Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,249)

Search Parameters:
Keywords = primary injury

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5358 KiB  
Article
Oxidative Ferritin Destruction: A Key Mechanism of Iron Overload in Acetaminophen-Induced Hepatocyte Ferroptosis
by Kaishuo Gong, Kaiying Liang, Hui Li, Hongjun Luo, Yingtong Chen, Ke Yin, Zhixin Liu, Wenhong Luo and Zhexuan Lin
Int. J. Mol. Sci. 2025, 26(15), 7585; https://doi.org/10.3390/ijms26157585 - 5 Aug 2025
Abstract
Although acetaminophen (APAP) overdose represents the predominant cause of drug-induced acute liver failure (ALF) worldwide and has been extensively studied, the modes of cell death remain debatable and the treatment approach for APAP-induced acute liver failure is still limited. This study investigated the [...] Read more.
Although acetaminophen (APAP) overdose represents the predominant cause of drug-induced acute liver failure (ALF) worldwide and has been extensively studied, the modes of cell death remain debatable and the treatment approach for APAP-induced acute liver failure is still limited. This study investigated the mechanisms of APAP hepatotoxicity in primary mouse hepatocytes (PMHs) by using integrated methods (MTT assay, HPLC analysis for glutathione (GSH), Calcein-AM for labile iron pool detection, confocal microscopy for lipid peroxidation and mitochondrial superoxide measurements, electron microscopy observation, and Western blot analysis for ferritin), focusing on the role of iron dysregulation under oxidative stress. Our results showed that 20 mM APAP treatment induced characteristic features of ferroptosis, including GSH depletion, mitochondrial dysfunction, and iron-dependent lipid peroxidation. Further results showed significant ferritin degradation and subsequent iron releasing. Iron chelator deferoxamine (DFO) and N-acetylcysteine (NAC) could alleviate APAP-induced hepatotoxicity, while autophagy inhibitors did not provide a protective effect. In vitro experiments confirmed that hydrogen peroxide directly damaged ferritin structure, leading to iron releasing, which may aggravate iron-dependent lipid peroxidation. These findings provide evidence that APAP hepatotoxicity involves a self-amplifying cycle of oxidative stress and iron-mediated oxidative damaging, with ferritin destruction playing a key role as a free iron source. This study offers new insights into APAP-induced liver injury beyond conventional cell death classifications, and highlights iron chelation as a potential therapeutic strategy alongside traditional antioxidative treatment with NAC. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

20 pages, 4870 KiB  
Article
Histological and Immunohistochemical Evidence in Hypothermia-Related Death: An Experimental Study
by Emina Dervišević, Nina Čamdžić, Edina Lazović, Adis Salihbegović, Francesco Sessa, Hajrudin Spahović and Stefano D’Errico
Int. J. Mol. Sci. 2025, 26(15), 7578; https://doi.org/10.3390/ijms26157578 - 5 Aug 2025
Abstract
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. [...] Read more.
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. Twenty-one male rats were divided into three groups: control (K), benzodiazepine-treated (B), and alcohol-treated (A). After two weeks of substance administration, hypothermia was induced and multiple organ samples were analyzed. Histologically, renal tissue showed hydropic and vacuolar degeneration, congestion, and acute tubular injury across all groups, with no significant differences in E-cadherin expression. Lung samples revealed congestion, emphysema, and hemorrhage, with more pronounced vascular congestion in the alcohol and benzodiazepine groups. Cardiac tissue exhibited vacuolar degeneration and protein denaturation, particularly in substance-exposed animals. The spleen showed preserved architecture but increased erythrocyte infiltration and significantly elevated myeloperoxidase (MPO)-positive granulocytes in the intoxicated groups. Liver samples demonstrated congestion, focal necrosis, and subcapsular hemorrhage, especially in the alcohol group. Immunohistochemical analysis revealed statistically significant differences in MPO expression in both lung and spleen tissues, with the highest levels observed in the benzodiazepine group. Similarly, CK7 and CK20 expression in the gastroesophageal junction was significantly elevated in both alcohol- and benzodiazepine-treated animals compared to the controls. In contrast, E-cadherin expression in the kidney did not differ significantly among the groups. These findings suggest that specific histological and immunohistochemical patterns, particularly involving pulmonary, cardiac, hepatic, and splenic tissues, may help differentiate primary hypothermia from substance-related secondary hypothermia. The study underscores the value of integrating toxicological, histological, and molecular analyses to enhance the forensic assessment of hypothermia-related fatalities. Future research should aim to validate these markers in human autopsy series and explore additional molecular indicators to refine diagnostic accuracy in forensic pathology. Full article
Show Figures

Figure 1

20 pages, 8344 KiB  
Article
Gum Acacia–Dexamethasone Combination Attenuates Sepsis-Induced Acute Kidney Injury in Rats via Targeting SIRT1-HMGB1 Signaling Pathway and Preserving Mitochondrial Integrity
by Fawaz N. Alruwaili, Omnia A. Nour and Tarek M. Ibrahim
Pharmaceuticals 2025, 18(8), 1164; https://doi.org/10.3390/ph18081164 - 5 Aug 2025
Abstract
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley [...] Read more.
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley rats were separated into six groups, including the control, GA group, LPS-induced AKI group, DEX + LPS group, GA + LPS group, and GA + DEX + LPS group. AKI was induced in rats using LPS (10 mg/kg, i.p.). GA was administered orally (7.5 g/kg) for 14 days before LPS injection, and DEX was injected (1 mg/kg, i.p.) 2 h after LPS injection. Results: LPS injection significantly (p < 0.05, vs. control group) impaired renal function, as evidenced through increased levels of kidney function biomarkers, decreased creatinine clearance, and histopathological alterations in the kidneys. LPS also significantly (p < 0.05, vs. control group) elevated levels of oxidative stress markers, while it reduced levels of antioxidant enzymes. Furthermore, LPS triggered an inflammatory response, manifested by significant (p < 0.05, vs. control group) upregulation of Toll-like receptor 4, myeloid differentiation primary response 88, interleukin-1β, tumor necrosis factor-α, and nuclear factor-κB, along with increased expression of high-mobility group box 1. Administration of GA significantly ameliorated LPS-induced renal impairment by enhancing antioxidant defenses and suppressing inflammatory pathways (p < 0.05, vs. LPS group). Furthermore, GA-DEX-treated rats showed improved kidney function, reduced oxidative stress, and attenuated inflammatory markers (p < 0.05, vs. LPS group). Conclusions: The GA-DEX combination exhibited potent renoprotective effects against LPS-induced SA-AKI, possibly due to their antioxidant and anti-inflammatory properties. These results suggest that the GA-DEX combination could be a promising and effective therapeutic agent for managing SA-AKI. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

14 pages, 1525 KiB  
Article
Fibrinogen-to-Albumin Ratio Predicts Acute Kidney Injury in Very Elderly Acute Myocardial Infarction Patients
by Xiaorui Huang, Haichen Wang and Wei Yuan
Biomedicines 2025, 13(8), 1909; https://doi.org/10.3390/biomedicines13081909 - 5 Aug 2025
Abstract
Background/Objectives: Acute kidney injury (AKI) is a common and severe complication in patients with acute myocardial infarction (AMI). Very elderly patients are at a heightened risk of developing AKI. Fibrinogen and albumin are well-known biomarkers of inflammation and nutrition, which are highly [...] Read more.
Background/Objectives: Acute kidney injury (AKI) is a common and severe complication in patients with acute myocardial infarction (AMI). Very elderly patients are at a heightened risk of developing AKI. Fibrinogen and albumin are well-known biomarkers of inflammation and nutrition, which are highly related to AKI. We aim to explore the predictive value of the fibrinogen-to-albumin ratio (FAR) for AKI in very elderly patients with AMI. Methods: A retrospective cohort of AMI patients ≥ 75 years old hospitalized at the First Affiliated Hospital of Xi’an Jiaotong University between January 2018 and December 2022 was established. Clinical data and medication information were collected through the biospecimen information resource center at the hospital. Univariate and multivariable logistic regression models were used to analyze the association between FAR and the risk of AKI in patients with AMI. FAR was calculated as the ratio of fibrinogen (FIB) to serum albumin (ALB) level (FAR = FIB/ALB). The primary outcome is acute kidney injury, which was diagnosed based on KDIGO 2012 criteria. Results: Among 1236 patients enrolled, 66.8% of them were male, the median age was 80.00 years (77.00–83.00), and acute kidney injury occurred in 18.8% (n = 232) of the cohort. Comparative analysis revealed significant disparities in clinical characteristics between patients with or without AKI. Patients with AKI exhibited a markedly higher prevalence of arrhythmia (51.9% vs. 28.1%, p < 0.001) and lower average systolic blood pressure (115.77 ± 25.96 vs. 122.64 ± 22.65 mmHg, p = 0.013). In addition, after adjusting for age, sex, history of hypertension, left ventricular ejection fraction (LVEF), and other factors, FAR remained an independent risk factor for acute kidney injury (OR = 1.47, 95%CI: 1.36–1.58). ROC analysis shows that FAR predicted stage 2–3 AKI with superior accuracy (AUC 0.94, NPV 98.6%) versus any AKI (AUC 0.79, NPV 93.0%), enabling risk-stratified management. Conclusions: FAR serves as both a high-sensitivity screening tool for any AKI and a high-specificity sentinel for severe AKI, with NPV-driven thresholds guiding resource allocation in the fragile elderly. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

16 pages, 2609 KiB  
Article
MicroRNA210 Suppresses Mitochondrial Metabolism and Promotes Microglial Activation in Neonatal Hypoxic–Ischemic Brain Injury
by Shirley Hu, Yanelly Lopez-Robles, Guofang Shen, Elena Liu, Lubo Zhang and Qingyi Ma
Cells 2025, 14(15), 1202; https://doi.org/10.3390/cells14151202 - 5 Aug 2025
Abstract
Neuroinflammation is the major contributor to the pathology of neonatal hypoxic–ischemic (HI) brain injury. Our previous studies have demonstrated that microRNA210 (miR210) inhibition with antisense locked nucleic acid (LNA) inhibitor mitigates neuroinflammation and provides neuroprotection after neonatal HI insult. However, the underlying mechanisms [...] Read more.
Neuroinflammation is the major contributor to the pathology of neonatal hypoxic–ischemic (HI) brain injury. Our previous studies have demonstrated that microRNA210 (miR210) inhibition with antisense locked nucleic acid (LNA) inhibitor mitigates neuroinflammation and provides neuroprotection after neonatal HI insult. However, the underlying mechanisms remain elusive. In the present study, using miR210 knockout (KO) mice and microglial cultures, we tested the hypothesis that miR210 promotes microglial activation and neuroinflammation through suppressing mitochondrial function in microglia after HI. Neonatal HI brain injury was conducted on postnatal day 9 (P9) wild-type (WT) and miR210 knockout (KO) mouse pups. We found that miR210 KO significantly reduced brain infarct size at 48 h and improved long-term locomotor functions assessed by an open field test three weeks after HI. Moreover, miR210 KO mice exhibited reduced IL1β levels, microglia activation and immune cell infiltration after HI. In addition, in vitro studies of microglia exposed to oxygen–glucose deprivation (OGD) revealed that miR210 inhibition with LNA reduced OGD-induced expression of Il1β and rescued OGD-mediated downregulation of mitochondrial iron–sulfur cluster assembly enzyme (ISCU) and mitochondrial oxidative phosphorylation activity. To validate the link between miR210 and microglia activation, isolated primary murine microglia were transfected with miR210 mimic or negative control. The results showed that miR210 mimic downregulated the expression of mitochondrial ISCU protein abundance and induced the expression of proinflammatory cytokines similar to the effect observed with ISCU silencing RNA. In summary, our results suggest that miR210 is a key regulator of microglial proinflammatory activation through reprogramming mitochondrial function in neonatal HI brain injury. Full article
(This article belongs to the Special Issue Non-Coding RNAs as Regulators of Cellular Function and Disease)
Show Figures

Figure 1

19 pages, 2795 KiB  
Article
Can Biomarkers Predict Kidney Function Recovery and Mortality in Patients with Critical COVID-19 and Acute Kidney Injury?
by Noemí Del Toro-Cisneros, José C. Páez-Franco, Miguel A. Martínez-Rojas, Isaac González-Soria, Juan Antonio Ortega-Trejo, Hilda Sánchez-Vidal, Norma A. Bobadilla, Alfredo Ulloa-Aguirre and Olynka Vega-Vega
Diagnostics 2025, 15(15), 1960; https://doi.org/10.3390/diagnostics15151960 - 5 Aug 2025
Abstract
Background/Objectives: COVID-19 is a systemic viral infection that may lead to serious complications including acute kidney injury that requires kidney replacement therapy. The primary aim of this study was to evaluate urinary SerpinA3 (uSerpinA3) excretion as a biomarker of kidney recovery at [...] Read more.
Background/Objectives: COVID-19 is a systemic viral infection that may lead to serious complications including acute kidney injury that requires kidney replacement therapy. The primary aim of this study was to evaluate urinary SerpinA3 (uSerpinA3) excretion as a biomarker of kidney recovery at 90 days, and the mortality in patients with critical COVID-19 and AKI requiring kidney replacement therapy (KRT). Methods: The study included patients with critical COVID-19 on invasive mechanical ventilation (IMV) requiring KRT. Blood and urine samples were obtained when KRT was initiated (day zero), and thereafter on days 1, 3, 7, and 14 post-replacement. uSerpinA3, kidney injury molecule-1 (uKIM-1), and neutrophil gelatinase-associated lipocalin (uNGAL) were measured in urine, and interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor alpha (TNF-α) in peripheral blood. In addition, metabolomics in sample days zero and 3, and in the survivors on sample day 90 was performed by employing gas chromatography coupled with mass spectrometry. Results: A total of 60 patients were recruited, of whom 29 (48%) survived hospitalization and recovered kidney function by day 90. In the survivors, 79% presented complete recovery (CRR) and the remaining (21%) recovered partially (PRR). In terms of uSerpinA3, levels on days 7 and 14 predicted CRR, with AUC values of 0.68 (p = 0.041) and 0.71 (p = 0.030), respectively, as well as mortality, with AUC values of 0.75 (p = 0.007) and 0.76 (p = 0.015), respectively. Among the other biomarkers, the excretion of uKIM-1 on day zero of KRT had a superior performance as a CRR predictor [(AUC, 0.71 (p = 0.017)], and as a mortality predictor [AUC, 0.68 (p = 0.028)]. In the metabolomics analysis, we identified four distinct profiles; the metabolite that maintained statistical significance in predicting mortality was p-cresol glucuronide. Conclusions: This study strongly suggests that uSerpinA3 and uKIM-1 can predict CRR and mortality in patients with critical COVID-19 and AKI requiring KRT. Metabolic analysis appears promising for identifying affected pathways and their clinical impact in this population. Full article
Show Figures

Figure 1

14 pages, 1579 KiB  
Article
Predisposing Anatomical Patellofemoral Factors for Subsequent Patellar Dislocation
by Anna Kupczak, Bartłomiej Wilk, Ewa Tramś, Maciej Liszka, Bartosz Machnio, Aleksandra Jasiniewska, Jerzy Białecki and Rafał Kamiński
Life 2025, 15(8), 1239; https://doi.org/10.3390/life15081239 - 4 Aug 2025
Abstract
Background: Primary patellar dislocation is a relatively uncommon knee injury but carries a high risk of recurrence, particularly in young and physically active adolescent individuals. Anatomical features of the patellofemoral joint have been implicated as key contributors to instability. The purpose of this [...] Read more.
Background: Primary patellar dislocation is a relatively uncommon knee injury but carries a high risk of recurrence, particularly in young and physically active adolescent individuals. Anatomical features of the patellofemoral joint have been implicated as key contributors to instability. The purpose of this study was to evaluate anatomical risk factors associated with recurrent patellar dislocation following a primary traumatic event, using MRI-based parameters. Methods: Fifty-four patients who sustained a first-time lateral patellar dislocation were included. MRI was used to measure tibial tuberosity–trochlear groove (TT–TG) distance, tibial tuberosity–posterior cruciate ligament (TT–PCL) distance, Insall–Salvati ratio (IS), sulcus angle (SA), patellar tilt angle (PTA), patella length, and patellar tendon length. Trochlear dysplasia was assessed according to the Dejour classification. Recurrence was defined as a subsequent dislocation occurring within three years of the primary injury. Results: Significant differences were observed in TT–TG distance and patellar tendon length (p < 0.05). Patients with recurrent dislocation had lower TT–TG values and shorter patellar tendon lengths. Other parameters, including PTA, IS, and patella height, did not show statistically significant differences. Conclusion: Anatomical factors may contribute to the risk of recurrent patellar dislocation. Identifying these variables using imaging may support clinical decision making and guide individualized treatment plans following primary injury. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

16 pages, 5536 KiB  
Article
The Development of a Wearable-Based System for Detecting Shaken Baby Syndrome Using Machine Learning Models
by Ram Kinker Mishra, Khalid AlAnsari, Rylee Cole, Arin Nazarian, Ilkay Yildiz Potter and Ashkan Vaziri
Sensors 2025, 25(15), 4767; https://doi.org/10.3390/s25154767 - 2 Aug 2025
Viewed by 193
Abstract
Shaken Baby Syndrome (SBS) is one of the primary causes of fatal head trauma in infants and young children, occurring in about 33 per 100,000 infants annually in the U.S., with mortality rates being between 15% and 38%. Survivors frequently endure long-term disabilities, [...] Read more.
Shaken Baby Syndrome (SBS) is one of the primary causes of fatal head trauma in infants and young children, occurring in about 33 per 100,000 infants annually in the U.S., with mortality rates being between 15% and 38%. Survivors frequently endure long-term disabilities, such as cognitive deficits, visual impairments, and motor dysfunction. Diagnosing SBS remains difficult due to the lack of visible injuries and delayed symptom onset. Existing detection methods—such as neuroimaging, biomechanical modeling, and infant monitoring systems—cannot perform real-time detection and face ethical, technical, and accuracy limitations. This study proposes an inertial measurement unit (IMU)-based detection system enhanced with machine learning to identify aggressive shaking patterns. Findings indicate that wearable-based motion analysis is a promising method for recognizing high-risk shaking, offering a non-invasive, real-time solution that could minimize infant harm and support timely intervention. Full article
Show Figures

Figure 1

15 pages, 1476 KiB  
Article
Laboratory, Clinical, and Pathohistological Significance of the Outcomes of Patients with Membranous Nephropathy After 10 Year of Follow-Up
by Marko Baralić, Selena Gajić, Mihajlo Kostić, Milorad Stojadinović, Kristina Filić, Danka Bjelić, Vidna Karadžić-Ristanović, Ivana Mrđa, Jovana Gavrilović, Danica Ćujić, Aleksandar Sič, Stefan Janković, Ivan Putica, Sanja Stankovic, Dušan Vićentijević, Maja Životić, Sanja Radojević-Škodrić, Jelena Pavlović, Ana Bontić and Aleksandra Kezić
Life 2025, 15(8), 1221; https://doi.org/10.3390/life15081221 - 1 Aug 2025
Viewed by 332
Abstract
Membranous nephropathy (MN) is the most prevalent cause of nephrotic syndrome (NS) in adults, and it can be primary (idiopathic) with an unknown cause or secondary due to a variety of conditions (lupus, infections, malignancies, medications, etc.). It progresses to chronic kidney disease [...] Read more.
Membranous nephropathy (MN) is the most prevalent cause of nephrotic syndrome (NS) in adults, and it can be primary (idiopathic) with an unknown cause or secondary due to a variety of conditions (lupus, infections, malignancies, medications, etc.). It progresses to chronic kidney disease (CKD) in up to 60% of patients, and 10 to 30% develop end-stage kidney disease (ESKD). This retrospective study examines the importance of specific factors, including baseline demographic and clinical data, kidney biopsy PH findings, and selected biochemical parameters, influencing MN outcomes after 10 years of follow-up. The cohort included 94 individuals in whom a diagnosis of MN was established by percutaneous biopsy of the left kidney’s lower pole at the University Clinical Center of Serbia (UCCS) between 2008 and 2013. According to the outcomes, patients were divided into three groups: the recovery (Rec) group, with complete remission, including normal serum creatinine (Scr) and proteinuria (Prt), the group with development of chronic kidney disease (CKD), and the group with development of end-stage kidney disease (ESKD). Nephropathologists graded pathohistological (PH) results from I to III based on the observed PH findings. During the follow-up period, 33 patients were in the Rec group, CKD developed in 53 patients, and ESKD developed in 8 patients. Baseline creatinine clearance levels (Ccr), Scr, and uric acid (urate) were found to be significantly associated with the outcomes (p < 0.001). The lowest values of baseline Scr and urate were observed in the Rec group. The presence of acute kidney injury (AKI) or CKD at the time of kidney biopsy was associated with the more frequent development of ESKD (p = 0.02). Lower Ccr was associated with a higher likelihood of progressing to CKD (B = −0.021, p = 0.014), whereas older age independently predicted progression to ESKD (B = 0.02, p = 0.032). Based on this study, it was concluded that the most important biochemical and clinical factors that are associated with the outcomes of this disease are the values of Scr, Ccr, and urate and the existence of CKD at the time of kidney biopsy. Unlike most previous studies, the presence of HTN had no statistical significance in the outcome of the disease. Full article
Show Figures

Figure 1

14 pages, 240 KiB  
Article
The Barriers and Facilitators to the Application of Non-Invasive Brain Stimulation for Injury Rehabilitation and Performance Enhancement: A Qualitative Study
by Chris Haydock, Amanda Timler, Casey Whife, Harrison Tyler and Myles C. Murphy
NeuroSci 2025, 6(3), 72; https://doi.org/10.3390/neurosci6030072 - 1 Aug 2025
Viewed by 165
Abstract
Introduction: Despite clinical evidence for efficacy, there has been minimal uptake of transcranial direct current stimulation (tDCS) for musculoskeletal conditions. Thus, our objective was to explore the perceptions and experiences of people living with lower-limb musculoskeletal injury as well as healthy physically active [...] Read more.
Introduction: Despite clinical evidence for efficacy, there has been minimal uptake of transcranial direct current stimulation (tDCS) for musculoskeletal conditions. Thus, our objective was to explore the perceptions and experiences of people living with lower-limb musculoskeletal injury as well as healthy physically active populations and relate this to the usage of tDCS and key aspects of tDCS design that would improve the capacity for implementation. Methods: We conducted a qualitative descriptive study of 16 participants (44% women) using semi-structured focus groups to identify the descriptions and experiences of people living with lower-limb musculoskeletal injury and healthy physically active populations. A thematic template was used to create a coding structure. Codes were then grouped, and key themes were derived from the data. Results: Four primary themes were identified from focus groups. These were (i) the impact of musculoskeletal injuries on health and quality of life, (ii) performance and injury recovery as facilitators to using tDCS, (iii) barriers and facilitators to tCDS application and (iv) design and aesthetic factors for a tDCS device. Discussion: Our qualitative descriptive study identified four themes relevant to the successful implementation of tDCS into rehabilitative and performance practice. To increase the likelihood of successful tDCS implementation, these barriers should be addressed and facilitators promoted. This should include innovative approaches to device application and structure that allow for a stylish, user-friendly design. Full article
17 pages, 2839 KiB  
Systematic Review
Comparative Outcomes of Intra-Aortic Balloon Pump Versus Percutaneous Left Ventricular Assist Device in High-Risk Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis
by Dhiran Sivasubramanian, Virushnee Senthilkumar, Nithish Nanda Palanisamy, Rashi Bilgaiyan, Smrti Aravind, Sri Drishaal Kumar, Aishwarya Balasubramanian, Sathwik Sanil, Karthick Balasubramanian, Dharssini Kamaladasan, Hashwin Pilathodan and Kiruba Shankar
J. Clin. Med. 2025, 14(15), 5430; https://doi.org/10.3390/jcm14155430 - 1 Aug 2025
Viewed by 232
Abstract
Background/Objectives: High-risk percutaneous coronary interventions (HR-PCIs) often require mechanical circulatory support (MCS) to maintain hemodynamic stability. Intra-aortic balloon pump (IABP) and percutaneous left ventricular assist device (PLVAD) are two commonly used MCS devices that differ in their mechanisms. We aimed to evaluate [...] Read more.
Background/Objectives: High-risk percutaneous coronary interventions (HR-PCIs) often require mechanical circulatory support (MCS) to maintain hemodynamic stability. Intra-aortic balloon pump (IABP) and percutaneous left ventricular assist device (PLVAD) are two commonly used MCS devices that differ in their mechanisms. We aimed to evaluate and compare the clinical outcomes associated with IABP and PLVAD use in HR-PCIs without cardiogenic shock. Methods: We conducted a search of PubMed, Scopus, Cochrane, Mendeley, Web of Science, and Embase to identify relevant randomized controlled trials and cohort studies, and we included 13 studies for the systematic review and meta-analysis. The primary goal was to define the difference in early mortality (in-hospital and 30-day mortality), major bleeding, and major adverse cardiovascular event (MACE) components (cardiogenic shock, acute kidney injury (AKI), and stroke/TIA) in IABP and PLVAD. We used a random-effects model with the Mantel–Haenszel statistical method to estimate odds ratios (ORs) and 95% confidence intervals. Results: Among 1 trial and 12 cohort studies (35,554 patients; 30,351 IABP and 5203 PLVAD), HR-PCI with IABP was associated with a higher risk of early mortality (OR = 1.53, 95% CI [1.21, 1.94]) and cardiogenic shock (OR = 2.56, 95% CI [1.98, 3.33]) when compared to PLVAD. No significant differences were found in the rates of arrhythmia, major bleeding, AKI, stroke/TIA, or hospital length of stay. Conclusions: In high-risk PCIs, PLVAD use is associated with lower early mortality and cardiogenic shock risk compared to IABP, with no significant differences in other major outcomes. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

24 pages, 6639 KiB  
Article
CNS Axon Regeneration in the Long Primary Afferent System in E15/E16 Hypoxic-Conditioned Fetal Rats: A Thrust-Driven Concept
by Frits C. de Beer and Harry W. M. Steinbusch
Anatomia 2025, 4(3), 12; https://doi.org/10.3390/anatomia4030012 - 1 Aug 2025
Viewed by 99
Abstract
Background: Lower phylogenetic species are known to rebuild cut-off caudal parts with regeneration of the central nervous system (CNS). In contrast, CNS regeneration in higher vertebrates is often attributed to immaturity, although this has never been conclusively demonstrated. The emergence of stem cells [...] Read more.
Background: Lower phylogenetic species are known to rebuild cut-off caudal parts with regeneration of the central nervous system (CNS). In contrast, CNS regeneration in higher vertebrates is often attributed to immaturity, although this has never been conclusively demonstrated. The emergence of stem cells and their effective medical applications has intensified research into spinal cord regeneration. However, despite these advances, the impact of clinical trials involving spinal cord-injured (SCI) patients remains disappointingly low. Long-distance regeneration has yet to be proven. Methods: Our study involved a microsurgical dorsal myelotomy in fetal rats. The development of pioneering long primary afferent axons during early gestation was examined long after birth. Results: A single cut triggered the intrinsic ability of the dorsal root ganglion (DRG) neurons to reprogram. Susceptibility to hypoxia caused the axons to stop developing. However, the residual axonal outgrowth sheds light on the intriguing temporal and spatial events that reveal long-distance CNS regeneration. The altered phenotypes displayed axons of varying lengths and different features, which remained visible throughout life. The previously designed developmental blueprint was crucial for interpreting these enigmatic features. Conclusions: This research into immaturity enabled the exploration of the previously impenetrable domain of early life and the identification of a potential missing link in CNS regeneration research. Central axon regeneration appeared to occur much faster than is generally believed. The paradigm provides a challenging approach for exhaustive intrauterine reprogramming. When the results demonstrate pre-clinical effectiveness in CNS regeneration research, the transformational impact may ultimately lead to improved outcomes for patients with spinal cord injuries. Full article
(This article belongs to the Special Issue From Anatomy to Clinical Neurosciences)
Show Figures

Figure 1

9 pages, 477 KiB  
Opinion
Underlying Piezo2 Channelopathy-Induced Neural Switch of COVID-19 Infection
by Balázs Sonkodi
Cells 2025, 14(15), 1182; https://doi.org/10.3390/cells14151182 - 31 Jul 2025
Viewed by 174
Abstract
The focal “hot spot” neuropathologies in COVID-19 infection are revealing footprints of a hidden underlying collapse of a novel ultrafast ultradian Piezo2 signaling system within the nervous system. Paradoxically, the same initiating pathophysiology may underpin the systemic findings in COVID-19 infection, namely the [...] Read more.
The focal “hot spot” neuropathologies in COVID-19 infection are revealing footprints of a hidden underlying collapse of a novel ultrafast ultradian Piezo2 signaling system within the nervous system. Paradoxically, the same initiating pathophysiology may underpin the systemic findings in COVID-19 infection, namely the multiorgan SARS-CoV-2 infection-induced vascular pathologies and brain–body-wide systemic pro-inflammatory signaling, depending on the concentration and exposure to infecting SARS-CoV-2 viruses. This common initiating microdamage is suggested to be the primary damage or the acquired channelopathy of the Piezo2 ion channel, leading to a principal gateway to pathophysiology. This Piezo2 channelopathy-induced neural switch could not only explain the initiation of disrupted cell–cell interactions, metabolic failure, microglial dysfunction, mitochondrial injury, glutamatergic synapse loss, inflammation and neurological states with the central involvement of the hippocampus and the medulla, but also the initiating pathophysiology without SARS-CoV-2 viral intracellular entry into neurons as well. Therefore, the impairment of the proposed Piezo2-induced quantum mechanical free-energy-stimulated ultrafast proton-coupled tunneling seems to be the principal and critical underlying COVID-19 infection-induced primary damage along the brain axes, depending on the loci of SARS-CoV-2 viral infection and intracellular entry. Moreover, this initiating Piezo2 channelopathy may also explain resultant autonomic dysregulation involving the medulla, hippocampus and heart rate regulation, not to mention sleep disturbance with altered rapid eye movement sleep and cognitive deficit in the short term, and even as a consequence of long COVID. The current opinion piece aims to promote future angles of science and research in order to further elucidate the not entirely known initiating pathophysiology of SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Insights into the Pathophysiology of NeuroCOVID: Current Topics)
Show Figures

Figure 1

11 pages, 1585 KiB  
Article
Age-Related Patterns of Midfacial Fractures in a Hungarian Population: A Single-Center Retrospective Study
by Enikő Orsi, Lilla Makszin, Zoltán Nyárády, Lajos Olasz and József Szalma
J. Clin. Med. 2025, 14(15), 5396; https://doi.org/10.3390/jcm14155396 - 31 Jul 2025
Viewed by 197
Abstract
Background: Midfacial fractures are common outcomes of facial trauma. While younger individuals typically sustain these injuries through high-energy events like assaults and traffic or sports accidents, elderly patients increasingly present with fractures from low-energy mechanisms, primarily falls. Purpose: The aim of this study [...] Read more.
Background: Midfacial fractures are common outcomes of facial trauma. While younger individuals typically sustain these injuries through high-energy events like assaults and traffic or sports accidents, elderly patients increasingly present with fractures from low-energy mechanisms, primarily falls. Purpose: The aim of this study was to analyze age- and gender-specific patterns in midfacial fractures over a 10-year period, with emphasis on elderly individuals and low-energy trauma. Methods: A retrospective review was performed of proven midfacial fractures between 2013 and 2022 at the Department of Oral and Maxillofacial Surgery (University of Pécs, Hungary). The patients were stratified by age (<65 vs. ≥65 years) and gender. The variables included the injury mechanism, fracture localization, the dental status, hospitalization, and the presence of associated injuries. Bivariate analyses were performed, and the significance level was set to p < 0.05. Results: A total of 957 radiologically confirmed midfacial fracture cases were evaluated, of whom 344 (35.9%) were ≥65 years old. In the elderly group, females had a 19-fold higher risk for midfacial trauma than younger females (OR: 19.1, 95%CI: 9.30–39.21). In the older group, a fall was significantly the most frequent injury mechanism (OR: 14.5; 95%CI: 9.9–21.3), responsible for 89.5% of the cases, while hospitalization (OR: 0.36; 95%CI: 0.23–0.56) was less characteristic. Most of the fractures occurred in the zygomatic bone, in the zygomaticomaxillary complex, or in the anterior wall of the maxilla. Associated injuries in the elderly group included mostly lower limb injuries—particularly pertrochanteric femoral fractures in females—and upper limb injuries, with a slight male dominance. Conclusions: Low-energy falls are the primary cause of midfacial fractures in elderly patients, particularly in women. Tailored prevention and management strategies are essential for improving the outcomes in this growing demographic group. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

12 pages, 441 KiB  
Article
Optimizing Safety and Efficacy of Intravenous Vancomycin Therapy in Orthopedic Inpatients Through a Standardized Dosing Protocol: A Pre-Post Cohort Study
by Moritz Diers, Juliane Beschauner, Maria Felsberg, Alexander Zeh, Karl-Stefan Delank, Natalia Gutteck and Felix Werneburg
Antibiotics 2025, 14(8), 775; https://doi.org/10.3390/antibiotics14080775 - 31 Jul 2025
Viewed by 308
Abstract
Background: Intravenous vancomycin remains a key agent in the treatment of complex orthopedic infections, particularly those involving methicillin-resistant Staphylococcus aureus (MRSA). However, its use is associated with significant risks, most notably nephrotoxicity. Despite guideline recommendations, standardized dosing and monitoring protocols are often [...] Read more.
Background: Intravenous vancomycin remains a key agent in the treatment of complex orthopedic infections, particularly those involving methicillin-resistant Staphylococcus aureus (MRSA). However, its use is associated with significant risks, most notably nephrotoxicity. Despite guideline recommendations, standardized dosing and monitoring protocols are often absent in orthopedic settings, leading to inconsistent therapeutic drug exposure and preventable adverse events. This study evaluated the clinical impact of implementing a structured standard operating procedure (SOP) for intravenous vancomycin therapy in orthopedic inpatients. Methods: We conducted a single-center, pre-post cohort study at a university orthopedic department. The intervention consisted of a standard operating procedure (SOP) for intravenous vancomycin therapy, which mandated weight-based loading doses, renal function-adjusted maintenance dosing, trough level monitoring, and defined dose adjustments. Patients treated before SOP implementation (n = 58) formed the control group; those treated under the SOP (n = 56) were prospectively included. The primary outcome was the incidence of vancomycin-associated acute kidney injury (VA-AKI) defined by KDIGO Stage 1 criteria. Secondary outcomes included therapeutic trough level attainment and infusion-related or ototoxic adverse events. Results: All patients in the post-SOP group received a loading dose (100% vs. 31% pre-SOP, p < 0.001). The range of measured vancomycin trough levels narrowed substantially after SOP implementation (7.1–36.2 mg/L vs. 4.0–80.0 mg/L). The proportion of patients reaching therapeutic trough levels increased, although this was not statistically significant. Most notably, VA-AKI occurred in 17.2% of patients in the control group, but in none of the patients after SOP implementation (0%, p = 0.0013). No cases of ototoxicity were observed in either group. Infusion-related reactions decreased after the implementation of the SOP, though not significantly. Conclusions: The introduction of a structured vancomycin protocol significantly reduced adverse drug events and improved dosing control in orthopedic inpatients. Incorporating such protocols into routine practice represents a feasible and effective strategy to strengthen antibiotic stewardship and clinical quality in surgical disciplines. Full article
Show Figures

Figure 1

Back to TopTop