Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = pre-concentration of antigens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4152 KiB  
Article
Analysis of Epidemiological and Evolutionary Characteristics of Seasonal Influenza Viruses in Shenzhen City from 2018 to 2024
by Weiyu Peng, Hui Liu, Xin Wang, Chao Li, Shunwu Huang, Shiyu Qi, Zhongnan Hu, Xiaoying Xu, Haihai Jiang, Jinyu Duan, Hui Chen, Manyu Huang, Ying Sun, Weihua Wu, Min Jiang, Xuan Zou and Shisong Fang
Viruses 2025, 17(6), 798; https://doi.org/10.3390/v17060798 - 30 May 2025
Viewed by 644
Abstract
The SARS-CoV-2 pandemic and the implementation of associated non-pharmaceutical interventions (NPIs) profoundly altered the epidemiology of seasonal influenza viruses. To investigate these changes, we analyzed influenza-like illness samples in Shenzhen, China, across six influenza seasons spanning 2018 to 2024. Influenza activity declined markedly [...] Read more.
The SARS-CoV-2 pandemic and the implementation of associated non-pharmaceutical interventions (NPIs) profoundly altered the epidemiology of seasonal influenza viruses. To investigate these changes, we analyzed influenza-like illness samples in Shenzhen, China, across six influenza seasons spanning 2018 to 2024. Influenza activity declined markedly during the SARS-CoV-2 pandemic compared with the pre-pandemic period but returned to or even exceeded pre-pandemic levels in the post-pandemic era. Phylogenetic analysis of hemagglutinin (HA) and neuraminidase (NA) genes from 58 H1N1pdm09, 78 H3N2, and 97 B/Victoria isolates revealed substantial genetic divergence from the WHO-recommended vaccine strains. Notably, key mutations in the HA genes of H1N1pdm09, H3N2, and B/Victoria viruses were concentrated in the receptor-binding site (RBS) and adjacent antigenic sites. Hemagglutination inhibition (HI) assays demonstrated that most circulating viruses remained antigenically matched to their corresponding vaccine strains. However, significant antigenic drift was observed in H3N2 clade 3C.2a1b.1b viruses during the 2018–2019 season and in B/Victoria clade V1A.3a.2 viruses during the 2023–2024 season. These findings highlight the impact of NPIs and pandemic-related disruptions on influenza virus circulation and evolution, providing critical insights for future surveillance and public health preparedness. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

27 pages, 3833 KiB  
Article
The Influence of Indisulam on Human Immune Effector Cells: Is a Combination with Immunotherapy Feasible?
by Lisa Arnet, Lisabeth Emilius, Annett Hamann, Maria Carmo-Fonseca, Carola Berking, Jan Dörrie and Niels Schaft
Pharmaceutics 2025, 17(3), 368; https://doi.org/10.3390/pharmaceutics17030368 - 14 Mar 2025
Viewed by 860
Abstract
Background: As a modulator of pre-mRNA splicing, the anti-cancer agent indisulam can induce aberrantly spliced neoantigens, enabling immunologic anti-tumor activity. Consequently, combining indisulam with immunotherapy is expected to be a promising novel approach in cancer therapy. However, a prerequisite for such a combination [...] Read more.
Background: As a modulator of pre-mRNA splicing, the anti-cancer agent indisulam can induce aberrantly spliced neoantigens, enabling immunologic anti-tumor activity. Consequently, combining indisulam with immunotherapy is expected to be a promising novel approach in cancer therapy. However, a prerequisite for such a combination is that immune effector cells remain functional and unharmed by the chemical. Methods: To ensure the immunocompetence of human immune effector cells is maintained, we investigated the influence of indisulam on ex vivo-isolated T cells and monocyte-derived dendritic cells (moDCs) from healthy donors. We used indisulam concentrations from 0.625 µM to 160 µM and examined the impact on the following: (i) the activation of CD4+ and CD8+ T cells by CD3-crosslinking and via a high-affinity TCR, (ii) the cytotoxicity of CD8+ T cells, (iii) the maturation process of moDCs, and (iv) antigen-specific CD8+ T cell priming. Results: We observed dose-dependent inhibitory effects of indisulam, and substantial inhibition occurred at concentrations around 10 µM, but the various functions of the immune system exhibited different sensitivities. The weaker activation of T cells via CD3-crosslinking was more sensitive than the stronger activation via the high-affinity TCR. T cells remained capable of killing tumor cells after treatment with indisulam up to 40 µM, but T cell cytotoxicity was impaired at 160 µM indisulam. While moDC maturation was also rather resistant, T cell priming was almost completely abolished at a concentration of 10 µM. Conclusions: These effects should be considered in possible future combinations of immunotherapy with the mRNA splicing inhibitor indisulam. Full article
(This article belongs to the Special Issue Targeted Drug Delivery to Improve Cancer Therapy, 2nd Edition)
Show Figures

Figure 1

13 pages, 992 KiB  
Review
The Application of Molecularly Imprinted Polymers in Forensic Toxicology: Issues and Perspectives
by Susan Mohamed, Simone Santelli, Arianna Giorgetti, Guido Pelletti, Filippo Pirani, Paolo Fais and Jennifer P. Pascali
Chemosensors 2024, 12(12), 279; https://doi.org/10.3390/chemosensors12120279 - 23 Dec 2024
Cited by 5 | Viewed by 1601
Abstract
Molecularly imprinted polymers (MIPs) are synthetic receptors designed to selectively bind specific molecules, mimicking natural antibody–antigen interactions. Produced through polymerization around a target molecule (template), MIPs create imprints that confer high specificity and binding affinity upon template removal. Initially developed in the 1970s [...] Read more.
Molecularly imprinted polymers (MIPs) are synthetic receptors designed to selectively bind specific molecules, mimicking natural antibody–antigen interactions. Produced through polymerization around a target molecule (template), MIPs create imprints that confer high specificity and binding affinity upon template removal. Initially developed in the 1970s with organic polymers, MIPs now play critical roles in separation sciences, catalysis, drug delivery, and sensor technology. In forensic science, MIPs offer potential for sample preparation, pre-concentration, and analyte detection, especially with complex biological and non-biological matrices. They exhibit superior stability under extreme conditions, enabling their use in challenging forensic contexts such as detecting new psychoactive substances or trace explosives. Despite advantages like reusability and high selectivity, MIPs face limitations in forensic analysis due to their complex synthesis, potential template leakage, and non-specific binding. Moreover, the lack of standardized protocols limits their mainstream adoption, as forensic applications require validated, reproducible methods. This review systematically assesses MIPs in forensic toxicology, focusing on their current capabilities, limitations, and potential for broader integration into forensic workflows. Future research should address standardization and evaluate MIPs’ effectiveness in diverse forensic applications to realize their full potential. Full article
(This article belongs to the Special Issue Chemical Sensing and Analytical Methods for Forensic Applications)
Show Figures

Figure 1

13 pages, 1732 KiB  
Article
Low-Volume Electrochemical Sensor Platform for Direct Detection of Paraquat in Drinking Water
by Durgasha C. Poudyal, Manish Samson, Vikram Narayanan Dhamu, Sera Mohammed, Claudia N. Tanchez, Advaita Puri, Diya Baby, Sriram Muthukumar and Shalini Prasad
Electrochem 2024, 5(3), 341-353; https://doi.org/10.3390/electrochem5030022 - 22 Aug 2024
Cited by 1 | Viewed by 1937
Abstract
Direct testing of pesticide contaminants in drinking water is a challenge. Portable and sensitive sensor platforms are desirable to test water contaminants directly at farm and consumer levels. In this study, we have demonstrated the feasibility of an electrochemical sensor for the direct [...] Read more.
Direct testing of pesticide contaminants in drinking water is a challenge. Portable and sensitive sensor platforms are desirable to test water contaminants directly at farm and consumer levels. In this study, we have demonstrated the feasibility of an electrochemical sensor for the direct detection of paraquat (PQ) in drinking water samples. An immunoassay-based sensing platform was fabricated using PQ-specific antibody immobilized on the surface of the electrochemically reduced graphene oxide (rGO) modified screen-printed carbon electrode (rGO-SPCE). Using non-faradaic electrochemical impedance spectroscopy (EIS) as a detection tool, the sensor platform demonstrated a dynamic response for PQ concentration in drinking water ranging from 0.05 ng/mL to 72.9 ng/mL (0.19 to 243.8 nM), with a coefficient of determination (r2) of 0.997 and a limit of detection of 0.05 ng/mL (0.19 nM). Percentage recovery within ±20% error was obtained, and the sensor cross-reactivity test showed a selective response against glyphosate antigen. With the flexibility to use single-frequency EIS and low sample volume, the developed sensor demonstrated testing in water samples directly without any sample pre-processing. This low-volume electroanalytical sensor platforms can be translated into portable testing tools for the detection of various water contaminants. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

16 pages, 1948 KiB  
Article
Impact of preS1 Evaluation in the Management of Chronic Hepatitis B Virus Infection
by Yuka Hayashi, Kazuto Tajiri, Tatsuhiko Ozawa, Kiyohiko Angata, Takashi Sato, Akira Togayachi, Izuru Nagashima, Hiroki Shimizu, Aiko Murayama, Nozomu Muraishi, Hisashi Narimatsu and Ichiro Yasuda
Medicina 2024, 60(8), 1334; https://doi.org/10.3390/medicina60081334 - 16 Aug 2024
Viewed by 1868
Abstract
Background and Objectives: The measurement of hepatitis B surface antigen (HBsAg) is essential for managing chronic hepatitis B virus infection (CHB). HBsAg consists of three different surface envelope proteins: large, middle, and small HB surface proteins. However, in clinical practice, it is [...] Read more.
Background and Objectives: The measurement of hepatitis B surface antigen (HBsAg) is essential for managing chronic hepatitis B virus infection (CHB). HBsAg consists of three different surface envelope proteins: large, middle, and small HB surface proteins. However, in clinical practice, it is not common to evaluate each of these HB surface proteins separately. Materials and Methods: In this study, we investigated preS1 expression using seven monoclonal antibodies (mAbs) in 68 CHB patients, as well as examining their antigenicity. Results: Although the seven mAbs had been derived from genotype (Gt) C, they could recognize preS1 with Gts A to D. The epitopes were concentrated within the aa33-47 region of preS1, and their antigenicity was significantly reduced by an aa45F substitution. We found that preS1 expression remained consistent regardless of HBsAg levels and different Gts in CHB patients, in contrast to what was observed in SHBs. Conclusions: These results suggest that the antigenic epitope is preserved among different Gts and that the expression pattern of preS1 is altered during CHB, highlighting its vital role in the HBV infection cycle. Our present results suggest preS1 is a promising therapeutic target in CHB. Full article
(This article belongs to the Special Issue Novelties in Chronic Liver Diseases)
Show Figures

Figure 1

12 pages, 1099 KiB  
Article
A Physiologically Based Pharmacokinetic Model Relates the Subcutaneous Bioavailability of Monoclonal Antibodies to the Saturation of FcRn-Mediated Recycling in Injection-Site-Draining Lymph Nodes
by Felix Stader, Cong Liu, Abdallah Derbalah, Hiroshi Momiji, Xian Pan, Iain Gardner, Masoud Jamei and Armin Sepp
Antibodies 2024, 13(3), 70; https://doi.org/10.3390/antib13030070 - 15 Aug 2024
Cited by 3 | Viewed by 3603
Abstract
The bioavailability of a monoclonal antibody (mAb) or another therapeutic protein after subcutaneous (SC) dosing is challenging to predict from first principles, even if the impact of injection site physiology and drug properties on mAb bioavailability is generally understood. We used a physiologically [...] Read more.
The bioavailability of a monoclonal antibody (mAb) or another therapeutic protein after subcutaneous (SC) dosing is challenging to predict from first principles, even if the impact of injection site physiology and drug properties on mAb bioavailability is generally understood. We used a physiologically based pharmacokinetic model to predict pre-systemic clearance after SC administration mechanistically by incorporating the FcRn salvage pathway in antigen-presenting cells (APCs) in peripheral lymph nodes, draining the injection site. Clinically observed data of the removal rate of IgG from the arm as well as its plasma concentration after SC dosing were mostly predicted within the 95% confidence interval. The bioavailability of IgG was predicted to be 70%, which mechanistically relates to macropinocytosis in the draining lymph nodes and transient local dose-dependent partial saturation of the FcRn receptor in the APCs, resulting in higher catabolism and consequently less drug reaching the systemic circulation. The predicted free FcRn concentration was reduced to 40–45%, reaching the minimum 1–2 days after the SC administration of IgG, and returned to baseline after 8–12 days, depending on the site of injection. The model predicted the uptake into APCs, the binding affinity to FcRn, and the dose to be important factors impacting the bioavailability of a mAb. Full article
Show Figures

Graphical abstract

13 pages, 2105 KiB  
Article
MicroRNA-193a-3p as a Valuable Biomarker for Discriminating between Colorectal Cancer and Colorectal Adenoma Patients
by Marija Fabijanec, Andrea Hulina-Tomašković, Mario Štefanović, Donatella Verbanac, Ivana Ćelap, Anita Somborac-Bačura, Marija Grdić Rajković, Alma Demirović, Snježana Ramić, Božo Krušlin, Lada Rumora, Andrea Čeri, Martha Koržinek, József Petrik, Neven Ljubičić, Neven Baršić and Karmela Barišić
Int. J. Mol. Sci. 2024, 25(15), 8156; https://doi.org/10.3390/ijms25158156 - 26 Jul 2024
Viewed by 1503
Abstract
Specific markers for colorectal cancer (CRC), preceded by colorectal adenoma (pre-CRC), are lacking. This study aimed to investigate whether microRNAs (miR-19a-3p, miR-92a-3p, miR-193a-3p, and miR-210-3p) from tissues and exosomes are potential CRC biomarkers and compare them to existing biomarkers, namely carcinoembryonic antigen (CEA) [...] Read more.
Specific markers for colorectal cancer (CRC), preceded by colorectal adenoma (pre-CRC), are lacking. This study aimed to investigate whether microRNAs (miR-19a-3p, miR-92a-3p, miR-193a-3p, and miR-210-3p) from tissues and exosomes are potential CRC biomarkers and compare them to existing biomarkers, namely carcinoembryonic antigen (CEA) and carbohydrate antigen (CA) 19-9. MiRNA was isolated in the samples of 52 CRC and 76 pre-CRC patients. Expression levels were analyzed by RT-qPCR. When comparing pre-CRC and CRC tissue expression levels, only miR-193a-3p showed statistically significant result (p < 0.0001). When comparing the tissues and exosomes of CRC samples, a statistically significant difference was found for miR-193a-3p (p < 0.0001), miR-19a-3p (p < 0.0001), miR-92a-3p (p = 0.0212), and miR-210-3p (p < 0.0001). A receiver-operating characteristic (ROC) curve and area under the ROC curve (AUC) were used to evaluate the diagnostic value of CEA, CA 19-9, and miRNAs. CEA and CA 19-9 had good diagnostic values (AUCs of 0.798 and 0.668). The diagnostic value only of miR-193a-3p was highlighted (AUC = 0.725). The final logistic regression model, in which we put a combination of CEA concentration and the miR-193a-3p expression level in tissues, showed that using these two markers can distinguish CRC and pre-CRC in 71.3% of cases (AUC = 0.823). MiR-193a-3p from tissues could be a potential CRC biomarker. Full article
(This article belongs to the Special Issue New Insights into Colorectal Cancer)
Show Figures

Figure 1

12 pages, 2665 KiB  
Article
Development and Validation of an Enzyme-Linked Immunosorbent Assay-Based Protocol for Evaluation of Respiratory Syncytial Virus Vaccines
by Eliel Nham, A-Yeung Jang, Hyun Jung Ji, Ki Bum Ahn, Joon-Yong Bae, Man-Seong Park, Jin Gu Yoon, Hye Seong, Ji Yun Noh, Hee Jin Cheong, Woo Joo Kim, Ho Seong Seo and Joon Young Song
Viruses 2024, 16(6), 952; https://doi.org/10.3390/v16060952 - 12 Jun 2024
Cited by 1 | Viewed by 2343
Abstract
Recently, respiratory syncytial virus (RSV) vaccines based on the prefusion F (pre-F) antigen were approved in the United States. We aimed to develop an enzyme-linked immunosorbent assay (ELISA)-based protocol for the practical and large-scale evaluation of RSV vaccines. Two modified pre-F proteins (DS-Cav1 [...] Read more.
Recently, respiratory syncytial virus (RSV) vaccines based on the prefusion F (pre-F) antigen were approved in the United States. We aimed to develop an enzyme-linked immunosorbent assay (ELISA)-based protocol for the practical and large-scale evaluation of RSV vaccines. Two modified pre-F proteins (DS-Cav1 and SC-TM) were produced by genetic recombination and replication using an adenoviral vector. The protocol was established by optimizing the concentrations of the coating antigen (pre-F proteins), secondary antibodies, and blocking buffer. To validate the protocol, we examined its accuracy, precision, and specificity using serum samples from 150 participants across various age groups and the standard serum provided by the National Institute of Health. In the linear correlation analysis, coating concentrations of 5 and 2.5 μg/mL of DS-Cav1 and SC-TM showed high coefficients of determination (r > 0.90), respectively. Concentrations of secondary antibodies (alkaline phosphatase-conjugated anti-human immunoglobulin G, diluted 1:2000) and blocking reagents (5% skim milk/PBS-T) were optimized to minimize non-specific reactions. High accuracy was observed for DS-Cav1 (r = 0.90) and SC-TM (r = 0.86). Further, both antigens showed high precision (coefficient of variation < 15%). Inhibition ELISA revealed cross-reactivity of antibodies against DS-Cav1 and SC-TM, but not with the attachment (G) protein. Full article
Show Figures

Figure 1

13 pages, 4120 KiB  
Article
Rapid Microfluidic Immuno-Biosensor Detection System for the Point-of-Care Determination of High-Sensitivity Urinary C-Reactive Protein
by Szu-Jui Chen, Song-Yu Lu, Chin-Chung Tseng, Kuan-Hsun Huang, To-Lin Chen and Lung-Ming Fu
Biosensors 2024, 14(6), 283; https://doi.org/10.3390/bios14060283 - 30 May 2024
Cited by 4 | Viewed by 3267
Abstract
A microfluidic immuno-biosensor detection system consisting of a microfluidic spectrum chip and a micro-spectrometer detection device is presented for the rapid point-of-care (POC) detection and quantification of high-sensitivity C-reactive protein (hs-CRP) in urine. The detection process utilizes a highly specific enzyme-linked immunosorbent assay [...] Read more.
A microfluidic immuno-biosensor detection system consisting of a microfluidic spectrum chip and a micro-spectrometer detection device is presented for the rapid point-of-care (POC) detection and quantification of high-sensitivity C-reactive protein (hs-CRP) in urine. The detection process utilizes a highly specific enzyme-linked immunosorbent assay (ELISA) method, in which capture antibodies and detection antibodies are pre-deposited on the substrate of the microchip and used to form an immune complex with the target antigen. Horseradish peroxidase (HRP) is added as a marker enzyme, followed by a colorimetric reaction using 3,3′,5,5′-tetramethylbenzidine (TMB). The absorbance values (a.u.) of the colorimetric reaction compounds are measured using a micro-spectrometer device and used to measure the corresponding hs-CRP concentration according to the pre-established calibration curve. It is shown that the hs-CRP concentration can be determined within 50 min. In addition, the system achieves recovery rates of 93.8–106.2% in blind water samples and 94.5–104.6% in artificial urine. The results showed that the CRP detection results of 41 urine samples from patients with chronic kidney disease (CKD) were highly consistent with the conventional homogeneous particle-enhanced turbidimetric immunoassay (PETIA) method’s detection results (R2 = 0.9910). The experimental results showed its applicability in the detection of CRP in both urine and serum. Overall, the results indicate that the current microfluidic ELISA detection system provides an accurate and reliable method for monitoring the hs-CRP concentration in point-of-care applications. Full article
(This article belongs to the Special Issue Microfluidic Biosensing Technologies for Point-of-Care Applications)
Show Figures

Figure 1

14 pages, 3036 KiB  
Article
Flow-S: A Field-Deployable Device with Minimal Hands-On Effort to Concentrate and Quantify Schistosoma Circulating Anodic Antigen (CAA) from Large Urine Volumes
by Daniëlle de Jong, Cody Carrell, Jane K. Maganga, Loyce Mhango, Peter S. Shigella, Maddy Gill, Ryan Shogren, Brianna Mullins, Jay W. Warrick, John M. Changalucha, Govert J. van Dam, Khanh Pham, Jennifer A. Downs and Paul L. A. M. Corstjens
Diagnostics 2024, 14(8), 820; https://doi.org/10.3390/diagnostics14080820 - 16 Apr 2024
Cited by 1 | Viewed by 1874
Abstract
A laboratory-based lateral flow (LF) test that utilizes up-converting reporter particles (UCP) for ultrasensitive quantification of Schistosoma circulating anodic antigen (CAA) in urine is a well-accepted test to identify active infection. However, this UCP-LF CAA test requires sample pre-treatment steps not compatible with [...] Read more.
A laboratory-based lateral flow (LF) test that utilizes up-converting reporter particles (UCP) for ultrasensitive quantification of Schistosoma circulating anodic antigen (CAA) in urine is a well-accepted test to identify active infection. However, this UCP-LF CAA test requires sample pre-treatment steps not compatible with field applications. Flow, a new low-cost disposable, allows integration of large-volume pre-concentration of urine analytes and LF detection into a single field-deployable device. We assessed a prototype Flow-Schistosoma (Flow-S) device with an integrated UCP-LF CAA test strip, omitting all laboratory-based steps, to enable diagnosis of active Schistosoma infection in the field using urine. Flow-S is designed for large-volume (5–20 mL) urine, applying passive paper-based filtration and antibody-based CAA concentration. Samples tested for schistosome infection were collected from women of reproductive age living in a Tanzania region where S. haematobium infection is endemic. Fifteen negative and fifteen positive urine samples, selected based on CAA levels quantified in paired serum, were analyzed with the prototype Flow-S. The current Flow-S prototype, with an analytical lower detection limit of 1 pg CAA/mL, produced results correlated with the laboratory-based UCP-LF CAA test. Urine precipitates occurred in frozen banked samples and affected accurate quantification; however, this should not occur in fresh urine. Based on the findings of this study, Flow-S appears suitable to replace the urine pre-treatment required for the laboratory-based UCP-LF CAA test, thus allowing true field-based applications with fresh urine samples. The urine precipitates observed with frozen samples, though less important given the goal of testing fresh urines, warrant additional investigation to evaluate methods for mitigation. Flow-S devices permit testing of pooled urine samples with applications for population stratified testing. A field test with fresh urine samples, a further optimized Flow-S device, and larger statistical power has been scheduled. Full article
(This article belongs to the Special Issue Point-of-Care Testing for Infectious Disease)
Show Figures

Figure 1

15 pages, 3247 KiB  
Article
An ImmunoFET Coupled with an Immunomagnetic Preconcentration Technique for the Sensitive EIS Detection of HF Biomarkers
by Hamdi Ben Halima, Nadia Zine, Imad Abrao Nemeir, Norman Pfeiffer, Albert Heuberger, Joan Bausells, Abdelhamid Elaissari, Nicole Jaffrezic-Renault and Abdelhamid Errachid
Micromachines 2024, 15(3), 296; https://doi.org/10.3390/mi15030296 - 21 Feb 2024
Cited by 4 | Viewed by 2005
Abstract
We propose a new strategy using a sandwich approach for the detection of two HF biomarkers: tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10). For this purpose, magnetic nanoparticles (MNPs) (MNPs@aminodextran) were biofunctionalized with monoclonal antibodies (mAbs) using bis (sulfosuccinimidyl) suberate (BS3) [...] Read more.
We propose a new strategy using a sandwich approach for the detection of two HF biomarkers: tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10). For this purpose, magnetic nanoparticles (MNPs) (MNPs@aminodextran) were biofunctionalized with monoclonal antibodies (mAbs) using bis (sulfosuccinimidyl) suberate (BS3) as a cross-linker for the pre-concentration of two biomarkers (TNF-α and IL-10). In addition, our ISFETs were biofunctionalized with polyclonal antibodies (pAbs) (TNF-α and IL-10). The biorecognition between pAbs immobilized on the ISFET and the pre-concentrate antigen (Ag) on MNPs was monitored using electrochemical impedance spectroscopy (EIS). Our developed ImmunoFET showed a low detection limit (0.03 pg/mL) toward our target analyte when compared to previously published electrochemical immunosensors. It showed a higher sensitivity than for other HF biomarkers. Finally, the standard addition method was used to determine the unknown concentration in artificial saliva. The results matched with the expected values well. Full article
(This article belongs to the Special Issue Miniaturized Chemical Sensors)
Show Figures

Figure 1

18 pages, 6100 KiB  
Article
Selection of Aptamers for Use as Molecular Probes in AFM Detection of Proteins
by Maria O. Ershova, Amir Taldaev, Petr V. Konarev, Georgy S. Peters, Anastasia A. Valueva, Irina A. Ivanova, Sergey V. Kraevsky, Andrey F. Kozlov, Vadim S. Ziborov, Yuri D. Ivanov, Alexander I. Archakov and Tatyana O. Pleshakova
Biomolecules 2023, 13(12), 1776; https://doi.org/10.3390/biom13121776 - 12 Dec 2023
Cited by 3 | Viewed by 2069
Abstract
Currently, there is great interest in the development of highly sensitive bioanalytical systems for diagnosing diseases at an early stage, when pathological biomarkers are present in biological fluids at low concentrations and there are no clinical manifestations. A promising direction is the use [...] Read more.
Currently, there is great interest in the development of highly sensitive bioanalytical systems for diagnosing diseases at an early stage, when pathological biomarkers are present in biological fluids at low concentrations and there are no clinical manifestations. A promising direction is the use of molecular detectors―highly sensitive devices that detect signals from single biomacromolecules. A typical detector in this class is the atomic force microscope (AFM). The high sensitivity of an AFM-based bioanalysis system is determined by the size of the sensing element of an atomic force microscope―the cantilever―the radius of the curvature of which is comparable to that of a biomolecule. Biospecific molecular probe–target interactions are used to ensure detection system specificity. Antibodies, aptamers, synthetic antibodies, and peptides can be used as molecular probes. This study has demonstrated the possibility of using aptamers as molecular probes for AFM-based detection of the ovarian cancer biomarker CA125. Antigen detection in a nanomolar solution was carried out using AFM chips with immobilized aptamers, commercially available or synthesized based on sequences from open sources. Both aptamer types can be used for antigen detection, but the availability of sequence information enables additional modeling of the aptamer structure with allowance for modifications necessary for immobilization of the aptamer on an AFM chip surface. Information on the structure and oligomeric composition of aptamers in the solution was acquired by combining small-angle X-ray scattering and molecular modeling. Modeling enabled pre-selection, before the experimental stage, of aptamers for use as surface-immobilized molecular probes. Full article
(This article belongs to the Special Issue Aptamer Therapeutics in Cancers: New Advances and Future Trends)
Show Figures

Figure 1

22 pages, 2625 KiB  
Article
A Photonic Label-Free Biosensor to Detect Salmonella spp. in Fresh Vegetables and Meat
by Ana Fernández Blanco, Manuel Hernández Pérez, Yolanda Moreno Trigos and Jorge García-Hernández
Appl. Sci. 2023, 13(24), 13103; https://doi.org/10.3390/app132413103 - 8 Dec 2023
Cited by 2 | Viewed by 2258
Abstract
This paper presents a method that can be used to detect and identify Salmonella spp. in fresh meat and vegetable samples using a photonic biosensor with specialized bioreceptors. Detection was based on photon transduction. Silicon-nitride-based resonant cavities were used to capture the change [...] Read more.
This paper presents a method that can be used to detect and identify Salmonella spp. in fresh meat and vegetable samples using a photonic biosensor with specialized bioreceptors. Detection was based on photon transduction. Silicon-nitride-based resonant cavities were used to capture the change in light response when there is specific binding of the immobilized antibody to the sensor surface against the target antigen. A control immobilization experiment was conducted to validate the immobilization process on the biosensor surface prior to biofunctionalization for Salmonella spp. detection. This experiment involved immobilization of pre-selected antibodies on silicon nitride surfaces. Two types of antibodies were suitable. The first was a specific polyclonal antibody with superior antigen-binding capacity across a wide range of concentrations. The second was a monoclonal antibody designed for effective binding at lower concentrations. Rigorous validation was performed. The outcomes were compared with those of the habitual method used to detect Salmonella spp. (reference method). Replicates from different batches of contaminated meat and vegetable samples were analyzed. This comprehensive approach provides a methodologically robust, highly sensitive, and accurate way of rapidly detecting Salmonella spp. in food samples. It has potential implications for improved food safety and quality control. Full article
(This article belongs to the Special Issue Microorganisms in Foods and Food Processing Environments)
Show Figures

Figure 1

21 pages, 8332 KiB  
Article
A Glutaraldehyde-Free Crosslinking Method for the Treatment of Collagen-Based Biomaterials for Clinical Application
by Marvin Steitz, Sabra Zouhair, Mahamuda Badhon Khan, Alexander Breitenstein-Attach, Katharina Fritsch, Sugat Ratna Tuladhar, Dag Wulsten, Willem-Frederik Wolkers, Xiaolin Sun, Yimeng Hao, Jasper Emeis, Hans-E. Lange, Felix Berger and Boris Schmitt
Bioengineering 2023, 10(11), 1247; https://doi.org/10.3390/bioengineering10111247 - 25 Oct 2023
Cited by 6 | Viewed by 4672
Abstract
Biological bioprostheses such as grafts, patches, and heart valves are often derived from biological tissue like the pericardium. These bioprostheses can be of xenogenic, allogeneic, or autologous origin. Irrespective of their origin, all types are pre-treated via crosslinking to render the tissue non-antigenic [...] Read more.
Biological bioprostheses such as grafts, patches, and heart valves are often derived from biological tissue like the pericardium. These bioprostheses can be of xenogenic, allogeneic, or autologous origin. Irrespective of their origin, all types are pre-treated via crosslinking to render the tissue non-antigenic and mechanically strong or to minimize degradation. The most widely used crosslinking agent is glutaraldehyde. However, glutaraldehyde-treated tissue is prone to calcification, inflammatory degradation, and mechanical injury, and it is incapable of matrix regeneration, leading to structural degeneration over time. In this work, we are investigating an alternative crosslinking method for an intraoperative application. The treated tissue‘s crosslinking degree was evaluated by differential scanning calorimetry. To confirm the findings, a collagenase assay was conducted. Uniaxial tensile testing was used to assess the tissue’s mechanical properties. To support the findings, the treated tissue was visualized using two-photon microscopy. Additionally, fourier transform infrared spectroscopy was performed to study the overall protein secondary structure. Finally, a crosslinking procedure was identified for intraoperative processing. The samples showed a significant increase in thermal and enzymatic stability after treatment compared to the control, with a difference of up to 22.2 °C and 100%, respectively. Also, the tissue showed similar biomechanics to glutaraldehyde-treated tissue, showing greater extensibility, a higher failure strain, and a lower ultimate tensile strength than the control. The significant difference in the structure band ratio after treatment is proof of the introduction of additional crosslinks compared to the untreated control with regard to differences in the amide-I region. The microscopic images support these findings, showing an alteration of the fiber orientation after treatment. For collagen-based biomaterials, such as pericardial tissue, the novel phenolic crosslinking agent proved to be an equivalent alternative to glutaraldehyde regarding tissue characteristics. Although long-term studies must be performed to investigate superiority in terms of longevity and calcification, our novel crosslinking agent can be applied in concentrations of 1.5% or 2.0% for the treatment of biomaterials. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Graphical abstract

12 pages, 1568 KiB  
Article
Virus-Subtype-Specific Cellular and Humoral Immune Response to a COVID-19 mRNA Vaccine in Chronic Kidney Disease Patients and Renal Transplant Recipients
by Astrid I. Knell, Anna K. Böhm, Michael Jäger, Julia Kerschbaum, Sabine Engl, Michael Rudnicki, Lukas Buchwinkler, Rosa Bellmann-Weiler, Wilfried Posch and Günter Weiss
Microorganisms 2023, 11(7), 1756; https://doi.org/10.3390/microorganisms11071756 - 5 Jul 2023
Cited by 2 | Viewed by 1978
Abstract
Patients with chronic kidney disease (CKD) or immunosuppression are at increased risk of severe SARS-CoV-2 infection. The vaccination of CKD patients has resulted in lower antibody concentrations and possibly reduced protection. However, little information is available on how T-cell-mediated immune response is affected [...] Read more.
Patients with chronic kidney disease (CKD) or immunosuppression are at increased risk of severe SARS-CoV-2 infection. The vaccination of CKD patients has resulted in lower antibody concentrations and possibly reduced protection. However, little information is available on how T-cell-mediated immune response is affected in those patients and how vaccine-induced immune responses can neutralise different SARS-CoV-2 variants. Herein, we studied virus-specific humoral and cellular immune responses after two doses of mRNA-1273 (Moderna) vaccine in 42 patients suffering from CKD, small vessel vasculitis (maintenance phase), or kidney transplant recipients (KT). Serum and PBMCs from baseline and at three months after vaccination were used to determine SARS-CoV-2 S1-specific antibodies, neutralisation titers against SARS-CoV-2 WT, B1.617.2 (delta), and BA.1 (omicron) variants as well as virus-specific T-cells via IFNγ ELISpot assays. We observed a significant increase in quantitative and neutralising antibody titers against SARS-CoV-2 and significantly increased T-cell responses to SARS-CoV-2 S1 antigen after vaccination only in the CKD patients. In patients with vasculitis, neither humoral nor cellular responses were detected. In KT recipients, antibodies and virus neutralisation against WT and delta, but not against omicron BA.1, was assured. Importantly, we found no specific SARS-CoV-2 T-cell response in vasculitis and KT subjects, although unspecific T-cell activation was evident in most patients even before vaccination. While pre-dialysis CKD patients appear to mount an effective immune response for in vitro neutralisation of SARS-CoV-2, KT and vasculitis patients under immunosuppressive therapy were insufficiently protected from SARS-CoV-2 two months after the second dose of an mRNA vaccine. Full article
(This article belongs to the Section Public Health Microbiology)
Show Figures

Figure 1

Back to TopTop