Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = primary and recycled aluminum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6001 KiB  
Review
A Review of the Progress in Molecular Dynamics Simulation of Calcium Aluminosilicate Hydrate: From Structure and Properties to Applications
by Xiaohuan Jing, Daqiang Cang, Mohammed Ramadan, Alaa Mohsen and Lingling Zhang
Recycling 2025, 10(4), 132; https://doi.org/10.3390/recycling10040132 - 2 Jul 2025
Viewed by 477
Abstract
Recyclable aluminum-containing industrial solid waste can be used as supplementary cementitious materials (SCMs) to replace cement (30–50%), thereby reducing CO2 emissions during cement production and improving the mechanical properties and durability of concrete. Therefore, the use of SCMs in building materials presents [...] Read more.
Recyclable aluminum-containing industrial solid waste can be used as supplementary cementitious materials (SCMs) to replace cement (30–50%), thereby reducing CO2 emissions during cement production and improving the mechanical properties and durability of concrete. Therefore, the use of SCMs in building materials presents significant potential. Due to the presence of the aluminum phase in the SCMs, the hydration products of cements blended with SCMs are changed. Compared to the primary hydration product of conventional cement, calcium silicate hydrate (CSH), the main hydration product of cement blended with SCMs is calcium aluminosilicate hydrate (CASH), which exhibits a more complex molecular structure. Understanding the role of Al in C-A-S-H at the atomic scale facilitates mechanistic insights and promotes the sustainable utilization of SCMs in eco-friendly construction. Molecular dynamics enables the rapid and accurate structural analysis and property prediction of materials. Therefore, this paper presents a systematic review of molecular dynamics simulations of CASH and discusses the role of Al in the molecular structure, dynamic, and mechanical behavior of CASH. It also analyzes the interfacial properties of CASH composites, the immobilization and transport of ions in CASH, and the temperature effect on the structure and properties of CASH. Finally, the challenges and perspectives for molecular dynamics simulation of CASH are presented. Full article
Show Figures

Figure 1

17 pages, 2087 KiB  
Article
Intertemporal Allocation of Recycling for Long-Lived Materials from Energy Infrastructure
by Mario Schmidt and Pia Heidak
Energies 2025, 18(13), 3393; https://doi.org/10.3390/en18133393 - 27 Jun 2025
Viewed by 340
Abstract
Energy conversion and infrastructure facilities consist of large amounts of metal and have lifetimes of several decades. When recycling metals, the methods of allocation play a decisive role in evaluating how primary and secondary materials, as well as the products that are produced [...] Read more.
Energy conversion and infrastructure facilities consist of large amounts of metal and have lifetimes of several decades. When recycling metals, the methods of allocation play a decisive role in evaluating how primary and secondary materials, as well as the products that are produced with them, are to be evaluated ecologically. So-called credits for recycling are the subject of a particularly controversial discussion. This article shows that the current practice of giving credits for long-lasting products leads to a significant distortion of the actual emissions. Using the examples of steel, aluminum, and copper, prospective LCA data is used to show how the carbon footprint actually behaves. When credits are applied, the time dependency of emissions must be taken into account; otherwise, burden shifting into the future occurs, which can hardly be considered sustainable. The increase compared to the conventional time-independent practice lies, depending on the metal, at 70 to 300%. It is recommended that the cutoff approach be used conservatively when allocating recycling cascades in order to optimize environmental impact and avoid greenwashing. Full article
Show Figures

Figure 1

19 pages, 18266 KiB  
Article
Advancing Sustainability in Alloy Production: The Role of Recycled Materials and Barbotage in Enhancing EN AC-46000 Castings
by Patryk Korban, Anna Wąsik and Beata Leszczyńska-Madej
Sustainability 2025, 17(11), 4755; https://doi.org/10.3390/su17114755 - 22 May 2025
Viewed by 541
Abstract
Aluminum recycling is a key pillar of sustainable metallurgy, protecting natural resources, reducing energy consumption by up to 15 times compared with primary aluminum production and significantly lowering the demand for raw materials. This article presents a comprehensive study on the impact of [...] Read more.
Aluminum recycling is a key pillar of sustainable metallurgy, protecting natural resources, reducing energy consumption by up to 15 times compared with primary aluminum production and significantly lowering the demand for raw materials. This article presents a comprehensive study on the impact of barbotage refining time and recycled scrap content on EN AC-46000 (AlSi9Cu3) alloy, covering the entire process from the initial ingot to the final casting, contributing to a circular economy. The input material consisted of varying proportions of pure ingots and scrap, with scrap content set at 80%, 70%, and 60%, respectively. Each material batch underwent different refining times: 0, 7, 9, and 15 min. Microstructural studies were conducted using light and scanning electron microscopy techniques. Additionally, pore distribution and their proportions within the material volume were analyzed using X-ray computed tomography. This study also examined hardness and gas content relative to the refining time. It was demonstrated that the refining process promoted microstructural homogenization and reduced porosity throughout the production process. Furthermore, extending the refining time positively impacted the reduction of porosity in thin-walled castings and lowered the gas emission level from the alloy, resulting in improved final product quality. Full article
Show Figures

Figure 1

18 pages, 10407 KiB  
Article
Kinetics of Precipitation Hardening Phases in Recycled 2017A Aluminum Alloy
by Grażyna Mrówka-Nowotnik, Grzegorz Boczkal and Damian Nabel
Materials 2025, 18(6), 1235; https://doi.org/10.3390/ma18061235 - 11 Mar 2025
Viewed by 1005
Abstract
This study investigated the effect of the recycling process on the microstructure, hardness, and precipitation kinetics of strengthening phases in the 2017A aluminum alloy. Light microscopy (LM) and X-ray diffraction (XRD) analyses revealed that the as-cast microstructure of the recycled 2017A alloy contained [...] Read more.
This study investigated the effect of the recycling process on the microstructure, hardness, and precipitation kinetics of strengthening phases in the 2017A aluminum alloy. Light microscopy (LM) and X-ray diffraction (XRD) analyses revealed that the as-cast microstructure of the recycled 2017A alloy contained intermetallic phases, including θ-Al2Cu, β-Mg2Si, Al7Cu2Fe, Q-Al4Cu2Mg8Si7, and α-Al15(FeMn)3(SiCu)2, and was comparable to that of the primary alloy, confirming its potential for high-performance applications. During solution heat treatment, most of the primary intermetallic precipitates, such as Al2Cu, Mg2Si, and Q-Al4Cu2Mg8Si7, dissolved into the solid Al matrix. DSC analysis of the solution-treated alloy established the precipitation sequence as follows: α-ss → GP/GPB zones → θ″ → θ′/Q′ → θ-Al2Cu/Q-Al4Cu2Mg8Si7. The combined results from XRD, LM, TEM, and DSC confirmed that both θ and Q phases contributed to strengthening, with θ″ and θ′ phases playing a dominant role. Brinell hardness measurements during natural and artificial aging revealed that hardness increased with aging time, reaching a maximum value of 150.5 HB after ~22 h of artificial aging at 175 °C. The precipitation kinetics of the recycled 2017A alloy was studied via DSC measurements over a temperature range of ~25 to 550 °C, at heating rates of 5, 10, 15, 20, and 25 °C/min. The peak temperatures of clusters, GP zones, and hardening phases (θ′, θ″, θ, and Q) were analyzed to calculate the activation energy using mathematical models (Kissinger, Ozawa, and Boswell). The obtained values of activation energies of discontinuous precipitation were comparable across methods, with values for the θ″ phase of 89.94 kJ·mol−1 (Kissinger), 98.7 kJ·mol−1 (Ozawa), and 94.33 kJ·mol−1 (Boswell), while for the θ′ phase, they were 72.5 kJ·mol−1 (Kissinger), 81.9 kJ·mol−1 (Ozawa), and 77.2 kJ·mol−1 (Boswell). These findings highlighted the feasibility of using recycled 2017A aluminum alloy for structural applications requiring high strength and durability. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys (3rd Edition))
Show Figures

Figure 1

19 pages, 5566 KiB  
Article
Microstructure and Mechanical Properties of AlSi10MnMg Alloy with Increased Content of Recycled Scrap
by Jaroslaw Piatkowski, Katarzyna Nowinska, Tomasz Matula, Grzegorz Siwiec, Michal Szucki and Beata Oleksiak
Materials 2025, 18(5), 1119; https://doi.org/10.3390/ma18051119 - 1 Mar 2025
Cited by 1 | Viewed by 948
Abstract
Increasing the share of circulating scrap in produced castings is not only due to optimizing production costs, but also the need to protect the environment realized by reducing production energy intensity, generating less waste, mitigating greenhouse gas emissions, and consuming fewer natural resources. [...] Read more.
Increasing the share of circulating scrap in produced castings is not only due to optimizing production costs, but also the need to protect the environment realized by reducing production energy intensity, generating less waste, mitigating greenhouse gas emissions, and consuming fewer natural resources. However, this is associated with maintaining the required properties of castings and considering the impact of impurities on the formation of the structure of aluminum alloys. This research concerns the AlSi10MnMg alloy, which introduces 50 to 75% (every 5%) of circulating scrap. This alloy is one of the most commonly used for producing gravity and pressure die-castings (HPDC), including engine parts and transport structural elements. Based on microscopic research, it was found that the increase in scrap content causes an increase in the share of iron, which results in pre-eutectic (from about 0.45 wt.% to 0.7 wt.% Fe) or even primary crystallization of iron phases (over 0.7 wt.% Fe), mainly the plate–needle phase β-Al5FeSi. Its unfavorable morphology and size cause the formation of numerous shrinkage porosity areas, which has an impact on the reduction in mechanical properties (reduction in UTS and YS by approx. 16% and elongation by approx. 18%, compared to the AlSi10MnMg alloy with 50% scrap content). It was found that the increase in the share of recycled scrap (from 50 to 75%) can be used only when the manganese content is increased. Its effect is to change the morphology of the β-Al5FeSi phase into α-Al15(Fe,Mn)3Si2, whose crystallization occurs in the temperature range of 540 to 555 °C and increases slightly with increasing manganese addition. It is essential to consider the appropriate value of the Mn/Fe quotient, which should be about 1/2, because a higher value may cause the formation of a sludge factor. This work aimed to determine the limiting iron content (contained in the scrap) at which the sequence of the β-Al5FeSi phase release (pre-eutectic or primary crystallization) changes. This sequence mainly affects the form of morphology, the dimensions of the β-Fe phase, and the proportion of shrinkage porosity. Full article
Show Figures

Figure 1

17 pages, 4442 KiB  
Article
Controllable Preparation of Low-Cost Coal Gangue-Based SAPO-5 Molecular Sieve and Its Adsorption Performance for Heavy Metal Ions
by Le Kang, Boyang Xu, Pengfei Li, Kai Wang, Jie Chen, Huiling Du, Qianqian Liu, Li Zhang and Xiaoqing Lian
Nanomaterials 2025, 15(5), 366; https://doi.org/10.3390/nano15050366 - 27 Feb 2025
Cited by 13 | Viewed by 1005
Abstract
With the advancement of industrial production and urban modernization, pollution from heavy metal ions and the accumulation of solid waste have become critical global environmental challenges. Establishing an effective recycling system for solid waste and removing heavy metals from wastewater is essential. Coal [...] Read more.
With the advancement of industrial production and urban modernization, pollution from heavy metal ions and the accumulation of solid waste have become critical global environmental challenges. Establishing an effective recycling system for solid waste and removing heavy metals from wastewater is essential. Coal gangue was used in this study as the primary material for the synthesis of a fully coal gangue-based phosphorus-silicon-aluminum (SAPO-5) molecular sieve through a hydrothermal process. The SAPO-5 molecular sieve was characterized through several methods, including X-ray diffraction (XRD), scanning electron microscopy (SEM), BET surface analysis, Fourier-transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS), to examine its mineral phases, microstructure, pore characteristics, and material structure. Adsorption performance towards wastewater with Cd2+ and Pb2+ ions was investigated. It was found that the adsorption processes of these ions are well described by both the pseudo-second-order model and the Langmuir isotherm. According to the Langmuir model, the coal gangue-based SAPO-5 molecular sieve exhibited maximum adsorption capacities of 93.63 mg·g−1 for Cd2+ and 157.73 mg·g−1 for Pb2+. After five cycles, the SAPO-5 molecular sieve retained strong stability in adsorbing Cd2+ and Pb2+, with residual adsorption capacities of 77.03 mg·g−1 for Cd2+ and 138.21 mg·g−1 for Pb2+. The excellent adsorption performance of the fully solid waste coal gangue-based SAPO-5 molecular sieve is mainly attributed to its mesoporous channel effects, the complexation of -OH functional groups, and electrostatic attraction. Full article
Show Figures

Figure 1

32 pages, 10704 KiB  
Article
Carbon Emission Assessment During the Recycling Phase of Building Meltable Materials from Construction and Demolition Waste: A Case Study in China
by Boya Jiang, Hao Huang, Feng Ge, Baolin Huang and Habib Ullah
Buildings 2025, 15(3), 456; https://doi.org/10.3390/buildings15030456 - 1 Feb 2025
Cited by 2 | Viewed by 1523
Abstract
The improper disposal of construction and demolition waste (CDW) exacerbates the consumption of raw materials and emissions of greenhouse gasses. In this study, due to the high recycling rate, focusing on the meltable materials of CDW, the recycling phase of CDW is divided [...] Read more.
The improper disposal of construction and demolition waste (CDW) exacerbates the consumption of raw materials and emissions of greenhouse gasses. In this study, due to the high recycling rate, focusing on the meltable materials of CDW, the recycling phase of CDW is divided into four stages, namely the on-site disposal stage, the transportation stage, the reprocessing stage, and the reproduction stage. Second, based on these four stages, a carbon emission accounting model (CEAM) is established to evaluate the carbon emission benefits of meltable materials during these stages. Third, the CEAM is applied to a typical old residential area to evaluate the carbon emission reduction benefits of the CDW recycling. The results indicate that (1) the full-process carbon emissions of recycled steel, recycled flat glass, and recycled aluminum per unit mass are 677.77 kg/t, 1041.54 kg/t, and 845.39 kg/t, respectively, which are far lower than their corresponding ordinary meltable building materials (OMBMs); (2) the carbon emissions during the reproduction stage represent the primary component of carbon emissions in the MW recycling phase, accounting for 88.52% to 97.45% of the total carbon emissions; and (3) the carbon emissions generated by the recycling of cullet per unit mass are very high, reaching 1768 kg/t, which is 4.3 times that of scrap steel (409.05 kg/t) and 3.6 times that of scrap aluminum (483.76 kg/t). The research findings could provide theoretical methods and experimental data for decision-makers to formulate treatment plans for meltable materials in CDW, thereby empowering urban carbon emission reduction and promoting sustainable development. Construction parties engaged in demolition tasks should enhance on-site sorting and collaborate with recycling companies to ensure its efficient recycling. Recycling companies need to focus on high-carbon-emission stages, such as the reproduction stage, and strengthen technological research to improve carbon reduction benefits. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 18755 KiB  
Article
Extended Material Recovery from Municipal Solid Waste Incinerator Bottom Ash Using Magnetic, Eddy Current, and Density Separations
by Ida Bagus Gede Sumbranang Adhiwiguna, Keshalinni Ramalingam, Karl-Heinz Becker, Alexander Khoury, Ragnar Warnecke and Rüdiger Deike
Recycling 2025, 10(1), 16; https://doi.org/10.3390/recycling10010016 - 24 Jan 2025
Viewed by 1566
Abstract
This research introduces an extended processing method for increasing the possibility of valorizing processed IBA (pr.IBA), which is currently only used as a construction material in landfill sites, considering its immense potential in valuable metal and mineral concentrations. Following a selective milling process, [...] Read more.
This research introduces an extended processing method for increasing the possibility of valorizing processed IBA (pr.IBA), which is currently only used as a construction material in landfill sites, considering its immense potential in valuable metal and mineral concentrations. Following a selective milling process, an extended material recovery sequence involving a magnetic, eddy current, and density separation sequence is developed. Based on the observations and outcomes explored in the present study, a substantially reliable and practical industrial approach is designed and tested to generate a cleaner mineral fraction and complementarily collect valuable metals from pr.IBA. Specifically, four enhanced valuable product streams can be anticipated, output mineral, high-magnetic, low-magnetic, and non-ferrous, which can be further utilized as alternative materials for cement clinker and concrete production coupled with iron, copper, and aluminum recovery in a conventional recycling operation. Therefore, in addition to introducing an additional perspective and moving one step closer to closing the waste management loop, this proposed method offers the opportunity to save primary materials and reduce carbon emissions by providing valuable alternative secondary resources. Full article
Show Figures

Figure 1

20 pages, 17547 KiB  
Article
Assessment and Improvement of Melt Quality of Recycled Secondary A357 Alloy by Application of the High Shear Melt Conditioning (HSMC) Technology
by Zhichao Niu, Zhongping Que, Jayesh B. Patel and Zhongyun Fan
Crystals 2024, 14(12), 1044; https://doi.org/10.3390/cryst14121044 - 30 Nov 2024
Cited by 2 | Viewed by 1313
Abstract
In addition to impurities in recycled aluminum alloys, non-metallic inclusions are a significant factor that deteriorates the material’s castability and final mechanical properties. This, therefore, restricts the ability to transition from a primary to secondary aluminum alloy. In this study, the cleanliness of [...] Read more.
In addition to impurities in recycled aluminum alloys, non-metallic inclusions are a significant factor that deteriorates the material’s castability and final mechanical properties. This, therefore, restricts the ability to transition from a primary to secondary aluminum alloy. In this study, the cleanliness of the recycled A357 alloy was evaluated through non-metallic inclusions’ characterization, hydrogen content measurement, fluidity test, and casting defects identification. The non-metallic inclusions generated during the recycling process of A357 alloy were collected by the pressurized melt filtration technique. All of the inclusion types collected during filtration were examined and identified by analytical scanning electron microscopy (SEM). Extra additions of up to 2 wt.% swarf in these secondary A357 alloys were designed to simulate highly contaminated alloys. Different to the conventional melt cleaning technologies that mainly focus on complete removal of inclusions, this study developed a novel approach that combines the removal of easily removeable inclusions while preserving well-dispersed inclusions that do not adversely affect the mechanical properties. This study demonstrates that high shear melt conditioning (HSMC) technology can achieve well-dispersed small non-metallic inclusions, low hydrogen content, improved fluidity, and fewer casting defects. As a result, the melt quality of the recycled A357 alloys has achieved a quality comparable to that of primary A357 alloy. Full article
(This article belongs to the Special Issue Preparation and Properties of Aluminum Alloy Materials (2nd Edition))
Show Figures

Figure 1

20 pages, 5211 KiB  
Article
Perspectives of Hydrogen Generation in Cavitation–Jet Hydrodynamic Reactor
by G. K. Mamytbekov, I. V. Danko, Zh. I. Beksultanov, Y. R. Nurtazin and A. Rakhimbayev
Appl. Sci. 2024, 14(20), 9415; https://doi.org/10.3390/app14209415 - 15 Oct 2024
Viewed by 1811
Abstract
The article investigates the potential for producing hydrogen by combining the methods of water splitting under cavitation and the chemical activation of aluminum in a high-speed cavitation–jet flow generated by a specialized hydrodynamic reactor. The process of cavitation and water spraying causes the [...] Read more.
The article investigates the potential for producing hydrogen by combining the methods of water splitting under cavitation and the chemical activation of aluminum in a high-speed cavitation–jet flow generated by a specialized hydrodynamic reactor. The process of cavitation and water spraying causes the liquid heating itself until it reaches saturated vapor pressure, resulting in the creation of vapor–gaseous products from the splitting of water molecules. The producing of vapor–gaseous products can be explained through the theory of non-equilibrium low-temperature plasma formation within a high-speed cavitation–jet flow of fluid. Special focus is also given to the interactions occurring at the interface boundary phase of aluminum and liquid under cavitation condition. The primary solid products formed on aluminum surfaces are bayerite, copper oxides (I and II), iron carbide, and a compound of magnesium oxides and aluminum hydroxide. A high hydrogen yield of 60% was achieved when using a 0.1% sodium hydroxide solution as a working liquid compared to demineralized water. Moreover, hydrogen methane was also detected in the volume of the vapor–gas mixture, which could be utilized to address the challenges of decarbonization and the recycling of aluminum-containing solid industrial and domestic waste. This work provides a contribution to the study of the mechanism of hydrogen generation by cavitation–jet processing of water and aqueous alkali solutions, in which conditions are created for double cavitation in the cavitation–jet chamber of the hydrodynamic reactor. Full article
Show Figures

Figure 1

16 pages, 10969 KiB  
Article
Effect of Continuous Casting and Heat Treatment Parameters on the Microstructure and Mechanical Properties of Recycled EN AW-2007 Alloy
by Grażyna Mrówka-Nowotnik, Grzegorz Boczkal and Andrzej Nowotnik
Materials 2024, 17(14), 3447; https://doi.org/10.3390/ma17143447 - 12 Jul 2024
Viewed by 1283
Abstract
The growing use of aluminum and its compounds has increased the volume of aluminum waste. To mitigate environmental impacts and cut down on manufacturing expenses, extensive investigations have recently been undertaken to recycle aluminum compounds. This paper outlines the outcomes of a study [...] Read more.
The growing use of aluminum and its compounds has increased the volume of aluminum waste. To mitigate environmental impacts and cut down on manufacturing expenses, extensive investigations have recently been undertaken to recycle aluminum compounds. This paper outlines the outcomes of a study on fabricating standard EN AW-2007 alloy using industrial and secondary scrap through continuous casting. The resultant recycled bars were analyzed for their chemical makeup and examined for microstructural features in both the cast and T4 states, undergoing mechanical property evaluations. The study identified several phases in the cast form through LM, SEM + EDS, and XRD techniques: Al7Cu2Fe, θ-Al2Cu, β-Mg2Si, Q-Al4Cu2Mg8Si7, and α-Al15(FeMn)3 (SiCu)2, along with Pb particles. Most primary intermetallic precipitates such as θ-Al2Cu, β-Mg2Si, and Q-Al4Cu2Mg8Si7 dissolved into the α-Al solid solution during the solution heat treatment. In the subsequent natural aging process, the θ-Al2Cu phase predominantly emerged as a finely dispersed hardening phase. The peak hardness achieved in the EN AW-2007 alloy was 124.8 HB, following a solution heat treatment at 500 °C and aging at 25 °C for 80 h. The static tensile test assessed the mechanical and ductility properties of the EN AW-2007 alloy in both the cast and T4 heat-treated states. Superior strength parameters were achieved after solution heat treatment at 500 °C for 6 h, followed by water quenching and natural aging at 25 °C/9 h, with a tensile strength of 435.0 MPa, a yield strength of 240.5 MPa, and an appreciable elongation of 18.1% at break. The findings demonstrate the feasibility of producing defect-free EN AW-2007 alloy ingots with excellent mechanical properties from recycled scrap using the continuous casting technique. Full article
(This article belongs to the Special Issue Research on Enhancing Properties of Aluminum-Based Materials)
Show Figures

Figure 1

16 pages, 5919 KiB  
Article
Optimizing Wet Hydrolysis for Nitrogen Removal and Alumina Recovery from Secondary Aluminium Dross (SAD)
by Qiao Jiang and Bin Lee
Sustainability 2024, 16(13), 5312; https://doi.org/10.3390/su16135312 - 21 Jun 2024
Cited by 1 | Viewed by 1982
Abstract
Secondary aluminum dross is a solid waste generated after removing aluminum from industrial aluminum slag (primary aluminum dross), which is included in the European Hazardous Waste List because of harmful substances such as aluminum nitride. More and more SAD is being directly disposed [...] Read more.
Secondary aluminum dross is a solid waste generated after removing aluminum from industrial aluminum slag (primary aluminum dross), which is included in the European Hazardous Waste List because of harmful substances such as aluminum nitride. More and more SAD is being directly disposed of in landfills, which will not only harm the ecological environment and human health, but also cause resources. Under the background of green and low-carbon circular economy, nitrogen removal and resource recycling of SAD are very important environmental pollution, resource and the economic benefits of the aluminum industry. In this study, a new method was introduced to explore the interaction between various factors in the denitrification process by using the response surface method, and the optimal denitrification process conditions were predicted and determined by a regression equation that is, the denitrification rate of SAD was 99.98% at the reaction time of 263 min, reaction temperature of 95 ℃ and concentration of 6.5 wt.%. Furthermore, the content of Al2O3 in SAD was successfully elevated to 98.43% through the reaction carried out in a 10 wt.% NaOH solution system at the controlled temperature of 90 °C for 5 h. It was summarized that the wet treatment methodology can efficiently eliminate aluminum nitride (AlN) from SAD and heighten the Al2O3 grade to meet metallurgical standards. This research is expected to eliminate the adverse impact of SAD on the environment and its safety risks, and provide an innovative method for the sustainable resource utilization of SAD. Full article
Show Figures

Figure 1

22 pages, 5447 KiB  
Article
Effects of Fe, Si, Cu, and TiB2 Grain Refiner Amounts on the Hot Tearing Susceptibility of 5083, 6061, and 7075 Aluminum Ingots
by Kai-Yu Liang, Hao-Chuan Huang, Ching-Yao Tseng, Mien-Chung Chen, Sheng-Long Lee, Chi-Cheng Lin and Te-Cheng Su
Metals 2024, 14(1), 15; https://doi.org/10.3390/met14010015 - 21 Dec 2023
Cited by 4 | Viewed by 3092
Abstract
Aluminum alloys 5083, 6061, and 7075 are prone to hot tearing under direct-chill casting conditions; the defects that form during solidification of those alloys are highly sensitive to variation in the alloying elements, with these elements commonly being Si, Fe, Cu, and Ti. [...] Read more.
Aluminum alloys 5083, 6061, and 7075 are prone to hot tearing under direct-chill casting conditions; the defects that form during solidification of those alloys are highly sensitive to variation in the alloying elements, with these elements commonly being Si, Fe, Cu, and Ti. This study investigates the influence of the morphology, content, and size of intermetallic compounds on the hot tearing behavior of the 5083, 6061, and 7075 aluminum alloys by combining a constrained rod casting technique, phase diagram calculation, and multiscale microstructural characterizations. The fishbone-shaped α-Al15(Fe,Mn)3Si2 in 5083 can serve as a path for crack nucleation and growth, and an increase in Si content results in Mg2Si assuming fishbone morphology, thereby increasing hot tearing susceptibility. The amount of plate-like β-Al5FeSi is the primary factor controlling the hot tearing susceptibility of 6061. For 7075, increasing the Cu content can greatly enhance the remaining liquid fraction, feeding, and hot tearing susceptibility. For all three alloys, TiB2 grain refiner minimizes hot tearing. This study elucidates the influences of the amounts of Fe, Si, Cu, and TiB2 grain refiner on hot tearing susceptibility. The findings can help establish compositional control standards for the 5083, 6061, and 7075 aluminum alloy series, particularly when the recycling rate must be increased. Full article
Show Figures

Figure 1

17 pages, 6746 KiB  
Article
Effect of Sintering Temperature on Phase Formation and Mechanical Properties of Al–Cu–Li Alloy Prepared from Secondary Aluminum Powders
by Antonio Cañadilla, Juan Pablo Sanhueza, Cristóbal Montalba and Elisa María Ruiz-Navas
Metals 2024, 14(1), 12; https://doi.org/10.3390/met14010012 - 21 Dec 2023
Cited by 3 | Viewed by 2858
Abstract
Aluminum and its alloys are very versatile materials used in a wide range of applications due to the initial characteristics of pure aluminum and the combination of properties obtained from its blend with other elements. Considering that aluminum is the second-most-produced metal after [...] Read more.
Aluminum and its alloys are very versatile materials used in a wide range of applications due to the initial characteristics of pure aluminum and the combination of properties obtained from its blend with other elements. Considering that aluminum is the second-most-produced metal after steel, and that its production will increase over time based on the demand to produce products through conventional and additive methodologies, this will lead to an increase in the energy consumed as well as the footprint of carbon generated. It is for this reason that the generation of competitive aluminum alloys must be approached from secondary sources (recycling). To address these environmental issues, in this work, 2070 aluminum alloy (AA2070) samples were manufactured using secondary aluminum powder and compared with the primary aluminum source. The samples were compacted at 700 MPa and sintered at a different range of temperatures between 525 °C and 575 °C. The study includes thermodynamic modeling, microstructure, and mechanical characterization. Microstructure and phases characterization were carried out via scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis, respectively, whereas the mechanical characterization comprised relative density evaluation, hardness, and flexion tests. Results were compared with the calculation of phase stability using Thermo-Calc software 2020a. Based on the results obtained, it can be concluded that the secondary AA2070 optimal sintered temperature, where the components raised the highest mechanical properties and effective relative density range, is 575 °C. Furthermore, the recycled alloys have similar relative densities and flexural strengths than the corresponding alloys made from primary aluminum powder. Full article
(This article belongs to the Section Powder Metallurgy)
Show Figures

Figure 1

8 pages, 570 KiB  
Proceeding Paper
Opportunities for Adding Recycled Content to Primary Aluminum Products
by Agathe Tshipama, Vincent Goutière and Marie-Eve Pomerleau
Eng. Proc. 2023, 43(1), 32; https://doi.org/10.3390/engproc2023043032 - 20 Sep 2023
Viewed by 1610
Abstract
Rio Tinto is a leading producer of low-carbon primary aluminum due to its efficient processes and hydroelectricity. It has one of the lowest greenhouse gas (GHG) footprints in the world, which is below four tons of CO2 per ton of primary aluminum. [...] Read more.
Rio Tinto is a leading producer of low-carbon primary aluminum due to its efficient processes and hydroelectricity. It has one of the lowest greenhouse gas (GHG) footprints in the world, which is below four tons of CO2 per ton of primary aluminum. Nevertheless, integrating end-of-life recycling into primary aluminum products, although challenging, plays an important role in further reducing GHG emissions during aluminum production. This is why much effort has been made in recent years throughout Rio Tinto plants to find innovative solutions to overcome this challenge. In 2022, the first circular economy initiative was deployed at Laterrière Works with the addition of a remelt furnace with an initial production capacity of 22,000 tons per year. This project has contributed to adding capacity to remelt both internal process scrap and external industrial scrap. A second initiative is the operation of a new recycling center at Arvida Works to commence in 2025 that will process 30,000 tons per year of end-of-life scrap. As a primary alloy producer, the main challenge for Rio Tinto is to integrate these materials into current and new products without affecting their quality and performance. This paper will present preliminary studies on the chemical compatibility of scrap with current alloys, and the approach used for managing their organic content. Full article
(This article belongs to the Proceedings of The 15th International Aluminium Conference)
Show Figures

Figure 1

Back to TopTop