A Review of the Progress in Molecular Dynamics Simulation of Calcium Aluminosilicate Hydrate: From Structure and Properties to Applications
Abstract
1. Introduction
2. Prediction of Molecular Structure, Dynamics, and Mechanical Properties
2.1. Analysis of Molecular Structure
2.1.1. Introduction to Molecular Configuration
- (1)
- Substitution method
- (2)
- Polymerization method
2.1.2. Atomic Bonding
2.1.3. Al Content on the Evolution of Qn
- Effect of without tensile loading
- Effect of tensile loading
2.2. Analysis of Dynamics Behavior
2.3. Prediction of Mechanical Properties
2.3.1. Stress-Strain Relation
2.3.2. Tensile Strength and Young’s Modulus
Ref. | Software | Modeling Mothed | Force Field | Ensemble | Ratio | Tensile Strength/GPa | Young’s Modulus/GPa | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | ||||||
[50] | LAMMPS | Al substitution for Si | CSH-FF | NPT | Al/Si = 0 | 9.61 | 7.88 | 1.54 | 63.41 | 71.48 | 24.32 |
Al/Si = 0.05 | 9.76 | 8.91 | 3.85 | 66.24 | 78.47 | 46.22 | |||||
Al/Si = 0.10 | 10.71 | 10.41 | 6.60 | 69.07 | 83.07 | 68.01 | |||||
Al/Si = 0.15 | 10.20 | 11.75 | 10.06 | 69.61 | 96.54 | 85.37 | |||||
Al/Si = 0.2 | 8.67 | 12.27 | 10.03 | 65 | 91.64 | 96.32 | |||||
[58] | LAMMPS | Al substitution for Si | Reax-FF and CSH-FF | NPT | Al/Si = 0 | 9.6 | 7.9 | 1.7 | — | — | 24.8 |
Al/Si = 0.05 | 9.78 | 8.97 | 3.81 | — | — | 46.7 | |||||
Al/Si = 0.10 | 10.68 | 10.45 | 6.45 | — | — | 68.1 | |||||
Al/Si = 0.15 | 10.22 | 11.67 | 10.10 | — | — | 85.4 | |||||
Al/Si = 0.20 | 8.67 | 12.15 | 10.01 | — | — | 96.6 | |||||
[56] | — | Al substitution for Ca | Reax-FF | NPT | Al/Ca = 0 | — | 6.5 | 3.25 | — | 64 | 50 |
Al/Ca = 0.38 | — | 8.5 | 7.0 | — | 75 | 68 | |||||
[53] | LAMMPS | Al substitution for Si | Reax-FF | water adsorption: NVT; equilibrium: NPT | Ca/(Si + Al) = 0.9 | — | 6.8 | 8.5 | — | — | — |
Ca/(Si + Al) = 1.0 | — | 5.2 | 8.4 | — | — | — | |||||
Ca/(Si + Al) = 1.2 | — | 4.5 | 8.0 | — | — | — | |||||
Ca/(Si + Al) = 1.4 | — | 4.2 | 7.8 | — | — | — | |||||
Ca/(Si + Al) = 1.7 | — | 3.1 | 6.8 | — | — | — | |||||
[57] | — | Al substitution for Si | Reax-FF | NPT | Ca/Si = 0 | About 3.4 | 6.8 | 6.7 | — | — | — |
Ca/Si = 0.38 | About 7.5 | 8.5 | 7.0 | — | — | — | |||||
[54] | LAMMPS | Al substitution for Si | Reax-FF | water adsorption: NVT; equilibrium: NPT | Al/Si = 0 | 9.79 | 8.01 | 3.31 | 60.06 | 66.75 | 31.67 |
Al/Si = 0.05 | 8.53 | 9.54 | 4.83 | 57.64 | 77.56 | 52.85 | |||||
Al/Si = 0.10 | 9.01 | 10.53 | 6.62 | 67.24 | 84.24 | 69.54 | |||||
Al/Si = 0.15 | 9.98 | 11.17 | 8.26 | 68.93 | 89.34 | 84.93 | |||||
Al/Si = 0.20 | 10.58 | 11.74 | 9.39 | 71.01 | 95.45 | 94.28 | |||||
Al/Si = 0.25 | 10.05 | 11.62 | 9.63 | 66.59 | 95.72 | 91.98 | |||||
Al/Si = 0.33 | 8.76 | 11.21 | 10.15 | 56.15 | 96.56 | 89.23 | |||||
[70] | LAMMPS | Al substitution for Si | Reax-FF | NPT | Al/Si = 0.20 | 9.02 | 12.66 | 2.20 | 67.22 | 94.31 | 34.22 |
3. MD Simulation for Applications
3.1. Analysis of Interfacial Characteristics
3.1.1. CASH and Graphene Oxide
3.1.2. CASH and Fibers
3.1.3. CASH and Other Materials
3.2. Ion Immobilization and Transport
3.2.1. Immobilization of Harmful Ions
3.2.2. Ion Transport in Gel Pores
3.3. Effect of Moderate and High Temperatures
4. Conclusions
- MD can predict the molecular structure, dynamics, and mechanical properties of CASH under different Al contents. Increasing Al content is beneficial for the formation of network structure and enhancement of polymerization when 0 < Al/Si ≤ 0.2. When Al/Si = 0.2, the crosslinking of silicoaluminate chains in the molecules is maximized, restricting atomic diffusion. At the same time, CASH exhibits optimal mechanical properties.
- Compared to CSH, the introduction of Al is advantageous for improving the interfacial properties of CASH in composite materials and the immobilization and transport effects of ions. Additionally, the presence of Al is beneficial for the polymerization of CASH in moderate-temperature environments and for resisting the destruction of CASH at high temperatures.
5. Challenges and Prospects
- Decalcification by carbonation: Concrete exposed to the atmosphere for a long period undergoes carbonation, leading to decalcification of CSH/CASH. Meanwhile, CaCO3 produced during carbonation leads to volume expansion of CSH/CASH. MD simulations can provide theoretical guidance for carbonation, decalcification, and volume expansion processes. For example, the Ca2+ migration process and CaCO3 formation in CSH/CASH gel pores.
- Ion immobilization: With the ongoing discharge of nuclear wastewater into the sea, radioactive elements will spread throughout global oceans with seawater currents, affecting the entire ecosystem. Rich Al cement-SCMs exhibit better immobilization effects. MD can provide valuable theoretical support for the immobilization of radioactive elements.
- Temperature effects: The effect of temperature on the molecular structure and properties of CASH is crucial. In addition to medium and high temperatures, whether pre-experimental samples subjected to freeze-thaw cycles, freeze-drying, and vacuum drying affect the molecular structure and properties of CASH needs to be discussed at the atomic level.
- Machine learning potential: Although the accuracy of ReaxFF of cementitious materials is widely recognized, there is a need to develop force fields better suited to CASH systems that can optimize the computational process and improve efficiency. The machine learning potential combines the advantages of speed and accuracy to simulate the CASH systems on larger time and length scales.
- Intelligent buildings: GO can form a conductive network in cement slurry, giving buildings self-sensing capabilities, which is crucial for structural health monitoring. In the future, based on machine learning, DFT simulations combined with MD and finite element simulations can analyze the molecular structure, mechanical properties, and electrical properties of composite materials from the nanoscale to the macroscale.
- Fiber and SCMs-cement: Fibers and SCMs cement: Fibers are crucial for concrete reinforcement, and MD research on SCMs cement requires an increase in the types of fibers (such as steel fibers, basalt fibers, etc.). Also, the current classical MD force field has difficulty accurately characterizing the interfacial chemical interactions between SCM cement and fibers. In the future, combining quantum mechanical bond order parameters with coarse-grained mesoscopic evolution can dynamically capture interfacial reactions from the nanometer to micrometer scale.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SCMs | Supplementary Cementitious Materials |
Cement-SCMs | Cement blended with supplementary cementitious materials |
MD | Molecular dynamics |
LD | Linear dichroism |
GBFS | Granulated Blast Furnace Slag |
FA | Fly Ash |
SF | Silica Fume |
MSD | Mean square displacement |
TCF | Time correlated function |
PP | Polypropylene |
PAA | Polyacrylic acid |
CCUS | Carbon Capture, Utilization and Storage |
CSH | Calcium silicate hydrate |
CASH | Calcium silicoaluminate hydrate |
NASH | Sodium silicoaluminate hydrate |
GO | Graphene Oxide |
RDF | Radial distribution function |
MCL | Main chain length of silicon-aluminate |
PVA | Polyvinyl alcohol |
PE | Polyethylene |
ONB | Non-bridging oxygen atom |
References
- Skibsted, J.; Snellings, R. Reactivity of Supplementary Cementitious Materials (SCMs) in Cement Blends. Cem. Concr. Res. 2019, 124, 105799. [Google Scholar] [CrossRef]
- Wang, T.; Medepalli, S.; Zheng, Y.; Zhang, W.; Ishida, T.; Bishnoi, S.; Hou, D.; Shi, Z. Retardation Effect of the Pozzolanic Reaction of Low-Calcium Supplementary Cementitious Materials on Clinker Hydration at Later Age: Effects of Pore Solution, Foreign Ions, and pH. Cem. Concr. Res. 2024, 177, 107416. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J.; Li, K.; Li, M.; Lin, S.; Hao, T.; Wang, T.; Guo, Y.; Ling, Z. Investigations on the Rehydration of Recycled Blended SCMs Cement. Cem. Concr. Res. 2023, 163, 107036. [Google Scholar] [CrossRef]
- Yang, H.J.; Usman, M.; Hanif, A. Suitability of Liquid Crystal Display (LCD) Glass Waste as Supplementary Cementing Material (SCM): Assessment Based on Strength, Porosity, and Durability. J. Build. Eng. 2021, 42, 102793. [Google Scholar] [CrossRef]
- Jackson, M.D.; Chae, S.R.; Mulcahy, S.R.; Meral, C.; Taylor, R.; Li, P.; Emwas, A.-H.; Moon, J.; Yoon, S.; Vola, G.; et al. Unlocking the Secrets of Al-Tobermorite in Roman Seawater Concrete. Am. Mineral. 2013, 98, 1669–1687. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Luijkx, I.T.; Peters, G.P.; et al. Global Carbon Budget 2023. Earth Syst. Sci. Data 2023, 15, 5301–5369. [Google Scholar] [CrossRef]
- Barzgar, S.; Lothenbach, B.; Tarik, M.; Di Giacomo, A.; Ludwig, C. The Effect of Sodium Hydroxide on Al Uptake by Calcium Silicate Hydrates (CSH). J. Colloid Interface Sci. 2020, 572, 246–256. [Google Scholar] [CrossRef]
- Moreno-Juez, J.; Vegas, I.J.; Frías Rojas, M.; Vigil de la Villa, R.; Guede-Vázquez, E. Laboratory-Scale Study and Semi-Industrial Validation of Viability of Inorganic CDW Fine Fractions as SCMs in Blended Cements. Constr. Build. Mater. 2021, 271, 121823. [Google Scholar] [CrossRef]
- Rahla, K.M.; Mateus, R.; Bragança, L. Comparative Sustainability Assessment of Binary Blended Concretes Using Supplementary Cementitious Materials (SCMs) and Ordinary Portland Cement (OPC). J. Clean. Prod. 2019, 220, 445–459. [Google Scholar] [CrossRef]
- Wu, P.; Zeng, Q.; Liu, X.; Zhang, Z.; Wei, C.; Li, Y.; Ma, S. Synergistic Preparation of High-Performance Composite Blast Furnace Slag Powder from Multiple Industrial Solid Wastes: Performance Regulation and Optimization. Constr. Build. Mater. 2024, 411, 134231. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Yan, Y.; Lothenbach, B.; Skibsted, J. Incorporation of Sodium and Aluminum in Cementitious Calcium-Alumino-Silicate-Hydrate C-(A)-S-H Phases Studied by 23Na, 27Al, and 29Si MAS NMR Spectroscopy. J. Phys. Chem. C 2021, 125, 27975–27995. [Google Scholar] [CrossRef]
- Škvára, F.; Šulc, R.; Snop, R.; Peterová, A.; Šídlová, M. Hydraulic Clinkerless Binder on the Fluid Sulfocalcic Fly Ash Basis. Cem. Concr. Compos. 2018, 93, 118–126. [Google Scholar] [CrossRef]
- Liu, S.; Wang, D.; Guo, J.; Zhang, L.; Yuan, N. Pressed Recycled Fly Ash and Carbide Slag: Hydration of Entirely Waste-Stream Building Components. Constr. Build. Mater. 2020, 265, 120282. [Google Scholar] [CrossRef]
- Moon, J.; Wang, Z.; Kim, M.O.; Chun, S.-C. Strength Enhancement of Alkaline Activated Fly Ash Cured at Ambient Temperature by Delayed Activation of Substituted OPC. Constr. Build. Mater. 2016, 122, 659–666. [Google Scholar] [CrossRef]
- Zhu, D.; Qiu, T.; Zhong, J.; Zeng, Q.; Fang, X. Molecular Dynamics Simulation of Aluminum Inhibited Leaching during Ion-Adsorbed Type Rare Earth Ore Leaching Process. J. Rare Earths 2019, 37, 1334–1340. [Google Scholar] [CrossRef]
- Faucon, P.; Delaye, J.M.; Virlet, J. Molecular Dynamics Simulation of the Structure of Calcium Silicate Hydrates: I. Ca4+xSi6O14+2x(OH)4−2x(H2O)2(0 ≤ x ≤ 1). J. Solid State Chem. 1996, 127, 92–97. [Google Scholar] [CrossRef]
- Tang, S.; A., H.; Chen, J.; Yu, W.; Yu, P.; Chen, E.; Deng, H.; He, Z. The Interactions between Water Molecules and C-S-H Surfaces in Loads-Induced Nanopores: A Molecular Dynamics Study. Appl. Surf. Sci. 2019, 496, 143744. [Google Scholar] [CrossRef]
- Tu, Y.; Cao, J.; Wen, R.; Shi, P.; Yuan, L.; Ji, Y.; Das, O.; Försth, M.; Sas, G.; Elfgren, L. Molecular Dynamics Simulation Study of the Transport of Pairwise Coupled Ions Confined in C-S-H Gel Nanopores. Constr. Build. Mater. 2022, 318, 126172. [Google Scholar] [CrossRef]
- Qiao, G.; Hou, D.; Li, W.; Yin, B.; Zhang, Y.; Wang, P. Molecular Insights into Migration of Heavy Metal Ion in Calcium Silicate Hydrate (CSH) Surface and Intra-CSH (Ca/Si = 1.3). Constr. Build. Mater. 2023, 365, 130097. [Google Scholar] [CrossRef]
- Hou, D.; Yang, Q.; Wang, P.; Jin, Z.; Wang, M.; Zhang, Y.; Wang, X. Unraveling Disadhesion Mechanism of Epoxy/CSH Interface under Aggressive Conditions. Cem. Concr. Res. 2021, 146, 106489. [Google Scholar] [CrossRef]
- Hou, D.; Yang, Q.; Jin, Z.; Wang, P.; Wang, M.; Wang, X.; Zhang, Y. Enhancing Interfacial Bonding between Epoxy and CSH Using Graphene Oxide: An Atomistic Investigation. Appl. Surf. Sci. 2021, 568, 150896. [Google Scholar] [CrossRef]
- Bahraq, A.A.; Al-Osta, M.A.; Baghabra Al-Amoudi, O.S.; Obot, I.B.; Maslehuddin, M.; Ahmed, H.-R.; Saleh, T.A. Molecular Simulation of Cement-Based Materials and Their Properties. Engineering 2022, 15, 165–178. [Google Scholar] [CrossRef]
- Duque-Redondo, E.; Bonnaud, P.A.; Manzano, H. A Comprehensive Review of C-S-H Empirical and Computational Models, Their Applications, and Practical Aspects. Cem. Concr. Res. 2022, 156, 106784. [Google Scholar] [CrossRef]
- Claverie, J.; Wang, Q.; Kamali-Bernard, S.; Bernard, F. Assessment of the Reactivity and Hydration of Portland Cement Clinker Phases from Atomistic Simulation: A Critical Review. Cem. Concr. Res. 2022, 154, 106711. [Google Scholar] [CrossRef]
- Abdolhosseini Qomi, M.J.; Brochard, L.; Honorio, T.; Maruyama, I.; Vandamme, M. Advances in Atomistic Modeling and Understanding of Drying Shrinkage in Cementitious Materials. Cem. Concr. Res. 2021, 148, 106536. [Google Scholar] [CrossRef]
- Cho, B.H.; Chung, W.; Nam, B.H. Molecular Dynamics Simulation of Calcium-Silicate-Hydrate for Nano-Engineered Cement Composites—A Review. Nanomaterials 2020, 10, 2158. [Google Scholar] [CrossRef]
- Kunhi Mohamed, A.; Weckwerth, S.A.; Mishra, R.K.; Heinz, H.; Flatt, R.J. Molecular Modeling of Chemical Admixtures; Opportunities and Challenges. Cem. Concr. Res. 2022, 156, 106783. [Google Scholar] [CrossRef]
- Ma, H.; Hou, D.; Zhang, J. Editorial: Molecular Simulation on Cementitious Materials: From Computational Chemistry Method to Application. Front. Mater. 2021, 8, 810850. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Hou, D.; Ding, Q. Molecular Dynamics Study on Calcium Aluminosilicate Hydrate at Elevated Temperatures: Structure, Dynamics and Mechanical Properties. Mater. Chem. Phys. 2019, 233, 276–287. [Google Scholar] [CrossRef]
- Fu, J.; Kamali-Bernard, S.; Bernard, F.; Cornen, M. Comparison of Mechanical Properties of C-S-H and Portlandite between Nano-Indentation Experiments and a Modeling Approach Using Various Simulation Techniques. Compos. Part B Eng. 2018, 151, 127–138. [Google Scholar] [CrossRef]
- Wu, H.; Pan, J.; Wang, J. Molecular Dynamics Simulation Study on Dynamic Mechanical Properties of C-S-H with Diverse Ca/Si Ratios. Mater. Today Commun. 2022, 31, 103755. [Google Scholar] [CrossRef]
- Hou, D.; Zhang, J.; Li, Z.; Zhu, Y. Uniaxial Tension Study of Calcium Silicate Hydrate (C–S–H): Structure, Dynamics and Mechanical Properties. Mater Struct 2015, 48, 3811–3824. [Google Scholar] [CrossRef]
- Hou, D.; Ma, H.; Zhu, Y.; Li, Z. Calcium Silicate Hydrate from Dry to Saturated State: Structure, Dynamics and Mechanical Properties. Acta Mater. 2014, 67, 81–94. [Google Scholar] [CrossRef]
- Nonat, A. The Structure and Stoichiometry of C-S-H. Cem. Concr. Res. 2004, 34, 1521–1528. [Google Scholar] [CrossRef]
- Liang, Y. Nanoscale Insight into Structural Characteristics and Dynamic Properties of C-S-H after Decalcification by Reactive Molecular Dynamics Simulations. Mater. Today Commun. 2022, 33, 104684. [Google Scholar] [CrossRef]
- Kai, M.F.; Zhang, L.W.; Liew, K.M. New Insights into Creep Characteristics of Calcium Silicate Hydrates at Molecular Level. Cem. Concr. Res. 2021, 142, 106366. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, L.; Shi, J.; Luo, Q.; Jiang, J.; Hou, D. Full Process of Calcium Silicate Hydrate Decalcification: Molecular Structure, Dynamics, and Mechanical Properties. Cem. Concr. Res. 2022, 161, 106964. [Google Scholar] [CrossRef]
- Bonnaud, P.A.; Ji, Q.; Van Vliet, K.J. Effects of Elevated Temperature on the Structure and Properties of Calcium–Silicate–Hydrate Gels: The Role of Confined Water. Soft Matter 2013, 9, 6418. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Q.; Ju, J.W.; Bauchy, M. New Insights into the Mechanism Governing the Elasticity of Calcium Silicate Hydrate Gels Exposed to High Temperature: A Molecular Dynamics Study. Cem. Concr. Res. 2021, 141, 106333. [Google Scholar] [CrossRef]
- Abdolhosseini Qomi, M.J.; Krakowiak, K.J.; Bauchy, M.; Stewart, K.L.; Shahsavari, R.; Jagannathan, D.; Brommer, D.B.; Baronnet, A.; Buehler, M.J.; Yip, S.; et al. Combinatorial Molecular Optimization of Cement Hydrates. Nat. Commun. 2014, 5, 4960. [Google Scholar] [CrossRef]
- Hou, D.; Li, H.; Zhang, L.; Zhang, J. Nano-Scale Mechanical Properties Investigation of C-S-H from Hydrated Tri-Calcium Silicate by Nano-Indentation and Molecular Dynamics Simulation. Constr. Build. Mater. 2018, 189, 265–275. [Google Scholar] [CrossRef]
- Wang, X.F.; Li, T.R.; Wei, P.; Li, D.W.; Han, N.X.; Xing, F.; Gan, Y.; Chen, Z. Computational Study of the Nanoscale Mechanical Properties of C-S-H Composites under Different Temperatures. Comput. Mater. Sci. 2018, 146, 42–53. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, W.; Zhou, Q.; Zhang, Y.; Liu, H.; Sant, G.; Liu, X.; Guo, L.; Bauchy, M. Precipitation of Calcium–Alumino–Silicate–Hydrate Gels: The Role of the Internal Stress. J. Chem. Phys. 2020, 153, 014501. [Google Scholar] [CrossRef] [PubMed]
- Criscenti, L.J.; Brantley, S.L.; Mueller, K.T.; Tsomaia, N.; Kubicki, J.D. Theoretical and 27Al CPMAS NMR Investigation of Aluminum Coordination Changes during Aluminosilicate Dissolution. Geochim. Cosmochim. Ac. 2005, 69, 2205–2220. [Google Scholar] [CrossRef]
- Pardal, X.; Brunet, F.; Charpentier, T.; Pochard, I.; Nonat, A. 27Al and 29Si Solid-State NMR Characterization of Calcium-Aluminosilicate-Hydrate. Inorg. Chem. 2012, 51, 1827–1836. [Google Scholar] [CrossRef]
- Lee, H.X.D.; Wong, H.S.; Buenfeld, N.R. Effect of Alkalinity and Calcium Concentration of Pore Solution on the Swelling and Ionic Exchange of Superabsorbent Polymers in Cement Paste. Cem. Concr. Compos. 2018, 88, 150–164. [Google Scholar] [CrossRef]
- Vollpracht, A.; Lothenbach, B.; Snellings, R.; Haufe, J. The Pore Solution of Blended Cements: A Review. Mater. Struct. 2016, 49, 3341–3367. [Google Scholar] [CrossRef]
- Zheng, Q.; Jiang, J.; Yu, J.; Li, X.; Li, S. Aluminum-Induced Interfacial Strengthening in Calcium Silicate Hydrates: Structure, Bonding, and Mechanical Properties. ACS Sustain. Chem. Eng. 2020, 8, 2622–2631. [Google Scholar] [CrossRef]
- Hawchar, B.M.; Honorio, T. C-A-S-H Thermoelastic Properties at the Molecular and Gel Scales. J. Adv. Concr. Technol. 2022, 20, 375–388. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Y.; Yang, J.; Ding, Q.; Sun, D. Insight into the Strengthening Mechanism of the Al-Induced Cross-Linked Calcium Aluminosilicate Hydrate Gel: A Molecular Dynamics Study. Front. Mater. 2021, 7, 611568. [Google Scholar] [CrossRef]
- Manzano, H.; Dolado, J.S.; Ayuela, A. Aluminum Incorporation to Dreierketten Silicate Chains. J. Phys. Chem. B 2009, 113, 2832–2839. [Google Scholar] [CrossRef] [PubMed]
- Kunhi Mohamed, A.; Moutzouri, P.; Berruyer, P.; Walder, B.J.; Siramanont, J.; Harris, M.; Negroni, M.; Galmarini, S.C.; Parker, S.C.; Scrivener, K.L.; et al. The Atomic-Level Structure of Cementitious Calcium Aluminate Silicate Hydrate. J. Am. Chem. Soc. 2020, 142, 11060–11071. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, G.; Wang, C.; Zhang, Y.; Wang, P.; Yan, N. Activation Effects and Micro Quantitative Characterization of High-Volume Ground Granulated Blast Furnace Slag in Cement-Based Composites. Cem. Concr. Compos. 2020, 109, 103556. [Google Scholar] [CrossRef]
- Li, D.; Qi, Q.; Liu, Q.; Zhu, J.; Bai, Z. Uniaxial Tensile Study of Calcium Aluminosilicate Hydrate (C-A-S-H): Structure, Dynamics and Mechanical Properties. Mater. Today Commun. 2024, 38, 107854. [Google Scholar] [CrossRef]
- Abdolhosseini Qomi, M.J.; Ulm, F.-J.; Pellenq, R.J.-M. Evidence on the Dual Nature of Aluminum in the Calcium-Silicate-Hydrates Based on Atomistic Simulations. J. Am. Ceram. Soc. 2012, 95, 1128–1137. [Google Scholar] [CrossRef]
- Hou, D.; Li, Z.; Zhao, T. Reactive Force Field Simulation on Polymerization and Hydrolytic Reactions in Calcium Aluminate Silicate Hydrate (C–A–S–H) Gel: Structure, Dynamics and Mechanical Properties. RSC Adv. 2014, 5, 448–461. [Google Scholar] [CrossRef]
- Wan, X.; Hou, D.; Zhao, T.; Wang, L. Insights on Molecular Structure and Micro-Properties of Alkali-Activated Slag Materials: A Reactive Molecular Dynamics Study. Constr. Build. Mater. 2017, 139, 430–437. [Google Scholar] [CrossRef]
- Yang, J.; Hou, D.; Ding, Q. Structure, Dynamics, and Mechanical Properties of Cross-Linked Calcium Aluminosilicate Hydrate: A Molecular Dynamics Study. ACS Sustain. Chem. Eng. 2018, 6, 9403–9417. [Google Scholar] [CrossRef]
- Hou, D.; Zhao, T.; Ma, H.; Li, Z. Reactive Molecular Simulation on Water Confined in the Nanopores of the Calcium Silicate Hydrate Gel: Structure, Reactivity, and Mechanical Properties. J. Phys. Chem. C 2015, 119, 1346–1358. [Google Scholar] [CrossRef]
- Hou, D.; Wu, C.; Yang, Q.; Zhang, W.; Lu, Z.; Wang, P.; Li, J.; Ding, Q. Insights on the Molecular Structure Evolution for Tricalcium Silicate and Slag Composite: From 29Si and 27Al NMR to Molecular Dynamics. Compos. Part B Eng. 2020, 202, 108401. [Google Scholar] [CrossRef]
- Myers, R.J.; Bernal, S.A.; San Nicolas, R.; Provis, J.L. Generalized Structural Description of Calcium–Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite Model. Langmuir 2013, 29, 5294–5306. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Yang, J.; Hou, D.; Zhang, G. Insight on the Mechanism of Sulfate Attacking on the Cement Paste with Granulated Blast Furnace Slag: An Experimental and Molecular Dynamics Study. Constr. Build. Mater. 2018, 169, 601–611. [Google Scholar] [CrossRef]
- Manzano, H.; Dolado, J.S.; Griebel, M.; Hamaekers, J. A Molecular Dynamics Study of the Aluminosilicate Chains Structure in Al-Rich Calcium Silicate Hydrated (C–S–H) Gels. Phys. Status Solidi 2008, 205, 1324–1329. [Google Scholar] [CrossRef]
- Aboulayt, A.; Souayfan, F.; Roziere, E.; Jaafri, R.; Cherki El Idrissi, A.; Moussa, R.; Justino, C.; Loukili, A. Alkali-Activated Grouts Based on Slag-Fly Ash Mixtures: From Early-Age Characterization to Long-Term Phase Composition. Constr. Build. Mater. 2020, 260, 120510. [Google Scholar] [CrossRef]
- Bauchy, M.; Laubie, H.; Abdolhosseini Qomi, M.J.; Hoover, C.G.; Ulm, F.-J.; Pellenq, R.J.-M. Fracture Toughness of Calcium–Silicate–Hydrate from Molecular Dynamics Simulations. J. Non-Cryst. Solids 2015, 419, 58–64. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, H.; Qiu, Y.; Zou, X.; Huang, J. A Molecular Dynamics Study on the Structure, Interfaces, Mechanical Properties, and Mechanisms of a Calcium Silicate Hydrate/2D-Silica Nanocomposite. Front. Mater. 2020, 7, 127. [Google Scholar] [CrossRef]
- Manzano, H.; Moeini, S.; Marinelli, F.; van Duin, A.C.T.; Ulm, F.-J.; Pellenq, R.J.-M. Confined Water Dissociation in Microporous Defective Silicates: Mechanism, Dipole Distribution, and Impact on Substrate Properties. J. Am. Chem. Soc. 2012, 134, 2208–2215. [Google Scholar] [CrossRef]
- Geng, G.; Myers, R.J.; Li, J.; Maboudian, R.; Carraro, C.; Shapiro, D.A.; Monteiro, P.J.M. Aluminum-Induced Dreierketten Chain Cross-Links Increase the Mechanical Properties of Nanocrystalline Calcium Aluminosilicate Hydrate. Sci. Rep. 2017, 7, 44032. [Google Scholar] [CrossRef]
- Zhang, M.; Deskins, N.A.; Zhang, G.; Cygan, R.T.; Tao, M. Modeling the Polymerization Process for Geopolymer Synthesis through Reactive Molecular Dynamics Simulations. J. Phys. Chem. C 2018, 122, 6760–6773. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, G.; Ding, Q.; Zhao, M. Molecular Structure and Mechanical Properties of Aluminum Substituted C-S-H. J. Build. Mater. 2022, 25, 565–571. [Google Scholar] [CrossRef]
- Wang, P.; Qiao, G.; Guo, Y.; Zhang, Y.; Hou, D.; Jin, Z.; Zhang, J.; Wang, M.; Hu, X. Molecular Dynamics Simulation of the Interfacial Bonding Properties between Graphene Oxide and Calcium Silicate Hydrate. Constr. Build. Mater. 2020, 260, 119927. [Google Scholar] [CrossRef]
- Hou, D.; Yang, T.; Tang, J.; Li, S. Reactive Force-Field Molecular Dynamics Study on Graphene Oxide Reinforced Cement Composite: Functional Group de-Protonation, Interfacial Bonding and Strengthening Mechanism. Phys. Chem. Chem. Phys. 2018, 20, 8773–8789. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, T.; Jia, Y.; Hou, D.; Li, H.; Jiang, J.; Zhang, J. Molecular Dynamics Study on the Weakening Effect of Moisture Content on Graphene Oxide Reinforced Cement Composite. Chem. Phys. Lett. 2018, 708, 177–182. [Google Scholar] [CrossRef]
- Mao, S.; Yao, W. Enhancing the Mechanical Properties of Calcium Silicate Hydrate by Engineering Graphene Oxide Structures via Molecular Dynamics Simulations. Mol. Simul. 2023, 49, 351–364. [Google Scholar] [CrossRef]
- Gao, Y.; Jing, H.; Wu, J.; Fu, G.; Feng, C.; Chen, W. Molecular Dynamics Study on the Influence of Graphene Oxide on the Tensile Behavior of Calcium Silicate Hydrate Composites. Mater. Chem. Phys. 2022, 292, 126881. [Google Scholar] [CrossRef]
- Chen, W.; Lu, S.; Yu, S.; Gong, C.; Wang, Z.; Gao, Y. Effects of Graphene Oxide on Shearing Performance of C–S–H Composites: A Molecular Dynamics Study. J. Mater. Sci. 2023, 58, 16972–16987. [Google Scholar] [CrossRef]
- Hou, D.; Lu, Z.; Li, X.; Ma, H.; Li, Z. Reactive Molecular Dynamics and Experimental Study of Graphene-Cement Composites: Structure, Dynamics and Reinforcement Mechanisms. Carbon 2017, 115, 188–208. [Google Scholar] [CrossRef]
- Qiao, G.; Wang, P.; Hou, D.S.; Jin, Z.; Li, S. Reactive Molecular Dynamic Simulation of Graphene Oxide Enhanced Calcium Silicate Aluminate Hydrate. J. Chin. Ceram. Soc. 2023, 51, 1154–1164. [Google Scholar] [CrossRef]
- Gao, C.; Tang, J.; Meng, Z.; Chu, Y.; Huang, J.; Han, F.; Liu, J. Enhancement in Toughness of Cement Pastes by Chitosan Modified with Polyacrylic Acid (CS/PAA): Microstructure Evolution and Molecular Dynamics. J. Build. Eng. 2023, 79, 107822. [Google Scholar] [CrossRef]
- Qiu, J.; Lim, X.-N.; Yang, E.-H. Fatigue-Induced Deterioration of the Interface between Micro-Polyvinyl Alcohol (PVA) Fiber and Cement Matrix. Cem. Concr. Res. 2016, 90, 127–136. [Google Scholar] [CrossRef]
- Wu, B.; Qiu, J. Enhancing the Hydrophobic PP Fiber/Cement Matrix Interface by Coating Nano-AlOOH to the Fiber Surface in a Facile Method. Cem. Concr. Compos. 2022, 125, 104297. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Oh, T.; Chun, B. Highly Ductile Ultra-Rapid-Hardening Mortar Containing Oxidized Polyethylene Fibers. Constr. Build. Mater. 2021, 277, 122317. [Google Scholar] [CrossRef]
- Haddad, R.H.; Smadi, M.M. Role of Fibers in Controlling Unrestrained Expansion and Arresting Cracking in Portland Cement Concrete Undergoing Alkali–Silica Reaction. Cem. Concr. Res. 2004, 34, 103–108. [Google Scholar] [CrossRef]
- Wang, P.; Qiao, G.; Zhang, Y.; Hou, D.; Zhang, J.; Wang, M.; Wang, X.; Hu, X. Molecular Dynamics Simulation Study on Interfacial Shear Strength between Calcium-Silicate-Hydrate and Polymer Fibers. Constr. Build. Mater. 2020, 257, 119557. [Google Scholar] [CrossRef]
- Chen, N.; Li, M.-Y. Interfacial Interaction, Bonding Energy and Configuration Transformation of Calcium Silicate Hydrate/Graphene Oxide Coupled by Grain Boundary. Appl. Phys. A 2022, 128, 722. [Google Scholar] [CrossRef]
- Lu, Z.; Yin, R.; Yao, J.; Zhao, B. Experimental and Molecular Dynamic Study on the Interfacial Strengthening Mechanism of PE Fiber/Cement Mortar Using Advanced Oxidation Processes. Constr. Build. Mater. 2021, 309, 125144. [Google Scholar] [CrossRef]
- Yong, F.; Yuan, L.; Chen, Z.; Dajing, Q.; Chao, W.; PeiYan, W. Nano-CaCO 3 Enhances PVA Fiber-Matrix Interfacial Properties: An Experimental and Molecular Dynamics Study. Mol. Simul. 2022, 48, 1378–1392. [Google Scholar] [CrossRef]
- Yong, F.; Weijian, W.; Siqi, W. PVA Fiber/Cement-Based Interface in Silane Coupler KH560 Reinforced High Performance Concrete – Experimental and Molecular Dynamics Study. Constr. Build. Mater. 2023, 395, 132184. [Google Scholar] [CrossRef]
- Lu, Z.; Yu, J.; Yao, J.; Hou, D. Experimental and Molecular Modeling of Polyethylene Fiber/Cement Interface Strengthened by Graphene Oxide. Cem. Concr. Compos. 2020, 112, 103676. [Google Scholar] [CrossRef]
- Quan, G.; Wu, Y.; Zhang, Y.; Xiao, L.; Liu, Y. Bio-Inspired Metal Ion Coordination Cross-Linking Synergistic Strategy to Enhance the Interfacial Properties of Carbon Fiber Composites. Polym. Compos. 2024, 45, 2202–2214. [Google Scholar] [CrossRef]
- Min, B.; Chen, G.; Sun, Y.; Li, K.; Chen, X.; Wang, Z. Enhancing the Fracture Properties of Carbon Fiber-Calcium Silicate Hydrate Interface through Graphene Oxide. Mater. Des. 2024, 241, 112916. [Google Scholar] [CrossRef]
- Zhang, S.; Duque-Redondo, E.; Kostiuchenko, A.; Dolado, J.S.; Ye, G. Molecular Dynamics and Experimental Study on the Adhesion Mechanism of Polyvinyl Alcohol (PVA) Fiber in Alkali-Activated Slag/Fly Ash. Cem. Concr. Res. 2021, 145, 106452. [Google Scholar] [CrossRef]
- Zheng, H.; Duan, Y.; Li, M.; Hou, D.; Wang, P.; Chen, J.; Li, S. Reaction Molecular Dynamics Study of Calcium Alumino-Silicate Hydrate Gel in the Hydration Deposition Process at the Calcium Silicate Hydrate Interface: The Influence of Al/Si. J. Build. Eng. 2024, 86, 108823. [Google Scholar] [CrossRef]
- Wu, D.; Cao, K.; Chen, K.; Mao, N. Interfacial Characteristics and Mechanical Behavior of Geopolymer Stabilizers with Clay Mineral: A Molecular Dynamics Study. Appl. Clay Sci. 2024, 250, 107286. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, Z.; Liu, H.; Zheng, W.; Tang, X.; Gui, Z. Interfacial Characteristics and Mechanical Behaviors of Geopolymer Binder with Steel Slag Aggregate: Insights from Molecular Dynamics. J. Clean. Prod. 2022, 362, 132385. [Google Scholar] [CrossRef]
- Chen, Y.X.; Liu, G.; Schollbach, K.; Brouwers, H.J.H. Development of Cement-Free Bio-Based Cold-Bonded Lightweight Aggregates (BCBLWAs) Using Steel Slag and Miscanthus Powder via CO2 Curing. J. Clean. Prod. 2021, 322, 129105. [Google Scholar] [CrossRef]
- Long, Q.; Yan, H.; Wu, H.; Qiu, S.; Zhou, X.; Qiu, T. Influence Mechanism of Leaching Agent Anions on the Leaching of Aluminium Impurities in Ionic-Type Rare Earth Ores: A DFT Simulation Combined with Experimental Verification. Sep. Purif. Technol. 2025, 354, 128768. [Google Scholar] [CrossRef]
- Berra, M.; Ippolito, N.M.; Mangialardi, T.; Paolini, A.E.; Piga, L. Leaching Test Procedure for Assessing the Compliance of the Chemical and Environmental Requirements of Hardened Woody Biomass Fly Ash Cement Mixtures. Waste Manag. 2019, 90, 10–16. [Google Scholar] [CrossRef]
- Jacques, D.; Phung, Q.T.; Perko, J.; Seetharam, S.C.; Maes, N.; Liu, S.; Yu, L.; Rogiers, B.; Laloy, E. Towards a Scientific-Based Assessment of Long-Term Durability and Performance of Cementitious Materials for Radioactive Waste Conditioning and Disposal. J. Nucl. Mater. 2021, 557, 153201. [Google Scholar] [CrossRef]
- Liang, K.; Wang, X.Q.; Chow, C.L.; Lau, D. A Review of Geopolymer and Its Adsorption Capacity with Molecular Insights: A Promising Adsorbent of Heavy Metal Ions. J. Environ. Manag. 2022, 322, 116066. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Q.; Wang, M.; Yin, B.; Hou, D.; Zhang, Y. Atomistic Insights into Cesium Chloride Solution Transport through the Ultra-Confined Calcium–Silicate–Hydrate Channel. Phys. Chem. Chem. Phys. 2019, 21, 11892–11902. [Google Scholar] [CrossRef] [PubMed]
- Duque-Redondo, E.; Kazuo, Y.; López-Arbeloa, I.; Manzano, H. Cs-137 Immobilization in C-S-H Gel Nanopores. Phys. Chem. Chem. Phys. 2018, 20, 9289–9297. [Google Scholar] [CrossRef] [PubMed]
- Youssef, M.; Pellenq, R.J.-M.; Yildiz, B. Docking 90Sr Radionuclide in Cement: An Atomistic Modeling Study. Phys. Chem. Earth 2014, 70–71, 39–44. [Google Scholar] [CrossRef]
- Androniuk, I.; Kalinichev, A.G. Molecular Dynamics Simulation of the Interaction of Uranium (VI) with the C–S–H Phase of Cement in the Presence of Gluconate. Appl. Geochem. 2020, 113, 104496. [Google Scholar] [CrossRef]
- Androniuk, I.; Çevirim-Papaioannou, N.; Altmaier, M.; Gaona, X. Molecular Dynamics Study of the Beryllium Interaction with C-S-H Phases. J. Phys. Chem. C 2023, 127, 1798–1807. [Google Scholar] [CrossRef]
- Huang, X.; Zhuang, R.; Muhammad, F.; Yu, L.; Shiau, Y.; Li, D. Solidification/Stabilization of Chromite Ore Processing Residue Using Alkali-Activated Composite Cementitious Materials. Chemosphere 2017, 168, 300–308. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, Z.; Deng, Y.; Shi, C.; Zhang, Z. Advances in Immobilization of Radionuclide Wastes by Alkali Activated Cement and Related Materials. Cem. Concr. Compos. 2022, 126, 104377. [Google Scholar] [CrossRef]
- Duque-Redondo, E.; Yamada, K.; Dolado, J.S.; Manzano, H. Microscopic Mechanism of Radionuclide Cs Retention in Al Containing C-S-H Nanopores. Comput. Mater. Sci. 2021, 190, 110312. [Google Scholar] [CrossRef]
- Evans, N.D.M. Binding Mechanisms of Radionuclides to Cement. Cem. Concr. Res. 2008, 38, 543–553. [Google Scholar] [CrossRef]
- Hou, D.; Zhang, W.; Sun, J.; Zhang, J. Structure, Dynamics and Mechanical Properties Evolution of Calcium-Silicate-Hydrate Induced by Fe Ions: A Molecular Dynamics Study. Constr. Build. Mater. 2021, 287, 122875. [Google Scholar] [CrossRef]
- Sun, M.; Hu, K.; Zhang, Y.; Wei, G.; Rong, H. Molecular Simulation and Experimental Investigation on Enhancement of Microbe Cement in Municipal Solid Waste Incineration Fly Ash. Front. Mater. 2022, 9, 1013580. [Google Scholar] [CrossRef]
- Liang, K.; Yang, G.; Wang, X.Q.; Chow, C.L.; Lau, D. Development of Effective Porous Geopolymer Adsorbent with High Strength for Copper(II) Ion Removal. J. Clean. Prod. 2024, 449, 141752. [Google Scholar] [CrossRef]
- Tu, Y.; Wen, R.; Yu, Q.; Cao, J.; Ji, Y.; Sas, G.; Elfgren, L. Molecular Dynamics Study on Coupled Ion Transport in Aluminum-Doped Cement-Based Materials. Constr. Build. Mater. 2021, 295, 123645. [Google Scholar] [CrossRef]
- Feng, P.; Garboczi, E.J.; Miao, C.; Bullard, J.W. Microstructural Origins of Cement Paste Degradation by External Sulfate Attack. Constr. Build. Mater. 2015, 96, 391–403. [Google Scholar] [CrossRef]
- Zhou, A.; Chow, C.L.; Lau, D. Structural Behavior of GFRP Reinforced Concrete Columns under the Influence of Chloride at Casting and Service Stages. Compos. Part B Eng. 2018, 136, 1–9. [Google Scholar] [CrossRef]
- Arbi, K.; Nedeljković, M.; Zuo, Y.; Ye, G. A Review on the Durability of Alkali-Activated Fly Ash/Slag Systems: Advances, Issues, and Perspectives. Ind. Eng. Chem. Res. 2016, 55, 5439–5453. [Google Scholar] [CrossRef]
- Law, D.W.; Adam, A.A.; Molyneaux, T.K.; Patnaikuni, I. Durability Assessment of Alkali Activated Slag (AAS) Concrete. Mater. Struct. 2012, 45, 1425–1437. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; San Nicolas, R.; Brice, D.G.; Kilcullen, A.R.; Hamdan, S.; van Deventer, J.S.J. Influence of Fly Ash on the Water and Chloride Permeability of Alkali-Activated Slag Mortars and Concretes. Constr. Build. Mater. 2013, 48, 1187–1201. [Google Scholar] [CrossRef]
- Hou, D.; Li, T.; Wang, P. Molecular Dynamics Study on the Structure and Dynamics of NaCl Solution Transport in the Nanometer Channel of CASH Gel. ACS Sustain. Chem. Eng. 2018, 6, 9498–9509. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, G.; Ding, Q.; Wang, A.; Hou, D. Influence of Associated Cations on the Transport and Adsorption of Chloride Ions in the Nano-Channel of Calcium Aluminosilicate Hydrate Gel: A Molecular Dynamics Study. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2022, 37, 963–976. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, J.; Tang, L.; Li, X. Resistance of Concrete against Combined Attack of Chloride and Sulfate under Drying–Wetting Cycles. Constr. Build. Mater. 2016, 106, 650–658. [Google Scholar] [CrossRef]
- Olmeda, J. Radium Retention by Blended Cement Pastes and Pure Phases (C-S-H and C-A-S-H Gels)_ Experimental Assessment and Modelling Exercises. Appl. Geochem. 2019, 105, 45–54. [Google Scholar] [CrossRef]
- Dharmawardhana, C.C.; Misra, A.; Ching, W.-Y. Theoretical Investigation of C-(A)-S-H(I) Cement Hydrates. Constr. Build. Mater. 2018, 184, 536–548. [Google Scholar] [CrossRef]
- Hou, D.; Wu, C.; Yang, Q.; Wang, P.; Ding, Q. Temperature Effect of Hydration and Microstructure of Tricalcium Silicate–Slag Powder Hydrated Composites: An Experimental and Molecular Dynamics Investigation. Acs Sustain. Chem. Eng. 2021, 9, 13773–13787. [Google Scholar] [CrossRef]
- Ma, H.; Wu, C. Mechanical and Microstructural Properties of Alkali-Activated Fly Ash-Slag Material under Sustained Moderate Temperature Effect. Cem. Concr. Compos. 2022, 134, 104744. [Google Scholar] [CrossRef]
- Rongjia, W.; Yanqiu, C.; Tong, G.; Lei, Y.; Tongfang, W.; Qian, Y.; Yongming, T.; Gabriel, S.; Lennart, E. Effects of Temperature on Ion Transport in C–A–S–H Gel Nanopores: Insights from Molecular Dynamics Simulations. J. Mater. Sci. 2022, 57, 18437–18455. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, X.; Cang, D.; Ramadan, M.; Mohsen, A.; Zhang, L. A Review of the Progress in Molecular Dynamics Simulation of Calcium Aluminosilicate Hydrate: From Structure and Properties to Applications. Recycling 2025, 10, 132. https://doi.org/10.3390/recycling10040132
Jing X, Cang D, Ramadan M, Mohsen A, Zhang L. A Review of the Progress in Molecular Dynamics Simulation of Calcium Aluminosilicate Hydrate: From Structure and Properties to Applications. Recycling. 2025; 10(4):132. https://doi.org/10.3390/recycling10040132
Chicago/Turabian StyleJing, Xiaohuan, Daqiang Cang, Mohammed Ramadan, Alaa Mohsen, and Lingling Zhang. 2025. "A Review of the Progress in Molecular Dynamics Simulation of Calcium Aluminosilicate Hydrate: From Structure and Properties to Applications" Recycling 10, no. 4: 132. https://doi.org/10.3390/recycling10040132
APA StyleJing, X., Cang, D., Ramadan, M., Mohsen, A., & Zhang, L. (2025). A Review of the Progress in Molecular Dynamics Simulation of Calcium Aluminosilicate Hydrate: From Structure and Properties to Applications. Recycling, 10(4), 132. https://doi.org/10.3390/recycling10040132