Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = prepubertal human testis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3754 KiB  
Review
Artificial Gametogenesis and In Vitro Spermatogenesis: Emerging Strategies for the Treatment of Male Infertility
by Aris Kaltsas, Maria-Anna Kyrgiafini, Eleftheria Markou, Andreas Koumenis, Zissis Mamuris, Fotios Dimitriadis, Athanasios Zachariou, Michael Chrisofos and Nikolaos Sofikitis
Int. J. Mol. Sci. 2025, 26(15), 7383; https://doi.org/10.3390/ijms26157383 - 30 Jul 2025
Viewed by 440
Abstract
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, [...] Read more.
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, driven by advances in two complementary strategies: organotypic in vitro spermatogenesis (IVS), which aims to complete spermatogenesis ex vivo using native testicular tissue, and in vitro gametogenesis (IVG), which seeks to generate male gametes de novo from pluripotent or reprogrammed somatic stem cells. To evaluate the current landscape and future potential of these approaches, a narrative, semi-systematic literature search was conducted in PubMed and Scopus for the period January 2010 to February 2025. Additionally, landmark studies published prior to 2010 that contributed foundational knowledge in spermatogenesis and testicular tissue modeling were reviewed to provide historical context. This narrative review synthesizes multidisciplinary evidence from cell biology, tissue engineering, and translational medicine to benchmark IVS and IVG technologies against species-specific developmental milestones, ranging from rodent models to non-human primates and emerging human systems. Key challenges—such as the reconstitution of the blood–testis barrier, stage-specific endocrine signaling, and epigenetic reprogramming—are discussed alongside critical performance metrics of various platforms, including air–liquid interface slice cultures, three-dimensional organoids, microfluidic “testis-on-chip” devices, and stem cell-derived gametogenic protocols. Particular attention is given to clinical applicability in contexts such as NOA, oncofertility preservation in prepubertal patients, genetic syndromes, and reprocutive scenarios involving same-sex or unpartnered individuals. Safety, regulatory, and ethical considerations are critically appraised, and a translational framework is outlined that emphasizes biomimetic scaffold design, multi-omics-guided media optimization, and rigorous genomic and epigenomic quality control. While the generation of functionally mature sperm in vitro remains unachieved, converging progress in animal models and early human systems suggests that clinically revelant IVS and IVG applications are approaching feasibility, offering a paradigm shift in reproductive medicine. Full article
Show Figures

Figure 1

21 pages, 1580 KiB  
Review
Mapping the Development of Human Spermatogenesis Using Transcriptomics-Based Data: A Scoping Review
by Lena Kwaspen, Marc Kanbar and Christine Wyns
Int. J. Mol. Sci. 2024, 25(13), 6925; https://doi.org/10.3390/ijms25136925 - 25 Jun 2024
Cited by 1 | Viewed by 2530
Abstract
In vitro maturation (IVM) is a promising fertility restoration strategy for patients with nonobstructive azoospermia or for prepubertal boys to obtain fertilizing-competent spermatozoa. However, in vitro spermatogenesis is still not achieved with human immature testicular tissue. Knowledge of various human testicular transcriptional profiles [...] Read more.
In vitro maturation (IVM) is a promising fertility restoration strategy for patients with nonobstructive azoospermia or for prepubertal boys to obtain fertilizing-competent spermatozoa. However, in vitro spermatogenesis is still not achieved with human immature testicular tissue. Knowledge of various human testicular transcriptional profiles from different developmental periods helps us to better understand the testis development. This scoping review aims to describe the testis development and maturation from the fetal period towards adulthood and to find information to optimize IVM. Research papers related to native and in vitro cultured human testicular cells and single-cell RNA-sequencing (scRNA-seq) were identified and critically reviewed. Special focus was given to gene ontology terms to facilitate the interpretation of the biological function of related genes. The different consecutive maturation states of both the germ and somatic cell lineages were described. ScRNA-seq regularly showed major modifications around 11 years of age to eventually reach the adult state. Different spermatogonial stem cell (SSC) substates were described and scRNA-seq analyses are in favor of a paradigm shift, as the Adark and Apale spermatogonia populations could not distinctly be identified among the different SSC states. Data on the somatic cell lineage are limited, especially for Sertoli cells due technical issues related to cell size. During cell culture, scRNA-seq data showed that undifferentiated SSCs were favored in the presence of an AKT-signaling pathway inhibitor. The involvement of the oxidative phosphorylation pathway depended on the maturational state of the cells. Commonly identified cell signaling pathways during the testis development and maturation highlight factors that can be essential during specific maturation stages in IVM. Full article
Show Figures

Figure 1

11 pages, 1423 KiB  
Article
A Determination of p97/VCP (Valosin Containing Protein) and SVIP (Small VCP Interacting Protein) Expression Patterns in Human Testis
by Akgül Arıcı and Fikret Erdemir
Medicina 2023, 59(6), 1079; https://doi.org/10.3390/medicina59061079 - 3 Jun 2023
Viewed by 2228
Abstract
Background and Objectives: The ubiquitin proteosome system (UPS) is a non-lysosomal pathway that functions in all eukaryotes. The transport of polyubiquitinated proteins to proteosomes takes place via the p97/Valosin-containing protein (VCP) chaperone protein. The p97/VCP binds to polyubiquitinated proteins, allowing these proteins [...] Read more.
Background and Objectives: The ubiquitin proteosome system (UPS) is a non-lysosomal pathway that functions in all eukaryotes. The transport of polyubiquitinated proteins to proteosomes takes place via the p97/Valosin-containing protein (VCP) chaperone protein. The p97/VCP binds to polyubiquitinated proteins, allowing these proteins to reach the proteasome and, thus, their destruction. In the case of p97/VCP deficiency, ubiquitinated proteins accumulate in the cell cytoplasm, and their subsequent failure to break down produces various pathological conditions. Small VCP interacting protein (SVIP) and p97/VCP proteins have not been studied in human testicular tissues from different postnatal periods. Therefore, in our study, we aimed to examine the expression of SVIP and p97/VCP in postnatal human testicular tissues. Our study aimed to contribute to further studies on the use of these proteins as testicular cell biomarkers in cases of unexplained male infertility. Materials and Methods: Immunohistochemical studies with the aim of determining the expression of p97/VCP and SVIP proteins in neonatal, prepubertal, pubertal, adult, and geriatric human testis tissues were performed. Results: In testicular sections obtained from a neonatal group, p97/VCP and SVIP were localized in different testicular and interstitial cells, and the lowest expression was observed in this group. While the expressions of these proteins were low in the neonatal period, they increased gradually in the prepubertal, pubertal and adult periods. The expression of p97/VCP and SVIP, which peaked in adulthood, showed a significant decrease in the geriatric period. Conclusions: As a result, the expression of p97/VCP and SVIP correlated with the increase in age, but it decreased significantly in older groups. Full article
(This article belongs to the Topic Human Anatomy and Pathophysiology, 2nd Volume)
Show Figures

Figure 1

17 pages, 1850 KiB  
Article
Conserved Transcriptome Features Define Prepubertal Primate Spermatogonial Stem Cells as Adark Spermatogonia and Identify Unique Regulators
by Anukriti Singh and Brian P. Hermann
Int. J. Mol. Sci. 2023, 24(5), 4755; https://doi.org/10.3390/ijms24054755 - 1 Mar 2023
Cited by 6 | Viewed by 2929
Abstract
Antineoplastic treatments for cancer and other non-malignant disorders can result in long-term or permanent male infertility by ablating spermatogonial stem cells (SSCs). SSC transplantation using testicular tissue harvested before a sterilizing treatment is a promising approach for restoring male fertility in these cases, [...] Read more.
Antineoplastic treatments for cancer and other non-malignant disorders can result in long-term or permanent male infertility by ablating spermatogonial stem cells (SSCs). SSC transplantation using testicular tissue harvested before a sterilizing treatment is a promising approach for restoring male fertility in these cases, but a lack of exclusive biomarkers to unequivocally identify prepubertal SSCs limits their therapeutic potential. To address this, we performed single-cell RNA-seq on testis cells from immature baboons and macaques and compared these cells with published data from prepubertal human testis cells and functionally-defined mouse SSCs. While we found discrete groups of human spermatogonia, baboon and rhesus spermatogonia appeared less heterogenous. A cross-species analysis revealed cell types analogous to human SSCs in baboon and rhesus germ cells, but a comparison with mouse SSCs revealed significant differences with primate SSCs. Primate-specific SSC genes were enriched for components and regulators of the actin cytoskeleton and participate in cell-adhesion, which may explain why the culture conditions for rodent SSCs are not appropriate for primate SSCs. Furthermore, correlating the molecular definitions of human SSC, progenitor and differentiating spermatogonia with the histological definitions of Adark/Apale spermatogonia indicates that both SSCs and progenitor spermatogonia are Adark, while Apale spermatogonia appear biased towards differentiation. These results resolve the molecular identity of prepubertal human SSCs, define novel pathways that could be leveraged for advancing their selection and propagation in vitro, and confirm that the human SSC pool resides entirely within Adark spermatogonia. Full article
(This article belongs to the Special Issue Molecular Basis of Fertility Preservation and Restoration 4.0)
Show Figures

Figure 1

34 pages, 6742 KiB  
Article
Germ Cell Maintenance and Sustained Testosterone and Precursor Hormone Production in Human Prepubertal Testis Organ Culture with Tissues from Boys 7 Years+ under Conditions from Adult Testicular Tissue
by Neels Lennart Aden, Matthias Bleeke, Uwe R. Kordes, Bianka Brunne, Barbara Holstermann, Ronald Biemann, Uta Ceglarek, Armin Soave, Andrea Salzbrunn, Stefan W. Schneider and Kathrein von Kopylow
Cells 2023, 12(3), 415; https://doi.org/10.3390/cells12030415 - 26 Jan 2023
Cited by 6 | Viewed by 3048
Abstract
Human prepubertal testicular tissues are rare, but organ culture conditions to develop a system for human in vitro-spermatogenesis are an essential option for fertility preservation in prepubertal boys subjected to gonadotoxic therapy. To avoid animal testing in line with the 3Rs principle, organ [...] Read more.
Human prepubertal testicular tissues are rare, but organ culture conditions to develop a system for human in vitro-spermatogenesis are an essential option for fertility preservation in prepubertal boys subjected to gonadotoxic therapy. To avoid animal testing in line with the 3Rs principle, organ culture conditions initially tested on human adult testis tissue were applied to prepubertal samples (n = 3; patient ages 7, 9, and 12 years). Tissues were investigated by immunostaining and transmission electron microscopy (TEM), and the collected culture medium was profiled for steroid hormones by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Culture conditions proved suitable for prepubertal organ culture since SSCs and germ cell proliferation could be maintained until the end of the 3-week-culture. Leydig cells (LCs) were shown to be competent for steroid hormone production. Three additional testis tissues from boys of the same age were examined for the number of germ cells and undifferentiated spermatogonia (SPG). Using TEM micrographs, eight tissues from patients aged 1.5 to 13 years were examined, with respect to the sizes of mitochondria (MT) in undifferentiated SPG and compared with those from two adult testicular tissues. Mitochondrial sizes were shown to be comparable between adults and prepubertal boys from approximately 7 years of age, which suggests the transition of SSCs from normoxic to hypoxic metabolism at about or before this time period. Full article
(This article belongs to the Special Issue Progress and Future Prospect of In Vitro Gametogenesis)
Show Figures

Figure 1

20 pages, 12268 KiB  
Article
Fertility Preservation in Childhood Cancer: Endocrine Activity in Prepubertal Human Testis Xenografts Exposed to a Pubertal Hormone Environment
by Marsida Hutka, Prashant Kadam, Dorien Van Saen, Natalie Z. M. Homer, Jaime Onofre, W. Hamish B. Wallace, Lee B. Smith, Jan-Bernd Stukenborg, Ellen Goossens and Rod T. Mitchell
Cancers 2020, 12(10), 2830; https://doi.org/10.3390/cancers12102830 - 30 Sep 2020
Cited by 9 | Viewed by 4320
Abstract
Survivors of childhood cancer are at risk for long-term treatment-induced health sequelae, including gonadotoxicity and iatrogenic infertility. At present, for prepubertal boys there are no viable clinical options to preserve future reproductive potential. We investigated the effect of a pubertal induction regimen with [...] Read more.
Survivors of childhood cancer are at risk for long-term treatment-induced health sequelae, including gonadotoxicity and iatrogenic infertility. At present, for prepubertal boys there are no viable clinical options to preserve future reproductive potential. We investigated the effect of a pubertal induction regimen with gonadotrophins on prepubertal human testis xenograft development. Human testis tissue was obtained from patients with cancer and non-malignant haematological disorders (n = 6; aged 1–14 years) who underwent testis tissue cryopreservation for fertility preservation. Fresh and frozen-thawed testis fragments were transplanted subcutaneously or intratesticularly into immunocompromised mice. Graft-bearing mice received injections of vehicle or exogenous gonadotrophins, human chorionic gonadotrophin (hCG, 20 IU), and follicle-stimulating hormone (FSH, 12.5 IU) three times a week for 12 weeks. The gross morphology of vehicle and gonadotrophin-exposed grafts was similar for both transplantation sites. Exposure of prepubertal human testis tissue xenografts to exogenous gonadotrophins resulted in limited endocrine function of grafts, as demonstrated by the occasional expression of the steroidogenic cholesterol side-chain cleavage enzyme (CYP11A1). Plasma testosterone concentrations (0.13 vs. 0.25 ng/mL; p = 0.594) and seminal vesicle weights (10.02 vs. 13.93 mg; p = 0.431) in gonadotrophin-exposed recipient mice were comparable to vehicle-exposed controls. Regardless of the transplantation site and treatment, initiation and maintenance of androgen receptor (AR) expression were observed in Sertoli cells, indicating commitment towards a more differentiated status. However, neither exogenous gonadotrophins (in castrated host mice) nor endogenous testosterone (in intact host mice) were sufficient to repress the expression of markers associated with immature Sertoli cells, such as anti-Müllerian hormone (AMH) and Ki67, or to induce the redistribution of junctional proteins (connexin 43, CX43; claudin 11, CLDN11) to areas adjacent to the basement membrane. Spermatogonia did not progress developmentally but remained the most advanced germ cell type in testis xenografts. Overall, these findings demonstrate that exogenous gonadotrophins promote partial activation and maturation of the somatic environment in prepubertal testis xenografts. However, alternative hormone regimens or additional factors for pubertal induction are required to complete the functional maturation of the spermatogonial stem cell (SSC) niche. Full article
(This article belongs to the Special Issue Efforts to Mitigate the Toxicity of Cancer Therapeutics)
Show Figures

Figure 1

23 pages, 899 KiB  
Review
Exposure to Chemotherapy During Childhood or Adulthood and Consequences on Spermatogenesis and Male Fertility
by Marion Delessard, Justine Saulnier, Aurélie Rives, Ludovic Dumont, Christine Rondanino and Nathalie Rives
Int. J. Mol. Sci. 2020, 21(4), 1454; https://doi.org/10.3390/ijms21041454 - 20 Feb 2020
Cited by 89 | Viewed by 10376
Abstract
Over the last decade, the number of cancer survivors has increased thanks to progress in diagnosis and treatment. Cancer treatments are often accompanied by adverse side effects depending on the age of the patient, the type of cancer, the treatment regimen, and the [...] Read more.
Over the last decade, the number of cancer survivors has increased thanks to progress in diagnosis and treatment. Cancer treatments are often accompanied by adverse side effects depending on the age of the patient, the type of cancer, the treatment regimen, and the doses. The testicular tissue is very sensitive to chemotherapy and radiotherapy. This review will summarize the epidemiological and experimental data concerning the consequences of exposure to chemotherapy during the prepubertal period or adulthood on spermatogenic progression, sperm production, sperm nuclear quality, and the health of the offspring. Studies concerning the gonadotoxicity of anticancer drugs in adult survivors of childhood cancer are still limited compared with those concerning the effects of chemotherapy exposure during adulthood. In humans, it is difficult to evaluate exactly the toxicity of chemotherapeutic agents because cancer treatments often combine chemotherapy and radiotherapy. Thus, it is important to undertake experimental studies in animal models in order to define the mechanism involved in the drug gonadotoxicity and to assess the effects of their administration alone or in combination on immature and mature testis. These data will help to better inform cancer patients after recovery about the risks of chemotherapy for their future fertility and to propose fertility preservation options. Full article
(This article belongs to the Special Issue Molecular Basis of Fertility Preservation and Restoration)
Show Figures

Figure 1

14 pages, 4232 KiB  
Article
Survival Motor Neuron Protein Participates in Mouse Germ Cell Development and Spermatogonium Maintenance
by Wei-Fang Chang, Jie Xu, Tzu-Ying Lin, Jing Hsu, Hsiu-Mei Hsieh-Li, Yuh-Ming Hwu, Ji-Long Liu, Chung-Hao Lu and Li-Ying Sung
Int. J. Mol. Sci. 2020, 21(3), 794; https://doi.org/10.3390/ijms21030794 - 25 Jan 2020
Cited by 12 | Viewed by 4963
Abstract
The defective human survival motor neuron 1 (SMN1) gene leads to spinal muscular atrophy (SMA), the most common genetic cause of infant mortality. We previously reported that loss of SMN results in rapid differentiation of Drosophila germline stem cells and mouse embryonic [...] Read more.
The defective human survival motor neuron 1 (SMN1) gene leads to spinal muscular atrophy (SMA), the most common genetic cause of infant mortality. We previously reported that loss of SMN results in rapid differentiation of Drosophila germline stem cells and mouse embryonic stem cells (ESCs), indicating that SMN also plays important roles in germ cell development and stem cell biology. Here, we show that in healthy mice, SMN is highly expressed in the gonadal tissues, prepubertal spermatogonia, and adult spermatocytes, whereas low SMN expression is found in differentiated spermatid and sperm. In SMA-like mice, the growth of testis tissues is retarded, accompanied with gamete development abnormalities and loss of the spermatogonia-specific marker. Consistently, knockdown of Smn1 in spermatogonial stem cells (SSCs) leads to a compromised regeneration capacity in vitro and in vivo in transplantation experiments. In SMA-like mice, apoptosis and accumulation of the R-loop structure were significantly elevated, indicating that SMN plays a critical role in the survival of male germ cells. The present work demonstrates that SMN, in addition to its critical roles in neuronal development, participates in mouse germ cell and spermatogonium maintenance. Full article
(This article belongs to the Special Issue Advances in Molecular Regulation of Spermatozoa Function)
Show Figures

Figure 1

19 pages, 11621 KiB  
Article
Exogenous Gonadotrophin Stimulation Induces Partial Maturation of Human Sertoli Cells in a Testicular Xenotransplantation Model for Fertility Preservation
by Marsida Hutka, Lee B. Smith, Ellen Goossens, W. Hamish B. Wallace, Jan-Bernd Stukenborg and Rod T. Mitchell
J. Clin. Med. 2020, 9(1), 266; https://doi.org/10.3390/jcm9010266 - 18 Jan 2020
Cited by 12 | Viewed by 5625
Abstract
The future fertility of prepubertal boys with cancer may be irreversibly compromised by chemotherapy and/or radiotherapy. Successful spermatogenesis has not been achieved following the xenotransplantation of prepubertal human testis tissue, which is likely due to the failure of somatic cell maturation and function. [...] Read more.
The future fertility of prepubertal boys with cancer may be irreversibly compromised by chemotherapy and/or radiotherapy. Successful spermatogenesis has not been achieved following the xenotransplantation of prepubertal human testis tissue, which is likely due to the failure of somatic cell maturation and function. We used a validated xenograft model to identify the factors required for Leydig and Sertoli cell development and function in immature human testis. Importantly, we compared the maturation status of Sertoli cells in xenografts with that of human testis tissues (n = 9, 1 year-adult). Human fetal testis (n = 6; 14–21 gestational weeks) tissue, which models many aspects of prepubertal testicular development, was transplanted subcutaneously into castrated immunocompromised mice for ~12 months. The mice received exogenous human chorionic gonadotropin (hCG; 20IU, 3×/week). In xenografts exposed continuously to hCG, we demonstrate the maintenance of Leydig cell steroidogenesis, the acquisition of features of Sertoli cell maturation (androgen receptor, lumen development), and the formation of the blood–testis barrier (connexin 43), none of which were present prior to the transplantation or in xenografts in which hCG was withdrawn after 7 months. These studies provide evidence that hCG plays a role in Sertoli cell maturation, which is relevant for future investigations, helping them generate functional gametes from immature testis tissue for clinical application. Full article
(This article belongs to the Special Issue Approach to Male Infertility and Induction of Spermatogenesis)
Show Figures

Figure 1

20 pages, 4035 KiB  
Article
Generation of Organized Porcine Testicular Organoids in Solubilized Hydrogels from Decellularized Extracellular Matrix
by Maxime Vermeulen, Federico Del Vento, Marc Kanbar, Sébastien Pyr dit Ruys, Didier Vertommen, Jonathan Poels and Christine Wyns
Int. J. Mol. Sci. 2019, 20(21), 5476; https://doi.org/10.3390/ijms20215476 - 3 Nov 2019
Cited by 75 | Viewed by 8007
Abstract
Cryopreservation of immature testicular tissue (ITT) prior to chemo/radiotherapy is now ethically accepted and is currently the only way to preserve fertility of prepubertal boys about to undergo cancer therapies. So far, three-dimensional culture of testicular cells isolated from prepubertal human testicular tissue [...] Read more.
Cryopreservation of immature testicular tissue (ITT) prior to chemo/radiotherapy is now ethically accepted and is currently the only way to preserve fertility of prepubertal boys about to undergo cancer therapies. So far, three-dimensional culture of testicular cells isolated from prepubertal human testicular tissue was neither efficient nor reproducible to obtain mature spermatozoa, and ITT transplantation is not a safe option when there is a risk of cancer cell contamination of the testis. Hence, generation of testicular organoids (TOs) after cell selection is a novel strategy aimed at restoring fertility in these patients. Here, we created TOs using hydrogels developed from decellularized porcine ITT and compared cell numbers, organization and function to TOs generated in collagen only hydrogel. Organotypic culture of porcine ITT was used as a control. Rheological and mass spectrometry analyses of both hydrogels highlighted differences in terms of extracellular matrix stiffness and composition, respectively. Sertoli cells (SCs) and germ cells (GCs) assembled into seminiferous tubule-like structures delimited by a basement membrane while Leydig cells (LCs) and peritubular cells localized outside. TOs were maintained for 45 days in culture and secreted stem cell factor and testosterone demonstrating functionality of SCs and LCs, respectively. In both TOs GC numbers decreased and SC numbers increased. However, LC numbers decreased significantly in the collagen hydrogel TOs (p < 0.05) suggesting a better preservation of growth factors within TOs developed from decellularized ITT and thus a better potential to restore the reproductive capacity. Full article
(This article belongs to the Special Issue Molecular Basis of Fertility Preservation and Restoration)
Show Figures

Figure 1

13 pages, 1152 KiB  
Article
Identification of Premeiotic, Meiotic, and Postmeiotic Cells in Testicular Biopsies Without Sperm from Sertoli Cell-Only Syndrome Patients
by Maram Abofoul-Azab, Eitan Lunenfeld, Eliahu Levitas, Atif Zeadna, Johnny S. Younis, Shalom Bar-Ami and Mahmoud Huleihel
Int. J. Mol. Sci. 2019, 20(3), 470; https://doi.org/10.3390/ijms20030470 - 22 Jan 2019
Cited by 35 | Viewed by 4486
Abstract
Sertoli cell-only syndrome (SCOS) affects about 26.3–57.8% of azoospermic men, with their seminiferous tubules containing only Sertoli cells. Recently, it was reported that testicular biopsies from nonobstructive azoospermic (NOA) patients contained germ cells, and that sperm could be found in the tubules of [...] Read more.
Sertoli cell-only syndrome (SCOS) affects about 26.3–57.8% of azoospermic men, with their seminiferous tubules containing only Sertoli cells. Recently, it was reported that testicular biopsies from nonobstructive azoospermic (NOA) patients contained germ cells, and that sperm could be found in the tubules of 20% of SCOS patients using testicular sperm extraction technology. Since the patients without sperm in their testicular biopsies do not have therapy to help them to father a biological child, in vitro maturation of spermatogonial stem cells (SSCs) isolated from their testis is a new approach for possible future infertility treatment. Recently, the induction of human and mice SSCs proliferation and differentiation was demonstrated using different culture systems. Our group reported the induction of spermatogonial cell proliferation and differentiation to meiotic and postmeiotic stages in mice, rhesus monkeys, and prepubertal boys with cancer using 3D agar and methylcellulose (MCS) culture systems. The aim of the study was to identify the type of spermatogenic cells present in biopsies without sperm from SCOS patients, and to examine the possibility of inducing spermatogenesis from isolated spermatogonial cells of these biopsies in vitro using 3D MCS. We used nine biopsies without sperm from SCOS patients, and the presence of spermatogenic markers was evaluated by PCR and specific immunofluorescence staining analyses. Isolated testicular cells were cultured in MCS in the presence of StemPro enriched media with different growth factors and the development of colonies/clusters was examined microscopically. We examined the presence of cells from the different stages of spermatogenesis before and after culture in MCS for 3–7 weeks. Our results indicated that these biopsies showed the presence of premeiotic markers (two to seven markers/biopsy), meiotic markers (of nine biopsies, cAMP responsive element modulator-1 (CREM-1) was detected in five, lactate dehydrogenase (LDH) in five, and BOULE in three) and postmeiotic markers (protamine was detected in six biopsies and acrosin in three). In addition, we were able to induce the development of meiotic and/or postmeiotic stages from spermatogonial cells isolated from three biopsies. Thus, our study shows for the first time the presence of meiotic and/or postmeiotic cells in biopsies without the sperm of SCOS patients. Isolated cells from some of these biopsies could be induced to meiotic and/or postmeiotic stages under in vitro culture conditions. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop