Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = power line attenuations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2562 KiB  
Article
Harmonic and Interharmonic Measurement Method Using Two-Fold Compound Convolution Windows and Zoom Fast Fourier Transform
by Xiangui Xiao, Lei Zhao, Shengjun Zhou, Haijun Liu, Zhong Fu and Dan Hu
Energies 2025, 18(15), 4047; https://doi.org/10.3390/en18154047 - 30 Jul 2025
Viewed by 198
Abstract
With the rapidly increasing penetration of new energy resources, the power grid faces significant threats from harmonics. To measure and suppress these harmonics, numerous harmonic measurement methods have been proposed. However, accurately identifying the parameters of harmonics and interharmonics remains challenging. To address [...] Read more.
With the rapidly increasing penetration of new energy resources, the power grid faces significant threats from harmonics. To measure and suppress these harmonics, numerous harmonic measurement methods have been proposed. However, accurately identifying the parameters of harmonics and interharmonics remains challenging. To address this issue, we propose a new method that combines two-fold convolution windows and ZoomFFT. This method leverages the advantages of low side lobe peaks and high side lobe attenuation rates of compound convolution windows to suppress spectral leakage. Additionally, a six-spectral-line interpolation method is employed to correct the calculation results. Furthermore, ZoomFFT is utilized to locally amplify the spectrum, enabling the distinction between interharmonics and harmonics with closely spaced frequencies. The simulation results demonstrate that the proposed algorithm effectively identifies interharmonics with similar frequencies, outperforming single-window functions and ZoomFFT in terms of accuracy. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

18 pages, 1184 KiB  
Article
A Confidential Transmission Method for High-Speed Power Line Carrier Communications Based on Generalized Two-Dimensional Polynomial Chaotic Mapping
by Zihan Nie, Zhitao Guo and Jinli Yuan
Appl. Sci. 2025, 15(14), 7813; https://doi.org/10.3390/app15147813 - 11 Jul 2025
Viewed by 304
Abstract
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide [...] Read more.
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide coverage. However, the inherent characteristics of power line channels, such as strong noise, multipath fading, and time-varying properties, pose challenges to traditional encryption algorithms, including low key distribution efficiency and weak anti-interference capabilities. These issues become particularly pronounced in high-speed transmission scenarios, where the conflict between data security and communication reliability is more acute. To address this problem, a secure transmission method for high-speed power line carrier communication based on generalized two-dimensional polynomial chaotic mapping is proposed. A high-speed power line carrier communication network is established using a power line carrier routing algorithm based on the minimal connected dominating set. The autoregressive moving average model is employed to determine the degree of transmission fluctuation deviation in the high-speed power line carrier communication network. Leveraging the complex dynamic behavior and anti-decoding capability of generalized two-dimensional polynomial chaotic mapping, combined with the deviation, the communication key is generated. This process yields encrypted high-speed power line carrier communication ciphertext that can resist power line noise interference and signal attenuation, thereby enhancing communication confidentiality and stability. By applying reference modulation differential chaotic shift keying and integrating the ciphertext of high-speed power line carrier communication, a secure transmission scheme is designed to achieve secure transmission in high-speed power line carrier communication. The experimental results demonstrate that this method can effectively establish a high-speed power line carrier communication network and encrypt information. The maximum error rate obtained by this method is 0.051, and the minimum error rate is 0.010, confirming its ability to ensure secure transmission in high-speed power line carrier communication while improving communication confidentiality. Full article
Show Figures

Figure 1

15 pages, 2025 KiB  
Article
Comparison of ADMIRE, SAFIRE, and Filtered Back Projection in Standard and Low-Dose Non-Enhanced Head CT
by Georg Gohla, Anja Örgel, Uwe Klose, Andreas Brendlin, Malte Niklas Bongers, Benjamin Bender, Deborah Staber, Ulrike Ernemann, Till-Karsten Hauser and Christer Ruff
Diagnostics 2025, 15(12), 1541; https://doi.org/10.3390/diagnostics15121541 - 17 Jun 2025
Viewed by 427
Abstract
Background/Objectives: Iterative reconstruction (IR) techniques were developed to address the shortcomings of filtered back projection (FBP), yet research comparing different types of IR is still missing. This work investigates how reducing radiation dose influences both image quality and noise profiles when using [...] Read more.
Background/Objectives: Iterative reconstruction (IR) techniques were developed to address the shortcomings of filtered back projection (FBP), yet research comparing different types of IR is still missing. This work investigates how reducing radiation dose influences both image quality and noise profiles when using two iterative reconstruction techniques—Sinogram-Affirmed Iterative Reconstruction (SAFIRE) and Advanced Modeled Iterative Reconstruction (ADMIRE)—in comparison to filtered back projection (FBP) in non-enhanced head CT (NECT). Methods: In this retrospective single-center study, 21 consecutive patients underwent standard NECT on a 128-slice CT scanner. Raw data simulated dose reductions to 90% and 70% of the original dose via ReconCT software. For each dose level, images were reconstructed with FBP, SAFIRE 3, and ADMIRE 3. Image noise power spectra quantified objective image noise. Two blinded neuroradiologists scored overall image quality, image noise, image contrast, detail, and artifacts on a 10-point Likert scale in a consensus reading. Quantitative Hounsfield unit (HU) measurements were obtained in white and gray matter regions. Statistical analyses included the Wilcoxon signed-rank test, mixed-effects modeling, ANOVA, and post hoc pairwise comparisons with Bonferroni correction. Results: Both iterative reconstructions significantly reduced image noise compared to FBP across all dose levels (p < 0.001). ADMIRE exhibited superior image noise suppression at low (<0.51 1/mm) and high (>1.31 1/mm) spatial frequencies, whereas SAFIRE performed better in the mid-frequency range (0.51–1.31 1/mm). Subjective scores for overall quality, image noise, image contrast, and detail were higher for ADMIRE and SAFIRE versus FBP at the original dose and simulated doses of 90% and 70% (all p < 0.001). ADMIRE outperformed SAFIRE in artifact reduction (p < 0.001), while SAFIRE achieved slightly higher image contrast scores (p < 0.001). Objective HU values remained stable across reconstruction methods, although SAFIRE yielded marginally higher gray and white matter (WM) attenuations (p < 0.01). Conclusions: Both IR techniques—ADMIRE and SAFIRE—achieved substantial noise reduction and improved image quality relative to FBP in non-enhanced head CT at standard and reduced dose levels on the specific CT system and reconstruction strength tested. ADMIRE showed enhanced suppression of low- and high-frequency image noise and fewer artifacts, while SAFIRE preserved image contrast and reduced mid-frequency noise. These findings support the potential of iterative reconstruction to optimize radiation dose in NECT protocols in line with the ALARA principle, although broader validation in multi-vendor, multi-center settings is warranted. Full article
Show Figures

Figure 1

20 pages, 9481 KiB  
Article
Lightning-Induced Voltages over Gaussian-Shaped Terrain Considering Different Lightning Strike Locations
by Jiawei Niu, Jinbo Zhang, Yan Tao, Junhua Zou, Qilin Zhang, Zhibin Xie, Yajun Wang and Xiaolong Li
Appl. Sci. 2025, 15(12), 6428; https://doi.org/10.3390/app15126428 - 7 Jun 2025
Viewed by 424
Abstract
Lightning-induced voltages (LIVs) computation is crucial for lightning protection of power systems and equipment, yet the effect of complex terrain on LIVs remains not fully evaluated. This study establishes a three-dimensional finite-difference time-domain model to investigate the LIVs over Gaussian-shaped mountainous terrain, considering [...] Read more.
Lightning-induced voltages (LIVs) computation is crucial for lightning protection of power systems and equipment, yet the effect of complex terrain on LIVs remains not fully evaluated. This study establishes a three-dimensional finite-difference time-domain model to investigate the LIVs over Gaussian-shaped mountainous terrain, considering different lightning strike locations. Simulation results show that the influence of Gaussian-shaped mountains on LIVs is directly related to the lightning strike location. Compared with the flat ground scenario, the LIVs’ amplitude can increase by approximately 56% when lightning strikes the mountain top. However, for lightning strikes to the ground adjacent to the mountain, the LIVs’ amplitude is attenuated to varying degrees due to the shielding effect of the mountain. Additionally, the influences of line configuration, as well as mountain height and width on the LIVs, are evaluated. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

27 pages, 3010 KiB  
Article
Energy and Spectral Efficiency Analysis for UAV-to-UAV Communication in Dynamic Networks for Smart Cities
by Mfonobong Uko, Sunday Ekpo, Ubong Ukommi, Unwana Iwok and Stephen Alabi
Smart Cities 2025, 8(2), 54; https://doi.org/10.3390/smartcities8020054 - 22 Mar 2025
Cited by 2 | Viewed by 1190
Abstract
Unmanned Aerial Vehicles (UAVs) are integral to the development of smart city infrastructures, enabling essential services such as real-time surveillance, urban traffic regulation, and cooperative environmental monitoring. UAV-to-UAV communication networks, despite their adaptability, have significant limits stemming from onboard battery constraints, inclement weather, [...] Read more.
Unmanned Aerial Vehicles (UAVs) are integral to the development of smart city infrastructures, enabling essential services such as real-time surveillance, urban traffic regulation, and cooperative environmental monitoring. UAV-to-UAV communication networks, despite their adaptability, have significant limits stemming from onboard battery constraints, inclement weather, and variable flight trajectories. This work presents a thorough examination of energy and spectral efficiency in UAV-to-UAV communication over four frequency bands: 2.4 GHz, 5.8 GHz, 28 GHz, and 60 GHz. Our MATLAB R2023a simulations include classical free-space path loss, Rayleigh/Rician fading, and real-time mobility profiles, accommodating varied heights (up to 500 m), flight velocities (reaching 15 m/s), and fluctuations in the path loss exponent. Low-frequency bands (e.g., 2.4 GHz) exhibit up to 50% reduced path loss compared to higher mmWave bands for distances exceeding several hundred meters. Energy efficiency (ηe) is evaluated by contrasting throughput with total power consumption, indicating that 2.4 GHz initiates at around 0.15 bits/Joule (decreasing to 0.02 bits/Joule after 10 s), whereas 28 GHz and 60 GHz demonstrate markedly worse ηe (as low as 103104bits/Joule), resulting from increased path loss and oxygen absorption. Similarly, sub-6 GHz spectral efficiency can attain 4×1012bps/Hz in near-line-of-sight scenarios, whereas 60 GHz lines encounter significant attenuation at distances above 200–300 m without sophisticated beamforming techniques. Polynomial-fitting methods indicate that the projected ηe diverges from actual performance by less than 5% after 10 s of flight, highlighting the feasibility of machine-learning-based techniques for real-time power regulation, beam steering, or multi-band switching. While mmWave UAV communication can provide significant capacity enhancements (100–500 MHz bandwidth), energy efficiency deteriorates markedly without meticulous flight planning or adaptive protocols. We thus advocate using multi-band radios, adaptive modulation, and trajectory optimisation to equilibrate power consumption, ensure connection stability, and meet high data-rate requirements in densely populated, dynamic urban settings. Full article
Show Figures

Figure 1

13 pages, 2923 KiB  
Article
Programmable Gain Amplifier with Programmable Bandwidth for Ultrasound Imaging Application
by István Kovács, Paul Coste and Marius Neag
Electronics 2025, 14(6), 1186; https://doi.org/10.3390/electronics14061186 - 18 Mar 2025
Viewed by 705
Abstract
This paper presents a low-power, fully differential, programmable gain amplifier (PGA) for ultrasound receiver analog front-ends (AFE). It consists of a programmable attenuator implemented by a capacitive voltage divider and a closed-loop amplifier based on a differential difference amplifier (DDA). A suitable sizing [...] Read more.
This paper presents a low-power, fully differential, programmable gain amplifier (PGA) for ultrasound receiver analog front-ends (AFE). It consists of a programmable attenuator implemented by a capacitive voltage divider and a closed-loop amplifier based on a differential difference amplifier (DDA). A suitable sizing strategy provides orthogonal control over gain and bandwidth. The PGA was designed using a standard 180 nm CMOS process. The gain value can be set between −18 dB and +20 dB in 2 dB steps; the bandwidth can be programmed independently of gain, to values from 5 MHz to 20 MHz, in 5 MHz steps; it draws 600 µA from a 1.8 V supply line. It achieves a differential output swing of 0.8 V peak-to-peak differential with no more than 1.7% total harmonic distortion (THD) and an input-referred noise density of 22 nV/√Hz at 10 MHz, measured at the gain of 20 dB. The PGA exhibits high input impedance and low output resistance for easy integration within the AFE signal chain. The digitally controlled gain and bandwidth make this PGA suitable for ultrasound imaging applications requiring precise time gain compensation and adjustable frequency response and/or additional anti-aliasing filtering. Full article
Show Figures

Figure 1

17 pages, 10463 KiB  
Article
Characteristics of Aerosol Number Concentration Power Spectra and Their Influence on Flux Measurements
by Hao Liu, Renmin Yuan, Bozheng Zhu, Qiang Zhao, Xingyu Zhu, Yuan Liu and Yongchang Li
Atmosphere 2025, 16(3), 332; https://doi.org/10.3390/atmos16030332 - 15 Mar 2025
Cited by 1 | Viewed by 430
Abstract
In this paper, a water-based aerosol particle counter was used to measure aerosol number concentrations with high temporal resolution at a meteorological tower and on the ground, and the ultrasonic anemometer on the meteorological tower measured the data of the three-dimensional wind speed. [...] Read more.
In this paper, a water-based aerosol particle counter was used to measure aerosol number concentrations with high temporal resolution at a meteorological tower and on the ground, and the ultrasonic anemometer on the meteorological tower measured the data of the three-dimensional wind speed. The power spectrum of the aerosol particle number concentration fluctuation was obtained by using a Fourier transform, and the characteristics of the power spectrum were deeply analyzed. The results show that the aerosol concentration fluctuation power spectrum satisfies the Monin–Obukhov law in the low-frequency (0.02–0.25 Hz) part of the inertial subregion, which is consistent with the characteristics of atmospheric turbulent motion. Significant attenuation occurs in the high-frequency (0.3–5 Hz) range, which is mainly caused by the attenuation of the aerosol concentration by the intake pipe. Using the similarity of the power spectrum in the low-frequency part, using the “−5/3” line as a standard, the characteristic time of the measurement system is obtained by fitting the transfer function. The results show that in the flux measurement experiments in this paper, the characteristic time is usually less than 1 s. Finally, this paper uses the Fourier transform and wavelet transform to correct the high-frequency attenuation in the fluctuation of aerosol concentration and obtains the corrected aerosol flux. The results show that the effect of high-frequency attenuation on the flux is approximately 1–4% in this experiment. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

12 pages, 9791 KiB  
Article
Random Forest-Based Prediction Model for Stiffness Degradation of Offshore Wind Farm Submarine Soil
by Ben He, Mingbao Lin, Xinran Yu, Zhishuai Zhang and Song Dai
J. Mar. Sci. Eng. 2025, 13(1), 8; https://doi.org/10.3390/jmse13010008 - 24 Dec 2024
Viewed by 728
Abstract
Offshore wind power is a hot spot in the field of new energy, with foundation construction costs representing approximately 30% of the total investment in wind farm construction. Offshore wind turbines are subjected to long-term cyclic loads, and seabed materials are prone to [...] Read more.
Offshore wind power is a hot spot in the field of new energy, with foundation construction costs representing approximately 30% of the total investment in wind farm construction. Offshore wind turbines are subjected to long-term cyclic loads, and seabed materials are prone to causing stiffness degradation. The accurate disclosure of the mechanical properties of marine soil is critical to the safety and stability of the foundation structure of offshore wind turbines. The stiffness degradation laws of mucky clay and silt clay from offshore wind turbines were firstly investigated in the study. Experiments found that the variations in the elastic modulus presented “L-type” attenuation under small cyclic loads, and the degradation coefficient fleetingly decayed to the strength progressive line under large cyclic loads. Based on the experimental results, a random forest prediction model for the elastic modulus of the submarine soil was established, which had high prediction accuracy. The influence of testing the loading parameters of the submarine soil on the prediction results was greater than that of the soil’s physical property parameters. In criticality, the CSR had the greatest impact on the prediction results. This study provides a more efficient method for the stiffness degradation assessment of submarine soil materials in offshore wind farms. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

13 pages, 3078 KiB  
Article
Unit Cell Optimization of Groove Gap Waveguide for High Bandwidth Microwave Applications
by Ghiayas Tahir, Arshad Hassan, Shawkat Ali and Amine Bermak
Appl. Sci. 2024, 14(23), 10891; https://doi.org/10.3390/app142310891 - 25 Nov 2024
Cited by 1 | Viewed by 1178
Abstract
Recently, groove gap waveguides (GGWs) have shown significant potential in power handling and bandwidth enhancement compared to conventional waveguides. In this research work, we designed and developed an innovative mushroom-unit-cell-based groove gap waveguide (MGGW) that has shown improved bandwidth compared to conventional GGW [...] Read more.
Recently, groove gap waveguides (GGWs) have shown significant potential in power handling and bandwidth enhancement compared to conventional waveguides. In this research work, we designed and developed an innovative mushroom-unit-cell-based groove gap waveguide (MGGW) that has shown improved bandwidth compared to conventional GGW structures. The dispersion characteristics of the MGGW were analyzed through the eigenmode solver feature of Microwave Studio CST, which showed that the bandwidth was improved by 8% compared to conventional unit cells in the microwave spectrum. To validate our proposed method for the physical dimensions of unit cell structures, we developed an MGGW structure for the S band, which shows similar trends aligning with the simulation results. The measurement results are promising as a reflection coefficient of less than −20 dB was achieved over the entire band for the WR284 Electronic Industries Alliance (EIA) standard waveguide adapter. The proposed MGGW structure with improved bandwidth will open new doors for researchers to develop ultra-wide bandwidth microwave applications, i.e., filters, transmission lines, resonators, attenuators, etc. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

21 pages, 11089 KiB  
Article
Acoustoelectric Effect due to an In-Depth Inhomogeneous Conductivity Change in ZnO/Fused Silica Substrates
by Cinzia Caliendo, Massimiliano Benetti, Domenico Cannatà and Farouk Laidoudi
Sensors 2024, 24(19), 6399; https://doi.org/10.3390/s24196399 - 2 Oct 2024
Viewed by 1048
Abstract
The acoustoelectric (AE) effect induced by the absorption of ultraviolet (UV) light at 365 nm in piezoelectric ZnO films was theoretically and experimentally studied. c-ZnO films 4.0 µm thick were grown by the RF reactive magnetron sputtering technique onto fused silica substrates at [...] Read more.
The acoustoelectric (AE) effect induced by the absorption of ultraviolet (UV) light at 365 nm in piezoelectric ZnO films was theoretically and experimentally studied. c-ZnO films 4.0 µm thick were grown by the RF reactive magnetron sputtering technique onto fused silica substrates at 200 °C. A surface acoustic wave (SAW) delay line was fabricated with two split-finger Al interdigital transducers (IDTs) photolithographically implemented onto the ZnO-free surface to excite and reveal the propagation of the fundamental Rayleigh wave and its third harmonic at about 39 and 104 MHz. A small area of a few square millimeters on the surface of the ZnO layer, in between the two IDTs, was illuminated by UV light at different light power values (from about 10 mW up to 1.2 W) through the back surface of the SiO2 substrate, which is optically transparent. The UV absorption caused a change of the ZnO electrical conductivity, which in turn affected the velocity and insertion loss (IL) of the two waves. It was experimentally observed that the phase velocity of the fundamental and third harmonic waves decreased with an increase in the UV power, while the IL vs. UV power behavior differed at large UV power values: the Rayleigh wave underwent a single peak in attenuation, while its third harmonic underwent a further peak. A two-dimensional finite element study was performed to simulate the waves IL and phase velocity vs. the ZnO electrical conductivity, under the assumption that the ZnO layer conductivity undergoes an in-depth inhomogeneous change according to an exponential decay law, with a penetration depth of 325 nm. The theoretical results predicted single- and double-peak IL behavior for the fundamental and harmonic wave due to volume conductivity changes, as opposed to the AE effect induced by surface conductivity changes for which a single-peak IL behavior is expected. The phenomena predicted by the theoretical models were confirmed by the experimental results. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 1738 KiB  
Article
Adeno-Associated Virus-Mediated CRISPR-Cas13 Knockdown of Papain-like Protease from SARS-CoV-2 Virus
by Yuehan Yang, Mara Grace C. Kessler, M. Raquel Marchán-Rivadeneira, Yuxi Zhou and Yong Han
J 2024, 7(3), 393-405; https://doi.org/10.3390/j7030023 - 23 Sep 2024
Cited by 1 | Viewed by 1766
Abstract
The COVID-19 pandemic is caused by a novel and rapidly mutating coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although several drugs are already in clinical use or under emergency authorization, there is still an urgent need to develop new drugs. Through the [...] Read more.
The COVID-19 pandemic is caused by a novel and rapidly mutating coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although several drugs are already in clinical use or under emergency authorization, there is still an urgent need to develop new drugs. Through the mining and analysis of 2776 genomes of the SARS-CoV-2 virus, we identified papain-like protease (PLpro), which is a critical enzyme required for coronavirus to generate a functional replicase complex and manipulate post-translational modifications on host proteins for evasion against host antiviral immune responses, as a conserved molecular target for the development of anti-SARS-CoV-2 therapy. We then made an infection model using the NCI-H1299 cell line stably expressing SARS-CoV-2 PLpro protein (NCI-H1299/PLpro). To investigate the effect of targeting and degrading PLpro mRNA, a compact CRISPR-Cas13 system targeting PLpro mRNA was developed and validated, which was then delivered to the aforementioned NCI-H1299/PLpro cells. The results showed that CRISPR-Cas13 mediated mRNA degradation successfully reduced the expression of viral PLpro protein. By combining the power of AAV and CRISPR-Cas13 technologies, we aim to explore the potential of attenuating viral infection by targeted degradation of important viral mRNAs via safe and efficient delivery of AAV carrying the CRISPR-Cas13 system. This study demonstrated a virus-against-virus gene therapy strategy for COVID-19 and provided evidence for the future development of therapies against SARS-CoV-2 and other RNA viral infections. Full article
Show Figures

Figure 1

17 pages, 53794 KiB  
Article
50 Hz Temporal Magnetic Field Monitoring from High-Voltage Power Lines: Sensor Design and Experimental Validation
by Kenneth Deprez, Tom Van de Steene, Leen Verloock, Emmeric Tanghe, Liesbeth Gommé, Mart Verlaek, Michel Goethals, Karen van Campenhout, David Plets and Wout Joseph
Sensors 2024, 24(16), 5325; https://doi.org/10.3390/s24165325 - 17 Aug 2024
Cited by 3 | Viewed by 2062
Abstract
A low-cost, tri-axial 50 Hz magnetic field monitoring sensor was designed, calibrated and verified. The sensor was designed using off-the-shelf components and commercially available coils. It can measure 50 Hz magnetic fields originating from high-voltage power lines from 0.08 µT to 364 µT, [...] Read more.
A low-cost, tri-axial 50 Hz magnetic field monitoring sensor was designed, calibrated and verified. The sensor was designed using off-the-shelf components and commercially available coils. It can measure 50 Hz magnetic fields originating from high-voltage power lines from 0.08 µT to 364 µT, divided into two measurement ranges. The sensor was calibrated both on-board and in-lab. The on-board calibration takes the circuit attenuation, noise and parasitic components into account. In the in-lab calibration, the output of the developed sensor is compared to the benchmark, a narrowband EHP-50. The sensor was then verified in situ under high-voltage power lines at two independent measurement locations. The measured field values during this validation were between 0.10 µT and 13.43 µT, which is in agreement with other reported measurement values under high-voltage power lines in literature. The results were compared to the benchmark, for which average deviations of 6.2% and 1.4% were found, at the two independent measurement locations. Furthermore, fields up to 113.3 µT were measured in a power distribution sub-station to ensure that both measurement ranges were verified. Our network, four active sensors in the field, had high uptimes of 96%, 82%, 81% and, 95% during a minimum 3-month interval. In total, over 6 million samples were gathered with field values that ranged from 0.08 µT to 45.48 µT. This suggests that the proposed solution can be used for this monitoring, although more extensive long-term testing with more sensors is required to confirm the uptime under multiple circumstances. Full article
(This article belongs to the Special Issue Magnetic Field Sensing and Measurement Techniques)
Show Figures

Figure 1

8 pages, 1254 KiB  
Proceeding Paper
Performance Aspects of Retrodirective RFID Tags
by Theodoros N. F. Kaifas
Eng. Proc. 2024, 70(1), 19; https://doi.org/10.3390/engproc2024070019 - 1 Aug 2024
Cited by 1 | Viewed by 822
Abstract
Although RFID(radio frequency identification) tags do not require a direct line of sight, their operational range is often characterized as being limited. Indeed, in the case of passive RFID tags, the interrogating signal from the transmitter needs to reach the tag’s radio transponder [...] Read more.
Although RFID(radio frequency identification) tags do not require a direct line of sight, their operational range is often characterized as being limited. Indeed, in the case of passive RFID tags, the interrogating signal from the transmitter needs to reach the tag’s radio transponder and trigger a nearly omnidirectional scattered signal to be harvested by the receiver. This two-way (from Tx to the tag and back to Rx) channel exhibits increased attenuation not only due to the doubled distance (in case Tx and Rx are collocated) but also to the uncontrolled (i.e., unfocused) backscattering. In the work at hand, we propose a way to control the backscattered radiation and focus the produced beam towards the direction of the reader (the Tx-Rx device). Indeed, one can utilize the concept of retrodirective arrays to immediately control the direction of departure of the backscatter link, maximizing the scattered power towards the reader and thus delivering an increase in the operational range of the tag. This of course means that in this case, the tag should be equipped with a minimum of two element radiators. Thus, retrodirective RFID array tags are introduced in the current work to increase the operating range with minimal costs and levels of complexity since 90° hybrids are used to achieve proper backscattering. To evaluate the proposed passive tag array, performance aspects are addressed. Specifically, we examine the Bit Error Rate with respect to the Signal to Noise Ratio for the retrodirective tag, the one antenna, the broadside, and the spatial diversity array. The results prove that the proposed tag allows for a significant increase in the operational range. Full article
Show Figures

Figure 1

22 pages, 7288 KiB  
Article
Research on Tree Flash Fault Localization of Hybrid Overhead–Underground Lines Based on Improved Double-Ended Traveling Wave Method
by Zukang Huang, Chunhua Fang, Quancai Jiang, Tao Hu and Junjie Lv
Appl. Sci. 2024, 14(11), 4739; https://doi.org/10.3390/app14114739 - 30 May 2024
Cited by 1 | Viewed by 1562
Abstract
The occurrence of tree flash faults in hybrid overhead–underground lines presents a significant challenge to the smooth operation of power systems. However, research on localizing such faults is relatively scarce. This study conducts theoretical analyses on the formation of tree flash faults, constructs [...] Read more.
The occurrence of tree flash faults in hybrid overhead–underground lines presents a significant challenge to the smooth operation of power systems. However, research on localizing such faults is relatively scarce. This study conducts theoretical analyses on the formation of tree flash faults, constructs a tree flash fault discharge test platform, and simulates the discharge process. The tree flash fault discharge traveling wave signals were obtained through a high-frequency current acquisition system. Additionally, this paper establishes a model for the current traveling wave of tree flash faults and analyzes transmission attenuation. To enhance the bi-terminal traveling wave localization method, we introduce modal decomposition and the Hilbert–Huang transform. Modal decomposition is used to disentangle signals and derive the instantaneous frequencies of modal signal components through the Hilbert–Huang transform. This process helps determine the time at which the initial wavefront reaches the terminals of the mixed-line transmission. The simulation analysis carried out using PSCAD/EMTDC v4.6.3 demonstrates that this method effectively calibrates the wavefront timing of tree flash fault signals without requiring knowledge of their wave velocity along the mixed-line transmission. Therefore, this approach achieves precise localization of tree flash faults efficiently. Full article
(This article belongs to the Topic Power System Protection)
Show Figures

Figure 1

16 pages, 3684 KiB  
Article
Noise Reduction and Localization Accuracy in a Mobile Magnetoencephalography System
by Timothy Bardouille, Vanessa Smith, Elias Vajda, Carson Drake Leslie and Niall Holmes
Sensors 2024, 24(11), 3503; https://doi.org/10.3390/s24113503 - 29 May 2024
Cited by 2 | Viewed by 1795
Abstract
Magnetoencephalography (MEG) non-invasively provides important information about human brain electrophysiology. The growing use of optically pumped magnetometers (OPM) for MEG, as opposed to fixed arrays of cryogenic sensors, has opened the door for innovation in system design and use cases. For example, cryogenic [...] Read more.
Magnetoencephalography (MEG) non-invasively provides important information about human brain electrophysiology. The growing use of optically pumped magnetometers (OPM) for MEG, as opposed to fixed arrays of cryogenic sensors, has opened the door for innovation in system design and use cases. For example, cryogenic MEG systems are housed in large, shielded rooms to provide sufficient space for the system dewar. Here, we investigate the performance of OPM recordings inside of a cylindrical shield with a 1 × 2 m2 footprint. The efficacy of shielding was measured in terms of field attenuation and isotropy, and the value of post hoc noise reduction algorithms was also investigated. Localization accuracy was quantified for 104 OPM sensors mounted on a fixed helmet array based on simulations and recordings from a bespoke current dipole phantom. Passive shielding attenuated the vector field magnitude to 50.0 nT at direct current (DC), to 16.7 pT/√Hz at power line, and to 71 fT/√Hz (median) in the 10–200 Hz range. Post hoc noise reduction provided an additional 5–15 dB attenuation. Substantial field isotropy remained in the volume encompassing the sensor array. The consistency of the isotropy over months suggests that a field nulling solution could be readily applied. A current dipole phantom generating source activity at an appropriate magnitude for the human brain generated field fluctuations on the order of 0.5–1 pT. Phantom signals were localized with 3 mm localization accuracy, and no significant bias in localization was observed, which is in line with performance for cryogenic and OPM MEG systems. This validation of the performance of a small footprint MEG system opens the door for lower-cost MEG installations in terms of raw materials and facility space, as well as mobile imaging systems (e.g., truck-based). Such implementations are relevant for global adoption of MEG outside of highly resourced research and clinical institutions. Full article
(This article belongs to the Special Issue Quantum Sensors and Their Biomedical Applications)
Show Figures

Figure 1

Back to TopTop