Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,925)

Search Parameters:
Keywords = power projects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1157 KB  
Article
Examining Strategies to Manage Climate Risks of PPP Infrastructure Projects
by Isaac Akomea-Frimpong and Andrew Victor Kabenlah Blay Jnr
Risks 2025, 13(10), 191; https://doi.org/10.3390/risks13100191 - 3 Oct 2025
Abstract
Tackling climate change in the public–private partnership (PPP) infrastructure sector requires radical transformation of projects to make them resilient against climate risks and free from excessive carbon emissions. Types of PPP infrastructure such as transport, power plants, hospitals, schools and residential buildings experience [...] Read more.
Tackling climate change in the public–private partnership (PPP) infrastructure sector requires radical transformation of projects to make them resilient against climate risks and free from excessive carbon emissions. Types of PPP infrastructure such as transport, power plants, hospitals, schools and residential buildings experience more than 30% of global climate change risks. Therefore, this study aims to examine the interrelationships between the climate risk management strategies in PPP infrastructure projects. The first step in conducting this research was to identify the strategies through a comprehensive literature review. The second step was data collection from 147 PPP stakeholders with a questionnaire. The third step was analysing the interrelationships between the strategies using a partial least square–structural equation model approach. The findings include green procurement, defined climate-resilient contract award criteria, the identification of climate-conscious projects and feasible contract management strategies. The results provide understanding of actionable measures to counter climate risks and they encourage PPP stakeholders to develop and promote climate-friendly strategies to mitigate climate crises in the PPP sector. The results also serve as foundational information for future studies to investigate climate change risk management strategies in PPP research. Full article
(This article belongs to the Special Issue Climate Risk in Financial Markets and Institutions)
Show Figures

Figure 1

27 pages, 6869 KB  
Article
Evaluation of Cyberattack Detection Models in Power Grids: Automated Generation of Attack Processes
by Davide Cerotti, Daniele Codetta Raiteri, Giovanna Dondossola, Lavinia Egidi, Giuliana Franceschinis, Luigi Portinale, Davide Savarro and Roberta Terruggia
Appl. Sci. 2025, 15(19), 10677; https://doi.org/10.3390/app151910677 - 2 Oct 2025
Abstract
The recent growing adversarial activity against critical systems, such as the power grid, has raised attention on the necessity of appropriate measures to manage the related risks. In this setting, our research focuses on developing tools for early detection of adversarial activities, taking [...] Read more.
The recent growing adversarial activity against critical systems, such as the power grid, has raised attention on the necessity of appropriate measures to manage the related risks. In this setting, our research focuses on developing tools for early detection of adversarial activities, taking into account the specificities of the energy sector. We developed a framework to design and deploy AI-based detection models, and since one cannot risk disrupting regular operation with on-site tests, we also included a testbed for evaluation and fine-tuning. In the test environment, adversarial activity that produces realistic artifacts can be injected and monitored, and evidence analyzed by the detection models. In this paper we concentrate on the emulation of attacks inside our framework: A tool called SecuriDN is used to define, through a graphical interface, the network in terms of devices, applications, and protection mechanisms. Using this information, SecuriDN produces sequences of attack steps (based on the MITRE ATT&CK project) that are interpreted and executed by software called Netsploit. A case study related to Distributed Energy Resources is presented in order to show the process stages, highlight the possibilities given by our framework, and discuss possible limitations and future improvements. Full article
(This article belongs to the Special Issue Advanced Smart Grid Technologies, Applications and Challenges)
Show Figures

Figure 1

40 pages, 427 KB  
Systematic Review
Electronic Systems in Competitive Motorcycles: A Systematic Review Following PRISMA Guidelines
by Andrei García Cuadra, Alberto Brunete González and Francisco Santos Olalla
Electronics 2025, 14(19), 3926; https://doi.org/10.3390/electronics14193926 - 2 Oct 2025
Abstract
Objectives: To systematically review and analyze electronic systems in competitive motorcycles (2020-2025), examining their technical specifications, performance impacts, and technological evolution across MotoGP, World Superbike (WSBK), MotoE, British Superbike (BSB), and Spanish Championship (ESBK) categories. Eligibility criteria: Included studies reporting technical specifications or [...] Read more.
Objectives: To systematically review and analyze electronic systems in competitive motorcycles (2020-2025), examining their technical specifications, performance impacts, and technological evolution across MotoGP, World Superbike (WSBK), MotoE, British Superbike (BSB), and Spanish Championship (ESBK) categories. Eligibility criteria: Included studies reporting technical specifications or performance data of electronic systems in professional motorcycle racing, published between January 2020 and December 2025 in English, Spanish, Italian, or Japanese. Excluded: opinion pieces, amateur racing, and studies without quantitative data. Information sources: IEEE Xplore, SAE Technical Papers, Web of Science, Scopus, and specialized motorsport databases were searched through December 15, 2025. Risk of bias: Modified Cochrane Risk of Bias tool for experimental studies and Newcastle-Ottawa Scale for observational studies. Synthesis of results: Synthesis of results: Random-effects meta-analysis using DerSimonian-Laird method for homogeneous outcomes; narrative synthesis for heterogeneous data. The complete PRISMA 2020 checklist is provided in Appendix . Included studies: 87 studies met inclusion criteria (52 experimental, 38 simulation, 23 technical descriptions, 14 comparative analyses). Electronic systems were categorized into six domains: Engine Control Units (ECU, 28 studies, 22%), Vehicle Dynamics (23 studies, 18%), Traction Control (19 studies, 15%), Data Acquisition (21 studies, 17%), Braking Systems (18 studies, 14%), and Emerging Technologies (18 studies, 14%). Note that studies could address multiple domains. Limitations of evidence: Proprietary restrictions limited access to 31% of technical details; 43% lacked cross-category comparisons. Interpretation: Electronic systems are primary performance differentiators, with computational power following Moore’s Law. Future developments point toward distributed architectures and 5G telemetry. Funding: This project has been funded by the R&D programme with reference TEC-2024/TEC-62 and acronym iRoboCity2030-CM, granted by the Comunidad de Madrid through the Dirección General de Investigación e Innovación Tecnológica, Orden 5696/2024. Full article
27 pages, 4263 KB  
Article
A Prudent Approach to Reduce CO2 Emissions While Enhancing Oil Recovery
by Mohammad Al-Ghnemi, Erdal Ozkan and Hossein Kazemi
Fuels 2025, 6(4), 75; https://doi.org/10.3390/fuels6040075 - 2 Oct 2025
Abstract
Emissions of carbon dioxide (CO2) resulting from steam-driven enhanced oil recovery (EOR) operations present an environmental challenge as well as an opportunity to further enhance oil recovery. Using numerical simulations with realistic input data from field and laboratory measurements, we demonstrate [...] Read more.
Emissions of carbon dioxide (CO2) resulting from steam-driven enhanced oil recovery (EOR) operations present an environmental challenge as well as an opportunity to further enhance oil recovery. Using numerical simulations with realistic input data from field and laboratory measurements, we demonstrate a prudent approach to reduce CO2 emissions by capturing CO2 from steam generators of a steam-driven enhanced oil recovery (EOR) project and injecting it in a nearby oil field to improve oil recovery in this neighboring field. The proposed use of CO2 as a water-alternating-CO2 (WAG-CO2) EOR project in a small, 144-acre, sector of a target limestone reservoir would yield 42% incremental EOR oil while sequestering CO2 with a net utilization ratio (NUR) of 3100 standard cubic feet CO2 per stock tank barrel (SCF/STB) of EOR oil in a single five-spot pattern consisting of a central producer and four surrounding injectors. This EOR application sequesters 135,000, 165,000, and 213,000 metric tons of CO2 in five, ten, and twenty years in the single five spot pattern (i.e., our sector target), respectively. As a related matter, the CO2 emissions from nearby steam oil recovery project consisting of ten 58-ton steam/hr boilers amounts to 119,000 metric tons of CO2 per year with an estimated social cost of USD 440 million over 20 years. Upscaling the results from the single five-spot pattern to a four-pattern field scale increases the sequestered amount of CO2 by a factor of 4 without recycling and to 11 with recycling produced CO2 from the EOR project. Furthermore, the numerical model indicates that initiating CO2 injection earlier at higher residual oil saturations improves EOR efficiency while somewhat decreases sequestration per incremental EOR barrel. The most significant conclusion is that the proposed venture is an economically viable EOR idea in addition to being an effective sequestration project. Other sources of CO2 emissions in oil fields and nearby refineries or power generators may also be considered for similar projects. Full article
Show Figures

Figure 1

20 pages, 6892 KB  
Article
Diagnosis and Solution of Pneumatic Conveying Bend Problems: Application of TRIZ-DEMATEL Coupling Technology
by Jianming Su, Lidong Zhang, Xiaoyang Ma, Xinyu Xu, Yuhan Jia, Yuhao Pan, Lifeng Zhang, Changpeng Song and Tieliu Jiang
Powders 2025, 4(4), 27; https://doi.org/10.3390/powders4040027 - 1 Oct 2025
Abstract
Mining, mineral processing, and power generation are just a few of the industries that have made extensive use of pneumatic conveying systems in recent years. The market for pneumatic conveying is anticipated to grow to a value of $30 billion by 2025. However, [...] Read more.
Mining, mineral processing, and power generation are just a few of the industries that have made extensive use of pneumatic conveying systems in recent years. The market for pneumatic conveying is anticipated to grow to a value of $30 billion by 2025. However, problems with the pneumatic conveying process are common and include coal particle damage, pipe wall wear, and excessive system energy consumption. A new systematic framework for decision-making is created by combining the Theory of Inventive Problem Solving (TRIZ) with the Decision-Making Trial and Evaluation Laboratory (DEMATEL). This methodology employs TRIZ-Ishikawa to determine the underlying causes of issues from six different perspectives. It then suggests remedies based on TRIZ technical contradictions and uses DEMATEL to examine how the solutions interact to determine the best course of action. This study confirms the viability of this approach in recognizing fundamental contradictions, producing workable solutions, and reaching scientific conclusions in challenging issues by using instances such as wear and tear, obstructions, and low conveying efficiency in pneumatic conveying system elbows. It offers particular references for real engineering projects and suggests practical solutions like employing quick-release flanges and installing multiple sets of airflow regulators. Full article
Show Figures

Figure 1

24 pages, 8578 KB  
Article
Electric Vehicle Charging Infrastructure with Hybrid Renewable Energy: A Feasibility Study in Jordan
by Ahmad Salah, Mohammad Shalby, Mohammad Al-Soeidat and Fadi Alhomaidat
World Electr. Veh. J. 2025, 16(10), 557; https://doi.org/10.3390/wevj16100557 - 30 Sep 2025
Abstract
Jordan Vision prioritizes the utilization of domestic resources, particularly renewable energy. The transportation sector, responsible for 49% of national energy consumption, remains central to this transition and accounts for around 28% of total greenhouse gas emissions. Electric vehicles (EVs) offer a promising solution [...] Read more.
Jordan Vision prioritizes the utilization of domestic resources, particularly renewable energy. The transportation sector, responsible for 49% of national energy consumption, remains central to this transition and accounts for around 28% of total greenhouse gas emissions. Electric vehicles (EVs) offer a promising solution to reduce waste and pollution, but they also pose challenges for grid stability and charging infrastructure development. This study addresses a critical gap in the planning of renewable-powered EV charging stations along Jordanian highways, where EV infrastructure is still limited and underdeveloped, by optimizing the design of a hybrid energy charging station using HOMER Grid (v1.9.2) Software. Region-specific constraints and multiple operational scenarios, including rooftop PV integration, are assessed to balance cost, performance, and reliability. This study also investigates suitable locations for charging stations along the Sahrawi Highway in Jordan. The proposed station, powered by a hybrid system of 53% wind and 29% solar energy, is projected to generate 1.466 million kWh annually at USD 0.0375/kWh, reducing CO2 emissions by approximately 446 tonnes annually. The findings highlight the potential of hybrid systems to increase renewable energy penetration, support national sustainability targets, and offer viable investment opportunities for policymakers and the private sector in Jordan. Full article
(This article belongs to the Section Charging Infrastructure and Grid Integration)
Show Figures

Figure 1

20 pages, 5298 KB  
Article
Deployment Potential of Concentrating Solar Power Technologies in California
by Chad Augustine, Sarah Awara, Hank Price and Alexander Zolan
Sustainability 2025, 17(19), 8785; https://doi.org/10.3390/su17198785 - 30 Sep 2025
Abstract
As states within the United States respond to future grid development goals, there is a growing demand for reliable and resilient nighttime generation that can be addressed by low-cost, long-duration energy storage solutions. This report studies the potential of including concentrating solar power [...] Read more.
As states within the United States respond to future grid development goals, there is a growing demand for reliable and resilient nighttime generation that can be addressed by low-cost, long-duration energy storage solutions. This report studies the potential of including concentrating solar power (CSP) in the technology mix to support California’s goals as defined in Senate Bill 100. A joint agency report study that determined potential pathways to achieve the renewable portfolio standard set by the bill did not include CSP, and our work provides information that could be used as a follow-up. This study uses a capacity expansion model configured to have nodal spatial fidelity in California and balancing-area fidelity in the Western Interconnection outside of California. The authors discovered that by applying current technology cost projections CSP fulfills nearly 15% of the annual load while representing just 6% of total installed capacity in 2045, replacing approximately 30 GWe of wind, solar PV, and standalone batteries compared to a scenario without CSP included. The deployment of CSP in the results is sensitive to the technology’s cost, which highlights the importance of meeting cost targets in 2030 and beyond to enable the technology’s potential contribution to California’s carbon reduction goals. Full article
(This article belongs to the Special Issue Energy, Environmental Policy and Sustainable Development)
Show Figures

Figure 1

49 pages, 6314 KB  
Review
A Comprehensive Analysis of Methods for Improving and Estimating Energy Efficiency of Passive and Active Fiber-to-the-Home Optical Access Networks
by Josip Lorincz, Edin Čusto and Dinko Begušić
Sensors 2025, 25(19), 6012; https://doi.org/10.3390/s25196012 - 30 Sep 2025
Abstract
With the growing global deployment of Fiber-to-the-Home (FTTH) networks driven by the demand for ensuring high-capacity broadband services, mobile network operators (MNOs) face challenges of excessive energy consumption (EC) of wired optical access networks (OANs). This paper presents a comprehensive review of methods [...] Read more.
With the growing global deployment of Fiber-to-the-Home (FTTH) networks driven by the demand for ensuring high-capacity broadband services, mobile network operators (MNOs) face challenges of excessive energy consumption (EC) of wired optical access networks (OANs). This paper presents a comprehensive review of methods aimed at improving the energy efficiency (EE) of wired access passive optical networks (PONs) and active optical networks (AONs). The most important energy management and power-saving methods for Optical Line Terminals (OLTs) and Optical Network Units (ONUs), as key OAN components, are overviewed in the paper. Special attention in the paper is further given to analyzing the impact of a constant increase in the number of subscribers and average data rate per subscriber on global instantaneous power and annual energy consumption trends of FTTH Gigabit PONs (GPONs) and FTTH point-to-point (P-t-P) networks. The analysis combines the real ONU/OLT device-level power profiles and the number of installed OLT and ONU devices with data traffic and subscriber growth projections for the period 2025–2035. A comparative EE analysis is performed for different MNO FTTH OAN architectures and technologies, point-of-presence (PoP) subscriber capacities, and GPON-to-P-t-P subscriber distribution ratios. The findings indicate that different FTTH PON and AON architectures, FTTH technologies, and PON-to-AON subscriber distributions can yield significantly different EE gains in the future. This review paper can serve as a decision-making guide for MNOs in balancing performance and sustainability goals, and as a reference for researchers, engineers, and policymakers engaged in designing next-generation wired optical access networks with minimized environmental impact. Full article
(This article belongs to the Special Issue Energy-Efficient Communication Networks and Systems: 2nd Edition)
Show Figures

Figure 1

23 pages, 315 KB  
Article
Ships Arriving at Ports and Tales of Shipwrecks: Heterotopia and Seafaring, 16th to 18th Centuries
by Ana Crespo-Solana
Heritage 2025, 8(10), 411; https://doi.org/10.3390/heritage8100411 - 30 Sep 2025
Abstract
The objective of this article is to provide a critical analysis of maritime heterotopia as a category for reinterpreting ships, shipwrecks and maritime landscapes between the 16th and 18th centuries. Through an interdisciplinary approach combining history, underwater archaeology, heritage theory and literary analysis, [...] Read more.
The objective of this article is to provide a critical analysis of maritime heterotopia as a category for reinterpreting ships, shipwrecks and maritime landscapes between the 16th and 18th centuries. Through an interdisciplinary approach combining history, underwater archaeology, heritage theory and literary analysis, it explores the ways in which maritime spaces, especially ships and shipwrecks, functioned as ‘other spaces’–following Foucault’s concept of heterotopia–in the articulation of imperial projects, power relations, experiences of transit and narratives of memory. A particular focus has been placed on the examination of shipwreck accounts, which are regarded as microhistories of human behaviour in contexts of crisis. These accounts have been shown to offer insights into alternative social structures, dynamics of authority, and manifestations of violence or solidarity. A review of the legal framework and practices related to shipwrecks in the Spanish Carrera de Indias is also undertaken, with particular emphasis on their impact on maritime legislation and international law. This article proposes a reading of maritime heritage as a symbolic and political device in constant dispute, where material remains and associated narratives shape collective memories, geopolitical tensions and new forms of cultural appropriation. Shipwrecks thus become sites of rupture and origin, charged with utopian, dystopian and heterotopic potential. Full article
(This article belongs to the Section Underwater Heritage)
20 pages, 707 KB  
Article
Analysis of Factors Influencing Cybersecurity in Railway Critical Infrastructure: A Case Study of Taiwan Railway Corporation, Ltd.
by Liang-Sheng Hsiao, I-Long Lin, Chi-Jan Huang and Hsiang-Te Liu
Systems 2025, 13(10), 861; https://doi.org/10.3390/systems13100861 - 29 Sep 2025
Abstract
The present study investigated factors influencing cybersecurity in railway critical infrastructure by identifying relevant factors and criteria and then prioritizing them in order of importance. To address the lack of multi-criteria analysis in previous studies on this topic, the present study applied the [...] Read more.
The present study investigated factors influencing cybersecurity in railway critical infrastructure by identifying relevant factors and criteria and then prioritizing them in order of importance. To address the lack of multi-criteria analysis in previous studies on this topic, the present study applied the analytical hierarchy process to identify factors and criteria influencing cybersecurity and then selected the top 70% of influencing criteria to serve as a reference for railway cybersecurity project management. A total of 25 valid expert questionnaires were collected for weight vector analysis, revealing that the influencing criteria in the top 70% were inability to monitor train occupancy in track sections (locations); inability of controllers to issue commands to safety control systems; inability to provide drivers with information on upcoming signals, block status, and train occupancy; failure to automatically apply brakes when the train exceeds the speed limit; increased risk of catastrophic accidents due to power system security vulnerabilities; and inability of the dispatching system to automatically track train numbers. Full article
Show Figures

Figure 1

26 pages, 339 KB  
Article
The Heritage Diplomacy Spectrum: A Multidimensional Typology of Strategic, Ethical, and Symbolic Engagements
by Izabella Parowicz
Heritage 2025, 8(10), 409; https://doi.org/10.3390/heritage8100409 - 29 Sep 2025
Abstract
Cultural heritage is increasingly mobilized as a tool of international engagement, yet the diplomatic uses of heritage remain conceptually underdeveloped and analytically fragmented. This paper introduces the Heritage Diplomacy Spectrum, a multidimensional framework that maps how states and affiliated actors use heritage—both [...] Read more.
Cultural heritage is increasingly mobilized as a tool of international engagement, yet the diplomatic uses of heritage remain conceptually underdeveloped and analytically fragmented. This paper introduces the Heritage Diplomacy Spectrum, a multidimensional framework that maps how states and affiliated actors use heritage—both tangible and intangible—to pursue strategic, symbolic, and normative goals in cross-border contexts. Drawing on critical heritage studies, international relations, and memory politics, this study identifies six analytical dimensions (e.g., proactive vs. reactive, cultural vs. historical, strategic vs. moral) and develops seven ideal types of heritage diplomacy, ranging from soft power projection to post-dependency and corrective diplomacy. These ideal types, constructed in the Weberian tradition, serve as heuristic tools to illuminate the varied motivations and diplomatic postures underlying heritage-based engagement. A central matrix is presented to illustrate how each type aligns with different strategic logics and affective registers. This study argues that heritage diplomacy constitutes a distinct modality of heritage governance—one that transcends soft power narratives and encompasses conflict, reconciliation, symbolic redress, and identity assertion. The framework contributes both to theory-building and policy analysis, offering a diagnostic lens through which the ethical, political, and communicative dimensions of heritage diplomacy can be more systematically understood. Full article
(This article belongs to the Section Cultural Heritage)
29 pages, 1593 KB  
Article
How Rituals Can Contribute to Co-Governance: Evidence from the Reconstruction of Water Pipes of Old Housing Estates in Shanghai
by Wenda Xie, Zhujie Chu and Lei Li
Systems 2025, 13(10), 860; https://doi.org/10.3390/systems13100860 - 29 Sep 2025
Abstract
Water is the source of life and also the lifeline of cities. The reconstruction of secondary water supply systems is a key component of urban renewal reforms, and the collaborative governance of such projects has become a focal topic through academic research. In [...] Read more.
Water is the source of life and also the lifeline of cities. The reconstruction of secondary water supply systems is a key component of urban renewal reforms, and the collaborative governance of such projects has become a focal topic through academic research. In this article, we try to discover the path to successful “bottom-up” collaborative water governance with Collins’s theory of interaction ritual chains (IRC) through a case study of a secondary water supply reconstruction program in J Estate, Jinshan District, Shanghai. The case study involved a total of 104 households, and we employed convenience sampling for all households through door-to-door inquiries, which included semi-structured interviews and non-participant observations. A total of 15 households participated in our interview. This study demonstrates that repeated social interactive rituals, such as bodily co-presence, rhythmic synchronization, and shared signs, can stimulate the accumulation of residents’ emotional energy, which becomes the initial power to promote community water governance and, in return, becomes the driving force for sustained collective action and mutual trust. Drawing on Collins’s theory of IRC, this article fills a gap by explaining the symbolic mechanism driven by emotions and personal relationships that macro-level governance ignores. We also demonstrate the spillover effects of such social rituals and propose policy recommendations that governments should apply, using these rituals to mobilize and consolidate residents’ emotions to create a virtuous circle of collaborative governance. Full article
Show Figures

Figure 1

17 pages, 886 KB  
Article
Photovoltaic Waste Assessment and Recovery Potential: A Case Study in Chile
by Samet Ozturk
Sustainability 2025, 17(19), 8746; https://doi.org/10.3390/su17198746 - 29 Sep 2025
Abstract
Recently, there has been a surge in the popularity of renewable energy systems due to their lucrative and sustainable attributes. Among these, photovoltaic (PV) systems stand out as prominent examples. Nevertheless, it is imperative to ascertain the management of waste produced by these [...] Read more.
Recently, there has been a surge in the popularity of renewable energy systems due to their lucrative and sustainable attributes. Among these, photovoltaic (PV) systems stand out as prominent examples. Nevertheless, it is imperative to ascertain the management of waste produced by these systems in order to mitigate environmental pollution and harness their economic potential. This study aims to assess the present status and forecast the accumulation of waste generated by PV power plants in Chile. Utilizing openly available public data, a database is constructed to track the accumulation of waste. Two scenarios, namely, early-loss and regular-loss scenarios are employed to estimate the projected accumulation of PV waste. The findings indicate that by the years 2035 and 2043, the accumulation of waste is estimated to reach 100,000 tons under the early-loss scenario and regular-loss scenario. The total anticipated waste from solar PV modules is projected to be 284,906 tons, with c-Si PV modules contributing 175,595 tons to this total in Chile. Remarkably, it is determined that more than 235,000 tons of materials from this waste is recoverable, amounting to nearly USD 781 million in economic value. Silver is projected to bring the most economic value, with nearly USD 379 million, while lead, tin, cadmium, and zinc are each valued at less than USD 1 million. This study highlights the importance of promoting the sustainable development of PV systems, particularly in alignment with Sustainable Development Goals 7 (Affordable and Clean Energy) and 13 (Climate Action). Future research is expected to place greater emphasis on eco-design approaches in PV module production. Full article
(This article belongs to the Special Issue Sustainable Future: Circular Economy and Green Industry)
Show Figures

Figure 1

42 pages, 4392 KB  
Article
Holism of Thermal Energy Storage: A Data-Driven Strategy for Industrial Decarbonization
by Abdulmajeed S. Al-Ghamdi and Salman Z. Alharthi
Sustainability 2025, 17(19), 8745; https://doi.org/10.3390/su17198745 - 29 Sep 2025
Abstract
This study presents a holistic framework for adaptive thermal energy storage (A-TES) in solar-assisted systems. This framework aims to support a reliable industrial energy supply, particularly during periods of limited sunlight, while also facilitating industrial decarbonization. In previous studies, the focus was not [...] Read more.
This study presents a holistic framework for adaptive thermal energy storage (A-TES) in solar-assisted systems. This framework aims to support a reliable industrial energy supply, particularly during periods of limited sunlight, while also facilitating industrial decarbonization. In previous studies, the focus was not on addressing the framework of the entire problem, but rather on specific parts of it. Therefore, the innovation in this study lies in bringing these aspects together within a unified framework through a data-driven approach that combines the analysis of efficiency, technology, environmental impact, sectoral applications, operational challenges, and policy into a comprehensive system. Sensible thermal energy storage with an adaptive approach can be utilized in numerous industries, particularly concentrated solar power plants, to optimize power dispatch, enhance energy efficiency, and reduce gas emissions. Simulation results indicate that stable regulations and flexible incentives have led to a 60% increase in solar installations, highlighting their significance in investment expansion within the renewable energy sector. Integrated measures among sectors have increased energy availability by 50% in rural regions, illustrating the need for partnerships in renewable energy projects. The full implementation of novel advanced energy management systems (AEMSs) in industrial heat processes has resulted in a 20% decrease in energy consumption and a 15% improvement in efficiency. Making the switch to open-source software has reduced software expenditure by 50% and increased productivity by 20%, demonstrating the strategic advantages of open-source solutions. The findings provide a foundation for future research by offering a framework to analyze a specific real-world industrial case. Full article
Show Figures

Graphical abstract

16 pages, 9446 KB  
Article
Centering Communities in Biodiversity Monitoring and Conservation: Preliminary Insights from a Citizen Science Initiative in Kalimantan, Indonesia
by Muhammad Syazwan Omar, Rona Dennis, Emily Mae Meijaard, Syafiie Sueif, Syahmi Zaini, Muiz Mohamdih, Andi Erman and Erik Meijaard
Diversity 2025, 17(10), 679; https://doi.org/10.3390/d17100679 - 29 Sep 2025
Abstract
This paper presents preliminary findings on the effectiveness of a citizen science initiative that engages local communities in rural Kalimantan in collecting wildlife observations within their village forests. By leveraging the power of community participation, the initiative aims to build on local knowledge, [...] Read more.
This paper presents preliminary findings on the effectiveness of a citizen science initiative that engages local communities in rural Kalimantan in collecting wildlife observations within their village forests. By leveraging the power of community participation, the initiative aims to build on local knowledge, promote sustainable management practices, and collect valuable data on species distribution. Through a combination of focus group discussions, training workshops, field surveys, and mobile app-based data collection from 2023 to 2025, the initiative successfully mobilized community members, particularly those with limited technological experience, to actively participate in biodiversity monitoring. We recently introduced a small ‘payment for wildlife observations’ system that significantly boosted observations. The initial results highlight the potential for citizen science to generate valuable species trend data and foster a sense of pride, ownership, and stewardship among community members. While the current manuscript does not provide statistical analyses of the wildlife data, we describe how we plan to overcome data biases that are inherent to opportunistic, unstructured survey efforts. The project continues, but the lessons learned thus far can inform future citizen science initiatives and contribute to the development of sustainable, long-term, low-cost and effective community-based conservation strategies in the region. Full article
(This article belongs to the Special Issue Socioecology and Biodiversity Conservation—2nd Edition)
Show Figures

Figure 1

Back to TopTop