Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = prefractionation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2505 KiB  
Proceeding Paper
Recent Advances in Reactive Distillation
by Demi Andrei Barrientos, Beatrice Fernandez, Rachel Morante, Hannah Ruth Rivera, Karen Simeon and Edgar Clyde R. Lopez
Eng. Proc. 2023, 56(1), 99; https://doi.org/10.3390/ASEC2023-15278 - 26 Oct 2023
Cited by 5 | Viewed by 7033
Abstract
Reactive distillation (RD) combines chemical reactions and separation in a single unit essential to equilibrium-limited reactions. This new technique encompasses multiple advantages over traditional processes, including lower operating costs, increased thermal energy efficiency, high product selectivity, high purity percentage, and lower environmental impact. [...] Read more.
Reactive distillation (RD) combines chemical reactions and separation in a single unit essential to equilibrium-limited reactions. This new technique encompasses multiple advantages over traditional processes, including lower operating costs, increased thermal energy efficiency, high product selectivity, high purity percentage, and lower environmental impact. This paper provided an overview of the features, industrial applications, and industrial perspective of advanced reactive distillation technologies (ARDTs). This study focused on five under-development ARDTs: reactive dividing wall column (R-DWC), reactive high-gravity distillation (R-HiGee), reactive heat-integrated distillation column (R-HIDiC), catalytic cyclic distillation (CCD), and membrane-assisted reactive distillation (MA-RD). The primary drivers for new RD applications are reduced number of vessels, reduced residence time and holdup volume, increased mass and heat transfer, overcoming azeotropes, and prefractionation or impurity removal. ARDT’s potential has yet to be studied, and research remains active to improve it further by investigating other RD technologies, simulation, and optimization techniques. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

18 pages, 4875 KiB  
Article
Egg White and Yolk Protein Atlas: New Protein Insights of a Global Landmark Food
by Eleana Sarantidi, Alexandra Ainatzoglou, Christine Papadimitriou, Eleni Stamoula, Katerina Maghiorou, Argyro Miflidi, Antonia Trichopoulou, Konstantinos C. Mountzouris and Athanasios K. Anagnostopoulos
Foods 2023, 12(18), 3470; https://doi.org/10.3390/foods12183470 - 18 Sep 2023
Cited by 15 | Viewed by 5321
Abstract
(1) Background: The chicken egg is an animal product of great agronomic interest. The egg white and yolk constitute high-quality protein sources for humans with high digestibility and well-balanced amino acid profiles. Despite the egg white and yolk protein’s undisputed value, research to [...] Read more.
(1) Background: The chicken egg is an animal product of great agronomic interest. The egg white and yolk constitute high-quality protein sources for humans with high digestibility and well-balanced amino acid profiles. Despite the egg white and yolk protein’s undisputed value, research to unravel their full proteome content and its properties is still ongoing. We aimed to exhaustively analyze the proteome of egg white and yolk by applying intrinsic proteomics and bioinformatics approaches in order to unravel the full protein potential of this landmark food. (2) Methods: A total of 45 freshly laid, unfertilized, chicken eggs were subjected to nanoLC-MS/MS Orbitrap analysis following a peptide pre-fractionation step. A comprehensive bioinformatics processing step was undertaken towards elucidating potential activities and roles of identified molecules. In parallel, the literature was mined concerning all reported egg white and yolk protein identifications. (3) Results: Our analysis revealed 371 and 428 new proteins, reported for the first time to be present in the egg white and yolk, respectively. From the bioactivity standpoint, egg white and yolk proteins showed high enrichment for antioxidant and anti-inflammatory processes, while exerting high relevance for the apoptosis and focal adhesion pathways. (4) Conclusions: Egg white and yolk proteins exert diverse and multifaceted properties. A total of 799 proteins were reported for the first time as being part of the egg and yolk. Our novel protein data enriched those already published in the literature and the first ever chicken egg white and yolk Protein Atlas, comprising 1392 protein entries, was generated. This dataset will provide a cornerstone reference for future studies involving egg proteins. Full article
(This article belongs to the Special Issue Egg Protein: Structure and Function)
Show Figures

Figure 1

23 pages, 6013 KiB  
Review
Scorpion Venom as a Source of Antimicrobial Peptides: Overview of Biomolecule Separation, Analysis and Characterization Methods
by Sara Nasr, Adolfo Borges, Christina Sahyoun, Riad Nasr, Rabih Roufayel, Christian Legros, Jean-Marc Sabatier and Ziad Fajloun
Antibiotics 2023, 12(9), 1380; https://doi.org/10.3390/antibiotics12091380 - 29 Aug 2023
Cited by 10 | Viewed by 5715
Abstract
Scorpion venoms have long captivated scientific researchers, primarily due to the potency and specificity of the mechanism of action of their derived components. Among other molecules, these venoms contain highly active compounds, including antimicrobial peptides (AMPs) and ion channel-specific components that selectively target [...] Read more.
Scorpion venoms have long captivated scientific researchers, primarily due to the potency and specificity of the mechanism of action of their derived components. Among other molecules, these venoms contain highly active compounds, including antimicrobial peptides (AMPs) and ion channel-specific components that selectively target biological receptors with remarkable affinity. Some of these receptors have emerged as prime therapeutic targets for addressing various human pathologies, including cancer and infectious diseases, and have served as models for designing novel drugs. Consequently, extensive biochemical and proteomic investigations have focused on characterizing scorpion venoms. This review provides a comprehensive overview of the key methodologies used in the extraction, purification, analysis, and characterization of AMPs and other bioactive molecules present in scorpion venoms. Noteworthy techniques such as gel electrophoresis, reverse-phase high-performance liquid chromatography, size exclusion chromatography, and “omics” approaches are explored, along with various combinations of methods that enable bioassay-guided venom fractionation. Furthermore, this review presents four adapted proteomic workflows that lead to the comprehensive dissection of the scorpion venom proteome, with an emphasis on AMPs. These workflows differ based on whether the venom is pre-fractionated using separation techniques or is proteolytically digested directly before further proteomic analyses. Since the composition and functionality of scorpion venoms are species-specific, the selection and sequence of the techniques for venom analyses, including these workflows, should be tailored to the specific parameters of the study. Full article
(This article belongs to the Special Issue Potential of Antimicrobial Peptides for an Exciting Future)
Show Figures

Figure 1

28 pages, 11506 KiB  
Article
Polyamide 11 Composites Reinforced with Diatomite Biofiller—Mechanical, Rheological and Crystallization Properties
by Marta Dobrosielska, Renata Dobrucka, Dariusz Brząkalski, Paulina Kozera, Agnieszka Martyła, Ewa Gabriel, Krzysztof J. Kurzydłowski and Robert E. Przekop
Polymers 2023, 15(6), 1563; https://doi.org/10.3390/polym15061563 - 21 Mar 2023
Cited by 8 | Viewed by 2581
Abstract
Amorphic diatomaceous earth is derived from natural sources, and polyamide 11 (PA11) is produced from materials of natural origin. Both of these materials show a low harmfulness to the environment and a reduced carbon footprint. This is why the combination of these two [...] Read more.
Amorphic diatomaceous earth is derived from natural sources, and polyamide 11 (PA11) is produced from materials of natural origin. Both of these materials show a low harmfulness to the environment and a reduced carbon footprint. This is why the combination of these two constituents is beneficial not only to improve the physicochemical and mechanical properties of polyamide 11 but also to produce a biocomposite. For the purpose of this paper, the test biocomposite was produced by combining polyamide 11, as well as basic and pre-fractionated diatomaceous earth, which had been subjected to silanization. The produced composites were used to carry out rheological (melt flow rate-MFR), mechanical (tensile strength, bending strength, impact strength), crystallographic (X-ray Diffraction-XRD), thermal and thermo-mechanical (differential scanning calorimetry–DSC, dynamic mechanical thermal analysis–DMTA) analyses, as well as a study of hydrophobic–hydrophilic properties of the material surface (wetting angle) and imaging of the surface of the composites and the fractured specimens. The tests showed that the additive 3-aminopropyltriethoxysilane (APTES) acted as an agent that improved the elasticity of composites and the melt flow rate. In addition, the produced composites showed a hydrophilic surface profile compared to pure polylactide and polyamide 11. Full article
Show Figures

Figure 1

26 pages, 6738 KiB  
Article
Tannin Extraction from Chestnut Wood Waste: From Lab Scale to Semi-Industrial Plant
by Clelia Aimone, Giorgio Grillo, Luisa Boffa, Samuele Giovando and Giancarlo Cravotto
Appl. Sci. 2023, 13(4), 2494; https://doi.org/10.3390/app13042494 - 15 Feb 2023
Cited by 22 | Viewed by 7565
Abstract
The chestnut tree (Castanea sativa, Mill.) is a widespread plant in Europe whose fruits and wood has a relevant economic impact. Chestnut wood (CW) is rich in high-value compounds that exhibit various biological activities, such as antioxidant as well as anticarcinogenic [...] Read more.
The chestnut tree (Castanea sativa, Mill.) is a widespread plant in Europe whose fruits and wood has a relevant economic impact. Chestnut wood (CW) is rich in high-value compounds that exhibit various biological activities, such as antioxidant as well as anticarcinogenic and antimicrobial properties. These metabolites can be mainly divided into monomeric polyphenols and tannins. In this piece of work, we investigated a sustainable protocol to isolate enriched fractions of the above-mentioned compounds from CW residues. Specifically, a sequential extraction protocol, using subcritical water, was used as a pre-fractionation step, recovering approximately 88% of tannins and 40% of monomeric polyphenols in the first and second steps, respectively. The optimized protocol was also tested at pre-industrial levels, treating up to 13.5 kg CW and 160 L of solution with encouraging results. Ultra- and nanofiltrations were used to further enrich the recovered fractions, achieving more than 98% of the tannin content in the heavy fraction, whilst the removed permeate achieved up to 752.71 mg GAE/gext after the concentration (75.3%). Samples were characterized by means of total phenolic content (TPC), antioxidant activity (DPPH· and ABTS·), and tannin composition (hydrolysable and condensed). In addition, LC-MS-DAD was used for semiqualitative purposes to detect vescalagin/castalagin and vescalin/castalin, as well as gallic acid and ellagic acid. The developed valorization protocol allows the efficient fractionation and recovery of the major polyphenolic components of CW with a sustainable approach that also evaluates pre-industrial scaling-up. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

29 pages, 1613 KiB  
Article
Characterization of Constituents with Potential Anti-Inflammatory Activity in Chinese Lonicera Species by UHPLC-HRMS Based Metabolite Profiling
by Eva-Maria Pferschy-Wenzig, Sabine Ortmann, Atanas G. Atanasov, Klara Hellauer, Jürgen Hartler, Olaf Kunert, Markus Gold-Binder, Angela Ladurner, Elke H. Heiß, Simone Latkolik, Yi-Min Zhao, Pia Raab, Marlene Monschein, Nina Trummer, Bola Samuel, Sara Crockett, Jian-Hua Miao, Gerhard G. Thallinger, Valery Bochkov, Verena M. Dirsch and Rudolf Baueradd Show full author list remove Hide full author list
Metabolites 2022, 12(4), 288; https://doi.org/10.3390/metabo12040288 - 25 Mar 2022
Cited by 6 | Viewed by 3796
Abstract
This study centered on detecting potentially anti-inflammatory active constituents in ethanolic extracts of Chinese Lonicera species by taking an UHPLC-HRMS-based metabolite profiling approach. Extracts from eight different Lonicera species were subjected to both UHPLC-HRMS analysis and to pharmacological testing in three different cellular [...] Read more.
This study centered on detecting potentially anti-inflammatory active constituents in ethanolic extracts of Chinese Lonicera species by taking an UHPLC-HRMS-based metabolite profiling approach. Extracts from eight different Lonicera species were subjected to both UHPLC-HRMS analysis and to pharmacological testing in three different cellular inflammation-related assays. Compounds exhibiting high correlations in orthogonal projections to latent structures discriminant analysis (OPLS-DA) of pharmacological and MS data served as potentially activity-related candidates. Of these candidates, 65 were tentatively or unambiguously annotated. 7-Hydroxy-5,3′,4′,5′-tetramethoxyflavone and three bioflavonoids, as well as three C32- and one C34-acetylated polyhydroxy fatty acid, were isolated from Lonicera hypoglauca leaves for the first time, and their structures were fully or partially elucidated. Of the potentially active candidate compounds, 15 were subsequently subjected to pharmacological testing. Their activities could be experimentally verified in part, emphasizing the relevance of Lonicera species as a source of anti-inflammatory active constituents. However, some compounds also impaired the cell viability. Overall, the approach was found useful to narrow down the number of potentially bioactive constituents in the complex extracts investigated. In the future, the application of more refined concepts, such as extract prefractionation combined with bio-chemometrics, may help to further enhance the reliability of candidate selection. Full article
(This article belongs to the Special Issue Bioactive Metabolites from Natural Sources)
Show Figures

Graphical abstract

14 pages, 1805 KiB  
Article
Isolation of N-Ethyl-2-pyrrolidinone-Substituted Flavanols from White Tea Using Centrifugal Countercurrent Chromatography Off-Line ESI-MS Profiling and Semi-Preparative Liquid Chromatography
by Weidong Dai, Maria Ramos-Jerz, Dongchao Xie, Jiakun Peng, Peter Winterhalter, Gerold Jerz and Zhi Lin
Molecules 2021, 26(23), 7284; https://doi.org/10.3390/molecules26237284 - 30 Nov 2021
Cited by 9 | Viewed by 2610
Abstract
N-Ethyl-2-pyrrolidinone-substituted flavanols (EPSF) are marker compounds for long-term stored white teas. However, due to their low contents and diasteromeric configuration, EPSF compounds are challenging to isolate. In this study, two representative epimeric EPSF compounds, 5′′′R- and 5′′′S-epigallocatechin gallate-8-C [...] Read more.
N-Ethyl-2-pyrrolidinone-substituted flavanols (EPSF) are marker compounds for long-term stored white teas. However, due to their low contents and diasteromeric configuration, EPSF compounds are challenging to isolate. In this study, two representative epimeric EPSF compounds, 5′′′R- and 5′′′S-epigallocatechin gallate-8-C N-ethyl-2-pyrrolidinone (R-EGCG-cThea and S-EGCG-cThea), were isolated from white tea using centrifugal partition chromatography (CPC). Two different biphasic solvent systems composed of 1. N-hexane-ethyl acetate-methanol-water (1:5:1:5, v/v/v/v) and 2. N-hexane-ethyl acetate-acetonitrile-water (0.7:3.0:1.3:5.0, v/v/v/v) were used for independent pre-fractionation experiments; 500 mg in each separation of white tea ethyl acetate partition were fractionated. The suitability of the two solvent systems was pre-evaluated by electrospray mass-spectrometry (ESI-MS/MS) analysis for metabolite distribution and compared to the results of the CPC experimental data using specific metabolite partition ratio KD values, selectivity factors α, and resolution factors RS. After size-exclusion and semi-preparative reversed-phase liquid chromatography, 6.4 mg of R-EGCG-cThea and 2.9 mg of S-EGCG-cThea were recovered with purities over 95%. Further bioactivity evaluation showed that R- and S-EGCG-cThea possessed in vitro inhibition effects on α-glucosidase with IC50 of 70.3 and 161.7 μM, respectively. Full article
Show Figures

Graphical abstract

16 pages, 3022 KiB  
Article
Probing the Therapeutic Potential of Marine Phyla by SPE Extraction
by Alejandro Moreiras-Figueruelo, Genoveffa Nuzzo, Christian Galasso, Clementina Sansone, Fabio Crocetta, Valerio Mazzella, Carmela Gallo, Giusi Barra, Angela Sardo, Antonella Iuliano, Emiliano Manzo, Giuliana d’Ippolito, Marte Albrigtsen, Jeanette H. Andersen, Adrianna Ianora and Angelo Fontana
Mar. Drugs 2021, 19(11), 640; https://doi.org/10.3390/md19110640 - 16 Nov 2021
Cited by 3 | Viewed by 3312
Abstract
The marine environment is potentially a prolific source of small molecules with significant biological activities. In recent years, the development of new chromatographic phases and the progress in cell and molecular techniques have facilitated the search for marine natural products (MNPs) as novel [...] Read more.
The marine environment is potentially a prolific source of small molecules with significant biological activities. In recent years, the development of new chromatographic phases and the progress in cell and molecular techniques have facilitated the search for marine natural products (MNPs) as novel pharmacophores and enhanced the success rate in the selection of new potential drug candidates. However, most of this exploration has so far been driven by anticancer research and has been limited to a reduced number of taxonomic groups. In this article, we report a test study on the screening potential of an in-house library of natural small molecules composed of 285 samples derived from 57 marine organisms that were chosen from among the major eukaryotic phyla so far represented in studies on bioactive MNPs. Both the extracts and SPE fractions of these organisms were simultaneously submitted to three different bioassays—two phenotypic and one enzymatic—for cytotoxic, antidiabetic, and antibacterial activity. On the whole, the screening of the MNP library selected 11 potential hits, but the distribution of the biological results showed that SPE fractionation increased the positive score regardless of the taxonomic group. In many cases, activity could be detected only in the enriched fractions after the elimination of the bulky effect due to salts. On a statistical basis, sponges and molluscs were confirmed to be the most significant source of cytotoxic and antimicrobial products, but other phyla were found to be effective with the other therapeutic targets. Full article
Show Figures

Figure 1

26 pages, 4971 KiB  
Article
Chemical Elicitors Induce Rare Bioactive Secondary Metabolites in Deep-Sea Bacteria under Laboratory Conditions
by Rafael de Felício, Patricia Ballone, Cristina Freitas Bazzano, Luiz F. G. Alves, Renata Sigrist, Gina Polo Infante, Henrique Niero, Fernanda Rodrigues-Costa, Arthur Zanetti Nunes Fernandes, Luciane A. C. Tonon, Luciana S. Paradela, Renna Karoline Eloi Costa, Sandra Martha Gomes Dias, Andréa Dessen, Guilherme P. Telles, Marcus Adonai Castro da Silva, Andre Oliveira de Souza Lima and Daniela Barretto Barbosa Trivella
Metabolites 2021, 11(2), 107; https://doi.org/10.3390/metabo11020107 - 12 Feb 2021
Cited by 14 | Viewed by 4757
Abstract
Bacterial genome sequencing has revealed a vast number of novel biosynthetic gene clusters (BGC) with potential to produce bioactive natural products. However, the biosynthesis of secondary metabolites by bacteria is often silenced under laboratory conditions, limiting the controlled expression of natural products. Here [...] Read more.
Bacterial genome sequencing has revealed a vast number of novel biosynthetic gene clusters (BGC) with potential to produce bioactive natural products. However, the biosynthesis of secondary metabolites by bacteria is often silenced under laboratory conditions, limiting the controlled expression of natural products. Here we describe an integrated methodology for the construction and screening of an elicited and pre-fractionated library of marine bacteria. In this pilot study, chemical elicitors were evaluated to mimic the natural environment and to induce the expression of cryptic BGCs in deep-sea bacteria. By integrating high-resolution untargeted metabolomics with cheminformatics analyses, it was possible to visualize, mine, identify and map the chemical and biological space of the elicited bacterial metabolites. The results show that elicited bacterial metabolites correspond to ~45% of the compounds produced under laboratory conditions. In addition, the elicited chemical space is novel (~70% of the elicited compounds) or concentrated in the chemical space of drugs. Fractionation of the crude extracts further evidenced minor compounds (~90% of the collection) and the detection of biological activity. This pilot work pinpoints strategies for constructing and evaluating chemically diverse bacterial natural product libraries towards the identification of novel bacterial metabolites in natural product-based drug discovery pipelines. Full article
(This article belongs to the Special Issue Microbiome and Metabolome)
Show Figures

Graphical abstract

17 pages, 2927 KiB  
Article
A Fault Identification Method in Distillation Process Based on Dynamic Mechanism Analysis and Signed Directed Graph
by Wende Tian, Shifa Zhang, Zhe Cui, Zijian Liu, Shaochen Wang, Ya Zhao and Hao Zou
Processes 2021, 9(2), 229; https://doi.org/10.3390/pr9020229 - 26 Jan 2021
Cited by 10 | Viewed by 2989
Abstract
Due to the complexity of materials and energy cycles, the distillation system has numerous working conditions difficult to troubleshoot in time. To address the problem, a novel DMA-SDG fault identification method that combines dynamic mechanism analysis based on process simulation and signed directed [...] Read more.
Due to the complexity of materials and energy cycles, the distillation system has numerous working conditions difficult to troubleshoot in time. To address the problem, a novel DMA-SDG fault identification method that combines dynamic mechanism analysis based on process simulation and signed directed graph is proposed for the distillation process. Firstly, dynamic simulation is employed to build a mechanism model to provide the potential relationships between variables. Secondly, sensitivity analysis and dynamic mechanism analysis in process simulation are introduced to the SDG model to improve the completeness of this model based on expert knowledge. Finally, a quantitative analysis based on complex network theory is used to select the most important nodes in SDG model for identifying the severe malfunctions. The application of DMA-SDG method in a benzene-toluene-xylene (BTX) hydrogenation prefractionation system shows sound fault identification performance. Full article
(This article belongs to the Special Issue Learning for Process Optimization and Control)
Show Figures

Figure 1

20 pages, 3366 KiB  
Article
In-Depth Investigation of Low-Abundance Proteins in Matured and Filling Stages Seeds of Glycine max Employing a Combination of Protamine Sulfate Precipitation and TMT-Based Quantitative Proteomic Analysis
by Cheol Woo Min, Joonho Park, Jin Woo Bae, Ganesh Kumar Agrawal, Randeep Rakwal, Youngsoo Kim, Pingfang Yang, Sun Tae Kim and Ravi Gupta
Cells 2020, 9(6), 1517; https://doi.org/10.3390/cells9061517 - 22 Jun 2020
Cited by 22 | Viewed by 4762
Abstract
Despite the significant technical advancements in mass spectrometry-based proteomics and bioinformatics resources, dynamic resolution of soybean seed proteome is still limited because of the high abundance of seed storage proteins (SSPs). These SSPs occupy a large proportion of the total seed protein and [...] Read more.
Despite the significant technical advancements in mass spectrometry-based proteomics and bioinformatics resources, dynamic resolution of soybean seed proteome is still limited because of the high abundance of seed storage proteins (SSPs). These SSPs occupy a large proportion of the total seed protein and hinder the identification of low-abundance proteins. Here, we report a TMT-based quantitative proteome analysis of matured and filling stages seeds of high-protein (Saedanbaek) and low-protein (Daewon) soybean cultivars by application of a two-way pre-fractionation both at the levels of proteins (by PS) and peptides (by basic pH reverse phase chromatography). Interestingly, this approach led to the identification of more than 5900 proteins which is the highest number of proteins reported to date from soybean seeds. Comparative protein profiles of Saedanbaek and Daewon led to the identification of 2200 and 924 differential proteins in mature and filling stages seeds, respectively. Functional annotation of the differential proteins revealed enrichment of proteins related to major metabolism including amino acid, major carbohydrate, and lipid metabolism. In parallel, analysis of free amino acids and fatty acids in the filling stages showed higher contents of all the amino acids in the Saedanbaek while the fatty acids contents were found to be higher in the Daewon. Taken together, these results provide new insights into proteome changes during filling stages in soybean seeds. Moreover, results reported here also provide a framework for systemic and large-scale dissection of seed proteome for the seeds rich in SSPs by two-way pre-fractionation combined with TMT-based quantitative proteome analysis. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Figure 1

15 pages, 4485 KiB  
Article
Comparing Composition Control Structures for Kaibel Distillation Columns
by Yang Yuan, Kejin Huang, Haisheng Chen, Xing Qian, Lijing Zang, Liang Zhang and Shaofeng Wang
Processes 2020, 8(2), 218; https://doi.org/10.3390/pr8020218 - 13 Feb 2020
Cited by 6 | Viewed by 4305
Abstract
Although Kaibel distillation columns are superior to conventional distillation sequences owing to smaller equipment investment and operation cost, they display high nonlinearity and this greatly increases the difficulty of achieving their tight control. To overcome this problem, four decentralized composition control structures, i.e., [...] Read more.
Although Kaibel distillation columns are superior to conventional distillation sequences owing to smaller equipment investment and operation cost, they display high nonlinearity and this greatly increases the difficulty of achieving their tight control. To overcome this problem, four decentralized composition control structures, i.e., the CSR/QR, CSR/B, CSD/QR, and CSD/B structures, are proposed and compared based on the control of a Kaibel distillation column fractionating a methanol/ethanol/propanol/butanol quaternary mixture. These four composition control structures all include five composition control loops. While the four of them are employed to maintain the purity of the top, upper sidestream, lower sidestream, and bottom products, the remaining one is employed to minimize the energy consumption of the Kaibel distillation column by maintaining the composition of propanol at the first stage of the prefractionator. Dynamic simulation results show the CSR/QR and CSR/B structures can tightly maintain the purity of the controlled products with a small overshoot and short settling time after facing various disturbances in feed conditions, but the CSD/QR and CSD/B structures lead to oscillatory responses (the latter even shows divergent responses under individual disturbances). At the end of the article, some effective guides for developing composition control systems are given. Full article
(This article belongs to the Special Issue Process Optimization and Control)
Show Figures

Graphical abstract

15 pages, 3290 KiB  
Review
Innovating the Concept and Practice of Two-Dimensional Gel Electrophoresis in the Analysis of Proteomes at the Proteoform Level
by Xianquan Zhan, Biao Li, Xiaohan Zhan, Hartmut Schlüter, Peter R. Jungblut and Jens R. Coorssen
Proteomes 2019, 7(4), 36; https://doi.org/10.3390/proteomes7040036 - 30 Oct 2019
Cited by 64 | Viewed by 7708
Abstract
Two-dimensional gel electrophoresis (2DE) is an important and well-established technical platform enabling extensive top-down proteomic analysis. However, the long-held but now largely outdated conventional concepts of 2DE have clearly impacted its application to in-depth investigations of proteomes at the level of protein species/proteoforms. [...] Read more.
Two-dimensional gel electrophoresis (2DE) is an important and well-established technical platform enabling extensive top-down proteomic analysis. However, the long-held but now largely outdated conventional concepts of 2DE have clearly impacted its application to in-depth investigations of proteomes at the level of protein species/proteoforms. It is time to popularize a new concept of 2DE for proteomics. With the development and enrichment of the proteome concept, any given “protein” is now recognized to consist of a series of proteoforms. Thus, it is the proteoform, rather than the canonical protein, that is the basic unit of a proteome, and each proteoform has a specific isoelectric point (pI) and relative mass (Mr). Accordingly, using 2DE, each proteoform can routinely be resolved and arrayed according to its different pI and Mr. Each detectable spot contains multiple proteoforms derived from the same gene, as well as from different genes. Proteoforms derived from the same gene are distributed into different spots in a 2DE pattern. High-resolution 2DE is thus actually an initial level of separation to address proteome complexity and is effectively a pre-fractionation method prior to analysis using mass spectrometry (MS). Furthermore, stable isotope-labeled 2DE coupled with high-sensitivity liquid chromatography-tandem MS (LC-MS/MS) has tremendous potential for the large-scale detection, identification, and quantification of the proteoforms that constitute proteomes. Full article
(This article belongs to the Special Issue Top-down Proteomics: In Memory of Dr. Alfred Yergey)
Show Figures

Figure 1

17 pages, 4353 KiB  
Article
High Resolution Mass Profile of Bufadienolides and Peptides Combing with Anti-Tumor Cell Screening and Multivariate Analysis for the Quality Evaluation of Bufonis Venenum
by Rongrong He, Hongyue Ma, Jing Zhou, Zhenhua Zhu, Xiang Lv, Quan Li, Hengbin Wang, Yanqing Yan, Niancui Luo, Liuqing Di, Qinan Wu and Jinao Duan
Molecules 2019, 24(10), 1943; https://doi.org/10.3390/molecules24101943 - 20 May 2019
Cited by 17 | Viewed by 3593
Abstract
In order to evaluate the quality of Bufonis Venenum commercial herbs, a three-step qualitative and quantitative research study was performed. Firstly, we tried to identify small molecules and peptides in Bufonis Venenum using pre-fractionation chromatography and high-resolution mass spectrometry. The database search of [...] Read more.
In order to evaluate the quality of Bufonis Venenum commercial herbs, a three-step qualitative and quantitative research study was performed. Firstly, we tried to identify small molecules and peptides in Bufonis Venenum using pre-fractionation chromatography and high-resolution mass spectrometry. The database search of the small molecules and peptides of Bufonis Venenum revealed that the dried venom consisted of free/conjugated-type bufadienolides and peptides with a mass range of 0.4–2 kDa. Secondly, we used partial least squares (PLS) multivariate statistical analysis to screen bufadienolides markers (VIP > 1.5) responsible for the anti-tumor cell activity of Bufonis Venenum, including 21 identified bufadienolides and 7 unknown compounds. It is noticeable that these bufadienolide markers could not be recognized by traditional HPLC-UV based spectrum-effect relationship analysis (correlation coefficient ranging from −0.24 to 0.40). Finally, we proposed a weight coefficient-based corrected total contents of 9 bufadienolides as a quality evaluation indicator, which had good correlation with inhibitory effects on tumor cells of commercial Bufonis Venenum. The correlation coefficient increased from 0.4 to 0.6. Thus, our pre-fractionation chromatography and mass spectrometry strategy had significant advancement over the traditional spectrum–effect relationship method for chemical marker identification. These results could be crucial and helpful in the development of a quality evaluation method that could reflect the pharmacological activity of Bufonis Venenum. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

17 pages, 2845 KiB  
Article
Modeling/Simulation of the Dividing Wall Column by Using the Rigorous Model
by Chi Zhai, Qinjun Liu, Jose A. Romagnoli and Wei Sun
Processes 2019, 7(1), 26; https://doi.org/10.3390/pr7010026 - 8 Jan 2019
Cited by 6 | Viewed by 6965
Abstract
Dividing wall column (DWC) is an atypical distillation column with an internal, vertical WE partition wall that effectively accommodates two conventional distillation columns into one to improve the thermodynamic efficiency. In previous studies, different equivalent models by combining conventional columns are adopted to [...] Read more.
Dividing wall column (DWC) is an atypical distillation column with an internal, vertical WE partition wall that effectively accommodates two conventional distillation columns into one to improve the thermodynamic efficiency. In previous studies, different equivalent models by combining conventional columns are adopted to approximate the DWC modeling, which may not well describe the integration of the DWC; moreover, the computational cost increases when multiple columns are implemented to represent one DWC. In this paper, a rigorous mathematical model is proposed based on the mass balance, the energy and phase equilibrium of the DWC, where decision variables and state variables are equally treated. The model was developed in the general process modeling system (gPROMS). Based on the rigorous model, the influences of liquid split ratio and vapor split ratio are discussed, and it is shown that the heat duty is sensitive to changes on the liquid and vapor split ratio. Inappropriate liquid and vapor split ratio will increase the mixing effects at both ends of the dividing wall, and adversely affect the thermodynamic efficiency. Hence, the degree of mixing is defined to characterize the column efficiency. Furthermore, the middle component split ratio at the top of the pre-fractionator has an optimal point for better energy saving with certain liquid and vapor split ratios, and can be used as an indicator for the energy performance. Finally, the model was tested and validated against literature data by using the ternary benzene–toluene–xylene mixture system as a case study. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control of Chemical Processes)
Show Figures

Figure 1

Back to TopTop