Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = preplace powder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7363 KB  
Article
Microstructure and Properties of CoCrFeNiMnTix High-Entropy Alloy Coated by Laser Cladding
by Shibang Ma, Congzheng Zhang, Liang Li and Yinhai Yang
Coatings 2024, 14(5), 620; https://doi.org/10.3390/coatings14050620 - 14 May 2024
Cited by 9 | Viewed by 2194
Abstract
In this study, laser cladding of CoCrFeNiMnTix (x is the proportion of the mass of a material, x = 0.0, 0.2, 0.4, 0.6, 0.8) high-entropy alloy (HEA) composite powder coating on 45 steel substrate was studied by using the method of [...] Read more.
In this study, laser cladding of CoCrFeNiMnTix (x is the proportion of the mass of a material, x = 0.0, 0.2, 0.4, 0.6, 0.8) high-entropy alloy (HEA) composite powder coating on 45 steel substrate was studied by using the method of preplaced powder. The phase composition, morphology, microhardness, corrosion resistance and wear properties of CoCrFeNiMnTix high entropy alloy were analyzed by XRD, SEM, microhardness tester, electrochemical workstation and reciprocating friction wear tester, respectively. The influences of Ti concentration on structure and properties of CoCrFeNiMn HEA laser cladding coating were discussed. The macromorphology of CoCrFeNiMnTix HEA coating layer becomes worse with the increase in Ti quantity. The coating layer is a face-centered cubic solid solution phase. The microstructure of the coating layer is dominated by dendrites and equiaxed crystals. The average microhardness of the coating layer grows with the increases in Ti content, and CoCrFeNiMnTi0.8 can reach 823 HV. The friction coefficient of the cladding coating gradually reduces and the wear resistance adds as Ti content rises; the friction coefficients of CoCrFeNiMnTi0.6 and CoCrFeNiMnTi0.8 cladding coating are similar, at 0.835 and 0.828, respectively. Adhesive and abrasive wear are the two basic types of cladding coating wear. In 3.5 wt.% NaCl solution, the corrosion potential of cladding coating increases with increases in Ti content, the corrosion potential of CoCrFeNiMnTi0.8 is about 244 mV higher than that of CoCrFeNiMnTi0, and the density of corrosion current drops to 3.41 × 10−6 A/cm2 from 7.17 × 10−5 A/cm2. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

8 pages, 2857 KB  
Article
Spectral Visualization of Alloy Reactions during Laser Melting
by Joerg Volpp, Himani Naesstroem, Lisanne Wockenfuss, Malte Schmidt and Knut Partes
Alloys 2023, 2(3), 140-147; https://doi.org/10.3390/alloys2030010 - 4 Jul 2023
Cited by 1 | Viewed by 1921
Abstract
Laser materials processing includes rapid heating to possibly high temperatures and rapid cooling of the illuminated materials. The material reactions can show significant deviations from equilibrium processing. During processing of complex materials and material combinations, it is mainly unknown how the materials react [...] Read more.
Laser materials processing includes rapid heating to possibly high temperatures and rapid cooling of the illuminated materials. The material reactions can show significant deviations from equilibrium processing. During processing of complex materials and material combinations, it is mainly unknown how the materials react and mix. However, it is important to know which chemical elements or compounds are present in the material to define the alloy. In addition, their distribution after rapid cooling needs to be better understood. Therefore, such alloy changes at rapid heating induced by laser illumination were created as pre-placed and pre-mixed powder nuggets. The energy input and the material ratio between the powder components were varied to identify characteristic responses. For the detection of reaction durations and mixing characteristics, the vapor plume content was assumed to contain the necessary information. Spectral measurements of the plume were used to identify indicators about process behaviors. It was seen that the spectral data give indications about the chemical reactions in the melt pool. The reactions of iron ore components with aluminum seem to require laser illumination to finish completely, although the thermite reaction should maintain the chemical reaction, likely due to the required melt mixing that enables the interaction of the reacting partners at all. Full article
(This article belongs to the Special Issue Design of New Metallic Alloys for AM)
Show Figures

Figure 1

14 pages, 25104 KB  
Article
Effect of Initial Grain Size on Microstructure and Mechanical Properties of In Situ Hybrid Aluminium Nanocomposites Fabricated by Friction Stir Processing
by Ghasem Azimiroeen, Seyed Farshid Kashani-Bozorg, Martin Nosko and Saeid Lotfian
Appl. Sci. 2023, 13(12), 7337; https://doi.org/10.3390/app13127337 - 20 Jun 2023
Cited by 3 | Viewed by 1944
Abstract
Friction stir processing (FSP) offers a unique opportunity to tailor the microstructure and improve the mechanical properties due to the combination of extensive strains, high temperatures, and high-strain rates inherent to the process. Reactive friction stir processing was carried out in order to [...] Read more.
Friction stir processing (FSP) offers a unique opportunity to tailor the microstructure and improve the mechanical properties due to the combination of extensive strains, high temperatures, and high-strain rates inherent to the process. Reactive friction stir processing was carried out in order to produce in situ Al/(Al13Fe4 + Al2O3) hybrid nanocomposites on wrought/as-annealed (673 K) AA1050 substrate. The active mixture of pre-ball milled Fe2O3 + Al powder was introduced into the stir zone by pre-placing it on the substrate. Microstructural characterisation showed that the Al13Fe4 and Al2O3 formed as the reaction products in a matrix of the dynamically restored aluminium matrix. The aluminium matrix means grain size was found to decrease markedly to 3.4 and 2 μm from ~55 μm and 40–50 μm after FSP using wrought and as-annealed substrates employing electron backscattered diffraction detectors, respectively. In addition, tensile testing results were indicative that the fabricated surface nanocomposite on the as-annealed substrate offered a greater ultimate tensile strength (~160 MPa) and hardness (73 HV) than those (146 MPa, and 60 HV) of the nanocomposite formed on the wrought substrate. Full article
(This article belongs to the Special Issue Deformation and Fracture Mechanics Analysis of Composite Materials)
Show Figures

Figure 1

14 pages, 4635 KB  
Article
Sensitivity Analysis for Process Parameters in Mo2FeB2 Ternary Boride Coating by Laser Cladding
by Hao Zhang, Yingjun Pan, Yang Zhang, Guofu Lian, Qiang Cao and Jianghuai Yang
Coatings 2022, 12(10), 1420; https://doi.org/10.3390/coatings12101420 - 28 Sep 2022
Cited by 7 | Viewed by 1981
Abstract
The process parameters of laser cladding have a significant influence on the forming quality of the coating. This research investigates the relationship between input process parameters (laser power, scanning speed, pre-placed thickness) and output responses (height, width, dilution rate) of Mo2FeB [...] Read more.
The process parameters of laser cladding have a significant influence on the forming quality of the coating. This research investigates the relationship between input process parameters (laser power, scanning speed, pre-placed thickness) and output responses (height, width, dilution rate) of Mo2FeB2 coating through sensitivity analysis. The microstructure and properties of selected coatings were analyzed to discuss the corresponding relations. The results showed that the laser power positively affected the coating width and dilution rate, while negatively affecting the coating height. The scanning speed had a negligible effect on the height and dilution rate. The pre-placed thickness had a positive influence on the height and width; it negatively affected the dilution rate. Based on the sensitivity analysis, the thickness of the pre-placed coating determined the most sensitivity to the height. The sensitivity of the width to laser power was the highest among all parameters. The sensitivity of dilution rate to laser power and pre-placed powder thickness showed a noticeable impact. When the scanning speed was 3 mm/s, the forming quality of coating had a significant sensitivity for a higher or lower laser power (1.5, 2.1 kW) and higher or lower powder thickness (0.8, 1.2 mm). The analysis of microstructure and microhardness of Mo2FeB2 coating indicates that the Mo2FeB2 coating improves substrate properties. The microhardness of the Mo2FeB2 coating was 4–6 times that of the substrate, and the highest microhardness could be obtained by 1.5 kW laser power, 3 mm/s scanning speed, and 1.2 mm powder thickness from the sensitivity analysis results. Full article
(This article belongs to the Special Issue Developments in Laser Processing of Thin Films)
Show Figures

Figure 1

18 pages, 12367 KB  
Article
Ultrasonic Deposition of Carbon Nanotubes on Polycrystalline Cubic Boron Nitride Composites
by Manuela Pacella, Sina Saremi-Yarahmadi and Luciano Lamberti
Materials 2021, 14(3), 516; https://doi.org/10.3390/ma14030516 - 21 Jan 2021
Cited by 2 | Viewed by 2788
Abstract
Polycrystalline cubic boron nitride (PcBN) are super-hard materials with high hardness and excellent abrasive resistance, widely used in cutting tools for precision machining of automotive and aerospace parts; however, their brittle properties make them prone to premature failure. Coatings are often applied to [...] Read more.
Polycrystalline cubic boron nitride (PcBN) are super-hard materials with high hardness and excellent abrasive resistance, widely used in cutting tools for precision machining of automotive and aerospace parts; however, their brittle properties make them prone to premature failure. Coatings are often applied to PcBN to extend their range of applicability and durability. Conventional coating methods are limited to the thickness range of a few hundred nanometres, poor adhesion to the substrate, and limited stability under ambient conditions. To further the properties of PcBN composites, in this paper, we explore the use of ultrasonic bonding to apply thick coatings (30–80 μm) on PcBN cutting tools. For the first time, a multi-walled carbon nanotube (MWCNT) powder is preplaced on a PcBN substrate to allow an unconventional coating technique to take place. The effects of ultrasonic bonding parameters on the change of mechanical properties of the coated tools are investigated through scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), micro-hardness analyses, and white light interferometry. The structure of the carbon nanotubes is investigated through transmission electron microscopy (pre coating) and cross-section of the bonded MWCNTs is studied via focused ion beam milling and SEM to evaluate the bonding between the multi-walled nanotubes. Optimum processing windows (i.e., bonding speed, energy, and pressure) are discovered for coating MWCNTs on PcBN. Focus ion beam milling analyses revealed a relationship between consolidation parameters and porosity of MW(pCNT) bonds. The proposed method paves the way for the novel design of functional coatings with attunable properties (i.e., thickness and hardness) and therefore improved productivity in the machining of aerospace and automotive parts. Full article
(This article belongs to the Special Issue In Situ TEM and AFM for Investigation of Materials)
Show Figures

Figure 1

8 pages, 3823 KB  
Article
Laser Beam Welding of Feconicrmn High-Entropy Alloys with Preplaced Powders
by Ziyi Zhou, Feng Zhang, Jili Wu, Jinhong Pi and Fei Chen
Metals 2020, 10(11), 1402; https://doi.org/10.3390/met10111402 - 22 Oct 2020
Cited by 6 | Viewed by 2602
Abstract
In this paper, as-annealed FeCoNiCrMn plates were laser-welded with preplaced FeCoNiCrMn and FeCoNiCrAl powders, respectively. The grains in the fusion zone of the weld with FeCoNiCrMn powder have a reduced aspect ratio compared to those without preplaced powders and the weld with FeCoNiCrAl [...] Read more.
In this paper, as-annealed FeCoNiCrMn plates were laser-welded with preplaced FeCoNiCrMn and FeCoNiCrAl powders, respectively. The grains in the fusion zone of the weld with FeCoNiCrMn powder have a reduced aspect ratio compared to those without preplaced powders and the weld with FeCoNiCrAl powder presents relative equiaxed grains. The yield strength of each weld has been remarkably enhanced when referring to the base alloy, and the ultimate tensile strength of each weld with preplaced powder exceeds 80% of that of the base and the maximum reaches 88.5% when referring to the weld with preplaced FeCoNiCrMn powder. Cleavage fractography was observed in the welds. The finding of this work will service the engineering practices of high-entropy alloys. Full article
Show Figures

Figure 1

17 pages, 13769 KB  
Article
Laser Cladding of Ti-Based Ceramic Coatings on Ti6Al4V Alloy: Effects of CeO2 Nanoparticles Additive on Wear Performance
by Haojun Wang, Tao Chen, Weilong Cong and Defu Liu
Coatings 2019, 9(2), 109; https://doi.org/10.3390/coatings9020109 - 10 Feb 2019
Cited by 37 | Viewed by 5898
Abstract
Ti-based ceramic coatings on Ti6Al4V substrates were successfully prepared through a laser cladding process using pre-placed starting materials of TiCN + SiO2 mixed powder without or with adding a 3 wt % CeO2 nanoparticles additive, aiming at improving the wear resistance [...] Read more.
Ti-based ceramic coatings on Ti6Al4V substrates were successfully prepared through a laser cladding process using pre-placed starting materials of TiCN + SiO2 mixed powder without or with adding a 3 wt % CeO2 nanoparticles additive, aiming at improving the wear resistance of the Ti6Al4V alloy for biological applications. The effects of the CeO2 nanoparticles additive on the microstructure, microhardness, and wear performance of the coatings were analyzed in detail. The observations showed that the main compositions of the cladding coating were TiCN and TiN phase. Compared to the coatings without CeO2, the coatings modified with CeO2 nanoparticles led to more excellent mechanical properties. The average microhardness of the coatings modified with CeO2 nanoparticles was approximately 1230 HV0.2, and the wear volume loss of the coatings modified with CeO2 nanoparticles was approximately 14% less than that of the coatings without CeO2 under a simulated body fluid (SBF) lubrication environment. The major reasons included that the microstructure of the coatings modified with CeO2 nanoparticles was refined and compact granular crystalline. The wear mechanisms of the coatings were investigated from the worn surface of the coatings, wear debris, and the worn surface of the counter-body balls. The wear mechanisms of the coatings without CeO2 included abrasive wear, adhesive wear, and fatigue wear, while the wear mechanisms of the coatings modified with CeO2 nanoparticles included only abrasive wear and adhesive wear, because the fine microstructure of the coatings had an excellent resistance to fatigue wear. Full article
Show Figures

Figure 1

19 pages, 13561 KB  
Article
Laser Cladding In-Situ Ti(C,N) Particles Reinforced Ni-Based Composite Coatings Modified with CeO2 Nanoparticles
by Tao Chen, Fan Wu, Haojun Wang and Defu Liu
Metals 2018, 8(8), 601; https://doi.org/10.3390/met8080601 - 2 Aug 2018
Cited by 32 | Viewed by 4237
Abstract
To improve the wear resistance of titanium alloy parts used in the engineering applications, in-situ formed Ti(C,N) particles reinforcing Ni-based composite coatings are fabricated on Ti6Al4V alloys by the laser cladding technique using Ni60, C, TiN, and small amounts of CeO2 nanoparticles [...] Read more.
To improve the wear resistance of titanium alloy parts used in the engineering applications, in-situ formed Ti(C,N) particles reinforcing Ni-based composite coatings are fabricated on Ti6Al4V alloys by the laser cladding technique using Ni60, C, TiN, and small amounts of CeO2 nanoparticles mixed powders as the pre-placed materials. Firstly, the formation mechanism of Ti(C,N) particles as a reinforced phase in the coating is investigated. Then, the influences of CeO2 nanoparticles on microstructures and wear resistance of the coatings are analyzed. It is indicated that the large Ti(C,N) particles form around TiN particles, and the small Ti(C,N) particles form through independent nucleation. CeO2 nanoparticles play important roles in increasing the nucleation rate and improving the precipitation of Ti(C,N), hence the microstructures and wear resistance of the coatings are apparently improved after adding CeO2 nanoparticles. It is observed that the 1 wt % content of CeO2 additive in the pre-placed powders is the best choice for the wear resistance of the coatings. Full article
(This article belongs to the Special Issue Surface Treatment Technology of Metals and Alloys)
Show Figures

Graphical abstract

14 pages, 6827 KB  
Article
Effect of CeO2 on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding
by Tao Chen, Defu Liu, Fan Wu and Haojun Wang
Materials 2018, 11(1), 58; https://doi.org/10.3390/ma11010058 - 31 Dec 2017
Cited by 42 | Viewed by 5664
Abstract
To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC [...] Read more.
To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO2 powders as the basic pre-placed materials. A certain amount of CeO2 powder was also added to the pre-placed powders to further improve the properties of the TiC coatings. The effects of CeO2 additive on the phase constituents, microstructures and wear resistance of the TiC coatings were researched in detail. Although the effect of CeO2 on the phase constituents of the coatings was slight, it had a significant effect on the microstructure and wear resistance of the coatings. The crystalline grains in the TiC coatings, observed by a scanning electron microscope (SEM), were refined due to the effect of the CeO2. With the increase of CeO2 additive content in the pre-placed powders, finer and more compact dendrites led to improvement of the micro-hardness and wear resistance of the TiC coatings. Also, 5 wt % content of CeO2 additive in the pre-placed powders was the best choice for improving the wear properties of the TiC coatings. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

10 pages, 4631 KB  
Article
Effect of Laser Remelting and Simultaneous Application of Ultrasonic Vibrations during Laser Melting on the Microstructural and Tribological Properties of Laser Clad Al-SiC Composites
by Sourabh Biswas, S. Habib Alavi and Sandip P. Harimkar
J. Compos. Sci. 2017, 1(2), 13; https://doi.org/10.3390/jcs1020013 - 3 Nov 2017
Cited by 20 | Viewed by 3945
Abstract
Laser composite surfacing of aluminum alloys with ceramic particles has been extensively investigated for improving tribological properties. However, the process often results in incomplete penetration of ceramic particles in the melt pool and undesirable interfacial reactions. In this paper, laser composite surfacing of [...] Read more.
Laser composite surfacing of aluminum alloys with ceramic particles has been extensively investigated for improving tribological properties. However, the process often results in incomplete penetration of ceramic particles in the melt pool and undesirable interfacial reactions. In this paper, laser composite surfacing of 2024 aluminum alloy with SiC particles is investigated using two distinct approaches: laser remelting and laser melting under the influence of ultrasonic vibrations of preplaced powder mixture. Detailed analysis of variation of clad layer thickness, microstructure in the composite clad layer, phase/texture development, surface roughness, and sliding wear performance with laser processing conditions is presented. The analysis showed that remelting and ultrasonic vibration assist results in significant improvement in clad layer thickness and microstructure (reduction in needle-like α-Si phase). While the laser remelting resulted in significant reduction in wear rate, the specimens processed with ultrasonic vibration-assisted laser melting showed variable wear rate, likely due to complex effects of microstructural modification and enhanced surface roughness. Full article
Show Figures

Figure 1

9 pages, 7980 KB  
Article
Microstructure Evolution of TiC Particles In Situ, Synthesized by Laser Cladding
by Yanhui Liu, Jieqiong Ding, Weicheng Qu, Yu Su and Zhishui Yu
Materials 2017, 10(3), 281; https://doi.org/10.3390/ma10030281 - 11 Mar 2017
Cited by 20 | Viewed by 4723
Abstract
In this paper, a TiC reinforcement metal matrix composite coating is produced using nickel and graphite mixing powder on the surface ofTi-6Al-4V alloy by laser radiation. The microstructure of the coatings is investigated by XRD, SEM and EDS. Results show that most of [...] Read more.
In this paper, a TiC reinforcement metal matrix composite coating is produced using nickel and graphite mixing powder on the surface ofTi-6Al-4V alloy by laser radiation. The microstructure of the coatings is investigated by XRD, SEM and EDS. Results show that most of the TiC phase is granular, with a size of several micrometers, and a few of the TiC phases are petals or flakes. At the cross-section of the coatings, a few special TiC patterns are found and these TiC patterns do not always occur at the observed cross-section. The even distribution of the TiC phase in the coatings confirms that the convection of the laser-melted pool leads to the homogenization of titanium atoms from the molten substrate, and carbon atoms from the preplace powder layer, by the mass transfer. The characteristics of the TiC pattern confirm that the morphology and distribution of the primary TiC phase could be influenced by convection. Two main reasons for this are that the density of the TiC phase is lower than the liquid melt, and that the primary TiC phase precipitates from the pool with a high convection speed at high temperature. Full article
Show Figures

Graphical abstract

11 pages, 13359 KB  
Article
TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding
by Yanhui Liu, Weicheng Qu and Yu Su
Materials 2016, 9(10), 815; https://doi.org/10.3390/ma9100815 - 30 Sep 2016
Cited by 22 | Viewed by 6090
Abstract
In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) [...] Read more.
In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α-Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage. Full article
Show Figures

Graphical abstract

Back to TopTop