majewski
Nutrients 2024, 16(8), 1172; https://doi.org/10.3390/nu16081172 - 15 Apr 2024
Cited by 7 | Viewed by 1826
Abstract
Copper (Cu), being an essential mineral, plays a crucial role in maintaining physiological homeostasis across multiple bodily systems, notably the cardiovascular system. However, an increased Cu level in the body may cause blood vessel dysfunction and oxidative stress, which is unfavorable for the [...] Read more.
Copper (Cu), being an essential mineral, plays a crucial role in maintaining physiological homeostasis across multiple bodily systems, notably the cardiovascular system. However, an increased Cu level in the body may cause blood vessel dysfunction and oxidative stress, which is unfavorable for the cardiovascular system. Middle-aged (7–8 months old) male Wistar rats (n/group = 12) received a diet supplemented with 6.45 mg Cu/kg (100% of the recommended daily dietary quantity of copper) for 8 weeks (Group A). The experimental group received 12.9 mg Cu/kg of diet (200%—Group B). An ex vivo study revealed that supplementation with 200% Cu decreased the contraction of isolated aortic rings to noradrenaline (0.7-fold) through FP receptor modulation. Vasodilation to sodium nitroprusside (1.10-fold) and acetylcholine (1.13-fold) was potentiated due to the increased net effect of prostacyclin derived from cyclooxygenase-1. Nitric oxide (NO, 2.08-fold), superoxide anion (O2•−, 1.5-fold), and hydrogen peroxide (H2O2, 2.33-fold) measured in the aortic rings increased. Blood serum antioxidant status (TAS, 1.6-fold), Cu (1.2-fold), Zn (1.1-fold), and the Cu/Zn ratio (1.4-fold) increased. An increase in Cu (1.12-fold) and the Cu/Zn ratio (1.09-fold) was also seen in the rats’ livers. Meanwhile, cyclooxygenase-1 (0.7-fold), cyclooxygenase-2 (0.4-fold) and glyceraldehyde 3-phosphate dehydrogenase (0.5-fold) decreased. Moreover, a negative correlation between Cu and Zn was found (r = −0.80) in rat serum. Supplementation with 200% Cu did not modify the isolated heart functioning. No significant difference was found in the body weight, fat/lean body ratio, and organ weight for either the heart or liver, spleen, kidney, and brain. Neither Fe nor Se, the Cu/Se ratio, the Se/Zn ratio (in serum and liver), heme oxygenase-1 (HO-1), endothelial nitric oxide synthase (eNOS), or intercellular adhesion molecule-1 (iCAM-1) (in serum) were modified. Supplementation with 200% of Cu potentiated pro-oxidant status and modified vascular contractility in middle-aged rats. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

Back to TopTop