The Mechanism Involved in the Inhibition of Resveratrol and Genistein on the Contractility of Isolated Rat Uterus Smooth Muscle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drugs
2.2. Animal and Uterine Strip Preparation
2.3. Experimental Protocols
2.4. Statistical Analysis
3. Results
3.1. Influences of Resveratrol and Genistein on KCl-Induced Contractions
3.2. Effects of Different Blockers on the Inhibition Induced by Resveratrol and Genistein in KCl-Precontracted Uterine Muscle Strips
3.3. Effects of Resveratrol and Genistein on PGF2α-Induced Uterine Contractions
3.4. Influences of Resveratrol and Genistein on Uterine Myogenic Spontaneous Contractions
3.5. Influences of Different Blockers on the Inhibitory Effects Induced by Resveratrol and Genistein on Uterine Spontaneous Contractions
3.6. Effects of Resveratrol and Genistein on Uterine Ca2+-Dependent Contractions
3.7. Influences of Resveratrol and Genistein on Biphasic Contraction Caused by Oxytocin, Acetylcholine, Prostaglandin F2α and CaCl2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Aguilar, H.N.; Mitchell, B.F. Physiological pathways and molecular mechanisms regulating uterine contractility. Hum. Reprod. Update 2010, 16, 725–744. [Google Scholar] [CrossRef] [PubMed]
- An, B.S.; Ahn, H.J.; Kang, H.S.; Jung, E.M.; Yang, H.; Hong, E.J.; Jeung, E.B. Effects of estrogen and estrogenic compounds, 4-tert-octylphenol, and bisphenol A on the uterine contraction and contraction-associated proteins in rats. Mol. Cell. Endocrinol. 2013, 375, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Mueller, A.; Siemer, J.; Schreiner, S.; Koesztner, H.; Hoffmann, I.; Binder, H.; Beckmann, M.W.; Dittrich, R. Role of estrogen and progesterone in the regulation of uterine peristalsis: Results from perfused non-pregnant swine uteri. Hum. Reprod. 2006, 21, 1863–1868. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-López, I.; Yago-Aragón, M.; Salas-Huetos, A.; Tresserra-Rimbau, A.; Hurtado-Barroso, S. Effects of Dietary Phytoestrogens on Hormones throughout a Human Lifespan: A Review. Nutrients 2020, 12, 2456. [Google Scholar] [CrossRef]
- Canivenc-Lavier, M.C.; Bennetau-Pelissero, C. Phytoestrogens and Health Effects. Nutrients 2023, 15, 317. [Google Scholar] [CrossRef]
- Patra, S.; Gorai, S.; Pal, S.; Ghosh, K.; Pradhan, S.; Chakrabarti, S. A review on phytoestrogens: Current status and future direction. Phytother. Res. 2023, 37, 3097–3120. [Google Scholar] [CrossRef]
- Ashadeep, C.; Ozgul, M.D.; Samy, I.; McFarlane, O.M.M. Adverse effects of phytoestrogens on reproductive health: A report of three cases. Complement. Ther. Clin. Pract. 2008, 14, 132–135. [Google Scholar] [CrossRef]
- Galiniak, S.; Aebisher, D.; Bartusik-Aebisher, D. Health benefits of resveratrol administration. Acta Biochim. Pol. 2019, 66, 13–21. [Google Scholar] [CrossRef]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef]
- Ratz-Łyko, A.; Arct, J. Resveratrol as an active ingredient for cosmetic and dermatological applications: A review. J. Cosmet. Laser Ther. 2019, 21, 84–90. [Google Scholar] [CrossRef]
- Qasem, R.J. The estrogenic activity of resveratrol: A comprehensive review of in vitro and in vivo evidence and the potential for endocrine disruption. Crit. Rev. Toxicol. 2020, 50, 439–462. [Google Scholar] [CrossRef] [PubMed]
- Guelfi, G.; Pasquariello, R.; Anipchenko, P.; Capaccia, C.; Pennarossa, G.; Brevini, T.A.L.; Gandolfi, F.; Zerani, M.; Maranesi, M. The Role of Genistein in Mammalian Reproduction. Molecules 2023, 28, 7436. [Google Scholar] [CrossRef] [PubMed]
- Beekmann, K.; de Haan, L.H.; Actis-Goretta, L.; Houtman, R.; van Bladeren, P.J.; Rietjens, I.M. The effect of glucuronidation on isoflavone induced estrogen receptor (ER)α and ERβ mediated coregulator interactions. J. Steroid Biochem. Mol. Biol. 2015, 154, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Behloul, N.; Wu, G. Genistein: A promising therapeutic agent for obesity and diabetes treatment. Eur. J. Pharmacol. 2013, 698, 31–38. [Google Scholar] [CrossRef]
- Pérez-Torres, I.; Castrejón-Téllez, V.; Soto, M.E.; Rubio-Ruiz, M.E.; Manzano-Pech, L.; Guarner-Lans, V. Oxidative Stress, Plant Natural Antioxidants, and Obesity. Int. J. Mol. Sci. 2021, 22, 1786. [Google Scholar] [CrossRef]
- Martiniakova, M.; Babikova, M.; Omelka, R. Pharmacological agents and natural compounds: Available treatments for osteoporosis. J. Physiol. Pharmacol. 2020, 71, 307–320. [Google Scholar] [CrossRef]
- Yu, T.; Wang, Z.; You, X.; Zhou, H.; He, W.; Li, B.; Xia, J.; Zhu, H.; Zhao, Y.; Yu, G.; et al. Resveratrol promotes osteogenesis and alleviates osteoporosis by inhibiting p53. Aging 2020, 12, 10359–10369. [Google Scholar] [CrossRef]
- Chen, M.N.; Lin, C.C.; Liu, C.F. Efficacy of phytoestrogens for menopausal symptoms: A meta-analysis and systematic review. Climacteric 2015, 18, 260–269. [Google Scholar] [CrossRef]
- Li, H.F.; Wang, L.D.; Qu, S.Y. Phytoestrogen genistein decreases contractile response of aortic artery in vitro and arterial blood pressure in vivo. Acta Pharmacol. Sin. 2004, 25, 313–318. [Google Scholar]
- Li, H.F.; Tian, Z.F.; Qiu, X.Q.; Wu, J.X.; Zhang, P.; Jia, Z.J. A study of mechanisms involved in vasodilatation induced by resveratrol in isolated porcine coronary artery. Physiol. Res. 2006, 55, 365–372. [Google Scholar] [CrossRef]
- Plotnikoval, T.M.; Anishchenko, A.M.; Plotnikov, M.B. Phytoestrogens: Mechanisms of correction of cardiovascular complications of climacteric syndrome. Eksperimental’naia Klin. Farmakol. 2017, 80, 39–44. [Google Scholar]
- Basu, P.; Maier, C. Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. Biomed. Pharmacother. 2018, 107, 1648–1666. [Google Scholar] [CrossRef] [PubMed]
- Wyse, J.; Latif, S.; Gurusinghe, S.; McCormick, J.; Weston, L.A.; Stephen, C.P. Phytoestrogens: A Review of Their Impacts on Reproductive Physiology and Other Effects upon Grazing Livestock. Animals 2022, 12, 2709. [Google Scholar] [CrossRef] [PubMed]
- Silva, H. The Vascular Effects of Isolated Isoflavones—A Focus on the Determinants of Blood Pressure Regulation. Biology 2021, 10, 49. [Google Scholar] [CrossRef] [PubMed]
- Hsia, S.M.; Wang, K.L.; Wang, P.S. Effects of Resveratrol, a Grape Polyphenol, on Uterine Contraction and Ca2+ Mobilization in Rats in Vivo and in Vitro. Endocrinology 2011, 152, 2090–2099. [Google Scholar] [CrossRef] [PubMed]
- Pasquariello, R.; Verdile, N.; Brevini, T.A.L.; Gandolfi, F.; Boiti, C.; Zerani, M.; Maranesi, M. The Role of Resveratrol in Mammalian Reproduction. Molecules 2020, 25, 4554. [Google Scholar] [CrossRef]
- Brandli, A.; Simpson, J.S.; Ventura, S. Isoflavones isolated from red clover (Trifolium pratense) inhibit smooth muscle contraction of the isolated rat prostate gland. Phytomedicine 2010, 17, 895–901. [Google Scholar] [CrossRef]
- Wang, L.D.; Qiu, X.Q.; Tian, Z.F.; Zhang, Y.F.; Li, H.F. Inhibitory effects of genistein and resveratrol on guinea pig gallbladder contractility in vitro. World. J. Gastroenterol. 2008, 14, 4955–4960. [Google Scholar] [CrossRef]
- Liew, R.; Stagg, M.A.; Chan, J.; Collins, P.; MacLeod, K.T. Gender determings the acute actions of genistein on intracellular calcium regulation in the guinea-pig heart. Cardiovasc. Res. 2004, 280, H208–H215. [Google Scholar]
- Smith, A.J.; Clutton, R.E.; Lilley, E.; Hansen, K.E.A.; Brattelid, T. PREPARE: Guidelines for planning animal research and testing. Lab. Anim. 2018, 52, 135–141. [Google Scholar] [CrossRef] [PubMed]
- van Gestel, I.; IJland, M.M.; Hoogland, H.J.; Evers, J.L. Endometrial wave-like activity in the non-pregnant uterus. Hum. Reprod. Update 2003, 9, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.L.; Bursova, J.O.; Lam, F.; Chen, X.; Obukhov, A.G. Ex Vivo Method for Assessing the Mouse Reproductive Tract Spontaneous Motility and a MATLAB-based Uterus Motion Tracking Algorithm for Data Analysis. J. Vis. Exp. 2019, 1, e59848. [Google Scholar] [CrossRef] [PubMed]
- Lufkin, H.; Flores, D.; Raider, Z.; Madhavan, M.; Dawson, M.; Coronel, A.; Sharma, D.; Arora, R. Pre-implantation mouse embryo movement under hormonally altered conditions. Mol. Hum. Reprod. 2023, 29, gaac043. [Google Scholar] [CrossRef] [PubMed]
- Dodds, K.N.; Staikopoulos, V.; Beckett, E.A. Uterine Contractility in the Nonpregnant Mouse: Changes During the Estrous Cycle and Effects of Chloride Channel Blockade. Biol. Reprod. 2015, 92, 141. [Google Scholar] [CrossRef]
- Bulletti, C.; DeZiegler, D.; Polli, V.; Diotallevi, L. Uterine contractility during the estrous cycle. Hum. Reprod. 2000, 15 (Suppl. S1), 81–89. [Google Scholar] [CrossRef]
- Szucs, K.F.; Vigh, D.; Mirdamadi, M.; Samavati, R.; Barna, T.; Schaffer, A.; Alasaad, K.; Gaspar, R. Smooth muscle electromyography for detecting major alterations in the estrus cycle in rats. PLoS ONE 2024, 19, e0307932. [Google Scholar] [CrossRef]
- Ruttner, Z.; Ivanics, T.; Slaaf, D.W.; Reneman, R.S.; Toth, A.; Ligeti, L. In vivo monitoring of intracellular free calcium changes during uterine activation by prostaglandin F2α and oxytocin. J. Soc. Gynecol. Investig. 2002, 9, 294–298. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Jiang, J.; Zheng, D.; Liu, S.; Liu, C. Lipopolysaccharides upregulate calcium concentration in mouse uterine smooth muscle cells through the T-type calcium channels. Int. J. Mol. Med. 2015, 35, 784–790. [Google Scholar] [CrossRef]
- Wray, S.; Jones, K.; Kupittayanant, S.; Li, Y.; Matthew, A.; Monir-Bishty, E.; Noble, K.; Pierce, S.J.; Quenby, S.; Shmygol, A.V. Calcium Signaling and Uterine Contractility. J. Soc. Gynecol. Investig. 2003, 10, 252–264. [Google Scholar] [CrossRef]
- Wray, S.; Prendergast, C. The Myometrium: From Excitation to Contractions and Labour. Adv. Exp. Med. Biol. 2019, 1124, 233–263. [Google Scholar]
- Ozkan, M.H.; Uma, S. β-adrenergic Receptor Blocker ICI 118,551 Selectively Increases Intermediate-Conductance Calcium-Activated Potassium Channel (IK(Ca))-Mediated Relaxations in Rat Main Mesenteric Artery. Basic Clin. Pharmacol. Toxicol. 2018, 122, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Tirloni, C.A.S.; Palozi, R.A.C.; Schaedler, M.I.; Guarnier, L.P.; Silva, A.O.; Marques, M.A.; Gasparotto, F.M.; Lourenço, E.L.B.; de Souza, L.M.; Junior, A.G. Influence of Luehea divaricata Mart. extracts on peripheral vascular resistance and the role of nitric oxide and both Ca+2-sensitive and Kir6.1 ATP-sensitive K+ channels in the vasodilatory effects of isovitexin on isolated perfused mesenteric beds. Phytomedicine 2019, 56, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Modzelewska, B.; Jóźwik, M.; Jóźwik, M.; Tylicka, M.; Kleszczewski, T. The effects of extended nitric oxide release on responses of the human non-pregnant myometrium to endothelin-1 or vasopressin. Pharmacol. Rep. 2019, 71, 892–898. [Google Scholar] [CrossRef]
- Khan, F.A.; Chenier, T.S.; Murrant, C.L.; Foster, R.A.; Hewson, J.; Scholtz, E.L. Dose-dependent inhibition of uterine contractility by nitric oxide: A potential mechanism underlying persistent breeding-induced endometritis in the mare. Theriogenology 2017, 90, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Raheja, R.; Gupta, H.; Pandey, U.; Deshpande, S.B. Lignocaine augments the in-vitro uterine contractions involving NO-guanylyl cyclase dependent mechanisms. Life Sci. 2017, 190, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Okawa, T.; Vedernikov, Y.P.; Saade, G.R.; Garfield, R.E. Effect of nitric oxide on contractions of uterine and cervical tissues from pregnant rats. Gynecol. Endocrinol. 2004, 18, 186–193. [Google Scholar] [CrossRef]
- Yallampalli, C.; Izumi, H.; Byam-Smith, M.; Garfield, R.E. An L-arginine-nitric oxide-cyclic guanosine monophosphate system exists in the uterus and inhibits contractility during pregnancy. Am. J. Obstet. Gynecol. 1994, 170, 175–185. [Google Scholar] [CrossRef]
- Li, J.J.; Duan, H.; Wang, S.; Sun, F.Q.; Gan, L.; Tang, Y.Q.; Xu, Q.; Li, T.C. Expression Pattern of G-Protein-Coupled Estrogen Receptor in Myometrium of Uteri with and without Adenomyosis. BioMed Res. Int. 2017, 2017, 5974693. [Google Scholar] [CrossRef]
- Wang, H.; Masironi, B.; Eriksson, H.; Sahlin, L. A comparative study of estrogen receptors alpha and beta in the rat uterus. Biol. Reprod. 1999, 61, 955–964. [Google Scholar] [CrossRef]
- Powell, S.A.; Smith, B.B.; Timm, K.I.; Menino, A.R. Expression of estrogen receptors alpha and beta in the corpus luteum and uterus from non-pregnant and pregnant llamas. Mol. Reprod. Dev. 2007, 74, 1043–1052. [Google Scholar] [CrossRef]
- Tica, A.A.; Dun, E.C.; Tica, O.S.; Gao, X.; Arterburn, J.B.; Brailoiu, G.C.; Oprea, T.I.; Brailoiu, E. G protein-coupled estrogen receptor 1-mediated effects in the rat myometrium. Am. J. Physiol. Cell Physiol. 2011, 301, C1262–C1269. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.H.; Chen, J.C.; He, Y.L.; Xu, J.J.; Mei, Y.A. Resveratrol inhibits K(v)2.2 currents through the estrogen receptor GPR30-mediated PKC pathway. Am. J. Physiol. Cell Physiol. 2013, 305, C547–C557. [Google Scholar] [CrossRef] [PubMed]
- Pinkerton, J.V.; Conner, E.A. Beyond estrogen: Advances in tissue selective estrogen complexes and selective estrogen receptor modulators. Climacteric 2019, 22, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Oz, B.; Yildirim, A.; Yolbas, S.; Celik, Z.B.; Etem, E.O.; Deniz, G.; Akin, M.; Akar, Z.A.; Karatas, A.; Koca, S.S. Resveratrol inhibits Src tyrosine kinase, STAT3, and Wnt signaling pathway in collagen induced arthritis model. Biofactors 2019, 45, 69–74. [Google Scholar] [CrossRef]
- Ataie, Z.; Fatehi-Hassanabad, Z.; Nakhaee, S.; Foadoddini, M.; Farrokhfall, K. Sex-specific endothelial dysfunction induced by high-cholesterol diet in rats: The role of protein tyrosine kinase and nitric oxide. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 745–754. [Google Scholar] [CrossRef]
- Tang, D.D. The Dynamic Actin Cytoskeleton in Smooth Muscle. Adv. Pharmacol. 2018, 81, 1–38. [Google Scholar]
- Lai, P.F.; Tribe, R.M.; Johnson, M.R. Differential impact of acute and prolonged cAMP agonist exposure on protein kinase A activation and human myometrium contractile activity. J. Physiol. 2016, 594, 6369–6393. [Google Scholar] [CrossRef]
- Kerfant, B.G.; Rose, R.A.; Sun, H.; Backx, P.H. Phosphoinositide 3-kinase gamma regulates cardiac contractility by locally controlling cyclic adenosine monophosphate levels. Trends Cardiovasc. Med. 2006, 16, 250–256. [Google Scholar] [CrossRef]
- Dawood, M.Y.; Khan-Dawood, F.S. Differential suppression of menstrual fluid prostaglandin F2a, prostaglandin E2, 6-keto prostaglandin F1a and thromboxane B2 by suprofen in women with primary dysmenorrhea. Prostaglandins Other Lipid Mediat. 2007, 83, 146–153. [Google Scholar] [CrossRef]
- Markiewicz, W.; Bogacki, M.; Blitek, M.; Jaroszewski, J.J. Comparison of the porcine uterine smooth muscle contractility on days 12-14 of the estrous cycle and pregnancy. Acta Vet. Scand. 2016, 58, 20. [Google Scholar] [CrossRef]
- Gu, B.; Zhu, S.; Ding, X.; Deng, Y.; Ma, X.; Gan, J.; Wang, Y.F.; Sun, A.J. Effect of Low-Power Visible-Light-Activated Photodynamic Therapy (PDT) on Primary Dysmenorrhea: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial. Int. J. Women’s Health 2022, 14, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chai, C.Z.; Yue, X.Y.; Yan, Y.; Kou, J.P.; Cao, Z.Y.; Yu, B.Y. Ge-Gen Decoction attenuates oxytocin-induced uterine contraction and writhing response: Potential application in primary dysmenorrhea therapy. Chin. J. Nat. Med. 2016, 14, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Yang, J.; Jiang, H.; Lin, S.; Qin, H.; Zhao, J.; Wang, Y.; Liu, M. Effect of photobiomodulation on alleviating primary dysmenorrhea caused by PGF2α. J. Biophotonics 2024, 17, e202300448. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, W.N.; Padilla-Banks, E.; Suen, A.A.; Royer, L.J.; Zeldin, S.M.; Arora, R.; Williams, C.J. Environ Uterine Patterning, Endometrial Gland Development, and Implantation Failure in Mice Exposed Neonatally to Genistein. Health Perspect. 2020, 128, 37001. [Google Scholar] [CrossRef]
- Khazaei, M.R.; Rashidi, Z.; Chobsaz, F.; iromand, E.; Khazaei, M. Inhibitory effect of resveratrol on the growth and angiogenesis of human endometrial tissue in an In Vitro three-dimensional model of endometriosis. Reprod. Biol. 2020, 20, 484–490. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Wang, Y.; Zhang, W.; Du, Z.; Tian, Z.; Li, H. The Mechanism Involved in the Inhibition of Resveratrol and Genistein on the Contractility of Isolated Rat Uterus Smooth Muscle. Nutrients 2024, 16, 3417. https://doi.org/10.3390/nu16193417
Ma Q, Wang Y, Zhang W, Du Z, Tian Z, Li H. The Mechanism Involved in the Inhibition of Resveratrol and Genistein on the Contractility of Isolated Rat Uterus Smooth Muscle. Nutrients. 2024; 16(19):3417. https://doi.org/10.3390/nu16193417
Chicago/Turabian StyleMa, Qin, Yudong Wang, Wei Zhang, Zhongrui Du, Zhifeng Tian, and Hongfang Li. 2024. "The Mechanism Involved in the Inhibition of Resveratrol and Genistein on the Contractility of Isolated Rat Uterus Smooth Muscle" Nutrients 16, no. 19: 3417. https://doi.org/10.3390/nu16193417
APA StyleMa, Q., Wang, Y., Zhang, W., Du, Z., Tian, Z., & Li, H. (2024). The Mechanism Involved in the Inhibition of Resveratrol and Genistein on the Contractility of Isolated Rat Uterus Smooth Muscle. Nutrients, 16(19), 3417. https://doi.org/10.3390/nu16193417