Unit Cell Optimization of Groove Gap Waveguide for High Bandwidth Microwave Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Unit Cell
2.2. Design of Mushroom Groove Gap Waveguide (MGGW)
2.3. Fabrication of MGGW
3. Results and Discussion
Evaluation of Fabricated Design Modeled at 3 GHz Spectrum
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, B.; Wu, P.; Yu, Z.; Zhu, Z.; Teng, L. A Novel End-Wall Waveguide Excitation with Wide Bandwidth and Simple Structure for Millimeter-Wave/Terahertz Application. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 831–834. [Google Scholar] [CrossRef]
- Shi, X.; Xue, Y.; Yang, Y.-J.; Chen, J.-X. A Wideband DRWG Balun with Low Loss and Compact Size. IEEE Microw. Wirel. Technol. Lett. 2024, 34, 379–382. [Google Scholar] [CrossRef]
- Ossorio, J.; Cogollos, S.; Boria, V.; Guglielmi, M. Rectangular Waveguide Quadruplet Filter for Satellite Applications. In Proceedings of the 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2–7 June 2019; pp. 1359–1362. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; Wiley.com.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Bilawal, F.; Babaeian, F.; Trinh, K.T.; Karmakar, N.C. The Art of Substrate-Integrated-Waveguide Power Dividers. IEEE Access 2023, 11, 9311–9325. [Google Scholar] [CrossRef]
- Kildal, P.-S.; Alfonso, E.; Valero-Nogueira, A.; Rajo-Iglesias, E. Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 84–87. [Google Scholar] [CrossRef]
- Kildal, P.-S. Waveguides and Transmission Lines in Gaps between Parallel Conducting Surfaces. U.S. Patent 20110181373A1 28 July 2011. [Google Scholar]
- Zhou, S.-G.; Huang, G.-L.; Chio, T.-H.; Yang, J.-J.; Wei, G. Design of a Wideband Dual-Polarization Full-Corporate Waveguide Feed Antenna Array. IEEE Trans. Antennas Propag. 2015, 63, 4775–4782. [Google Scholar] [CrossRef]
- Sakakibara, K.; Kimura, Y.; Akiyama, A.; Hirokawa, J.; Ando, M.; Goto, N. Alternating phase-fed waveguide slot arrays with a single-layer multiple-way power divider. IEE Proc.-Microw. Antennas Propag. 1997, 144, 425. [Google Scholar] [CrossRef]
- Kildal, P.-S.; Zaman, A.U.; Rajo-Iglesias, E.; Alfonso, E.; Valero-Nogueira, A. Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression. IET Microw. Antennas Propag. 2011, 5, 262. [Google Scholar] [CrossRef]
- Zaman, A.U.; Kildal, P.; Kishk, A.A. Narrow-Band Microwave Filter Using High-Q Groove Gap Waveguide Resonators With Manufacturing Flexibility and No Sidewalls. IEEE Trans. Compon. Packag. Manuf. Technol. 2012, 2, 1882–1889. [Google Scholar] [CrossRef]
- Alfonso, E.; Zaman, A.U.; Pucci, E.; Kildal, P.-S. Gap waveguide components for millimetre-wave systems: Couplers, filters, antennas, MMIC packaging. In Proceedings of the 2012 International Symposium on Antennas and Propagation (ISAP), Nagoya, Japan, 29 October–2 November 2012; pp. 243–246. [Google Scholar]
- Djerafi, T.; Patrovsky, A.; Wu, K.; Tatu, S.O. Recombinant Waveguide Power Divider. IEEE Trans. Microw. Theory Tech. 2013, 61, 3884–3891. [Google Scholar] [CrossRef]
- Alos, E.A.; Zaman, A.U.; Kildal, P. Ka-Band Gap Waveguide Coupled-Resonator Filter for Radio Link Diplexer Application. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 870–879. [Google Scholar] [CrossRef]
- Pucci, E.; Rajo-Iglesias, E.; Vazquez-Roy, J.-L.; Kildal, P.-S. Planar Dual-Mode Horn Array With Corporate-Feed Network in Inverted Microstrip Gap Waveguide. IEEE Trans. Antennas Propag. 2014, 62, 3534–3542. [Google Scholar] [CrossRef]
- Zaman, A.U.; Kildal, P.-S. Wide-Band Slot Antenna Arrays With Single-Layer Corporate-Feed Network in Ridge Gap Waveguide Technology. IEEE Trans. Antennas Propag. 2014, 62, 2992–3001. [Google Scholar] [CrossRef]
- Zaman, A.U.; Alexanderson, M.; Vukusic, T.; Kildal, P.-S. Gap Waveguide PMC Packaging for Improved Isolation of Circuit Components in High-Frequency Microwave Modules. IEEE Trans. Compon. Packag. Manuf. Technol. 2014, 4, 16–25. [Google Scholar] [CrossRef]
- Vosoogh, A.; Kildal, P.-S. Corporate-Fed Planar 60-GHz Slot Array Made of Three Unconnected Metal Layers Using AMC Pin Surface for the Gap Waveguide. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1935–1938. [Google Scholar] [CrossRef]
- Zaman, A.U.; Vassilev, V.; Kildal, P.-S.; Zirath, H. Millimeter Wave E-Plane Transition From Waveguide to Microstrip Line With Large Substrate Size Related to MMIC Integration. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 481–483. [Google Scholar] [CrossRef]
- Farahbakhsh, A.; Zarifi, D.; Zaman, A.U.; Kildal, P.-S. Corporate distribution networks for slot array antenna based on groove gap waveguide technology. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Farahbakhsh, A.; Zarifi, D.; Zaman, A.U. 60-GHz Groove Gap Waveguide Based Wideband H -Plane Power Dividers and Transitions: For Use in High-Gain Slot Array Antenna. IEEE Trans. Microw. Theory Tech. 2017, 65, 4111–4121. [Google Scholar] [CrossRef]
- Liu, J.; Vosoogh, A.; Zaman, A.U.; Yang, J. Design and Fabrication of a High-Gain 60-GHz Cavity-Backed Slot Antenna Array Fed by Inverted Microstrip Gap Waveguide. IEEE Trans. Antennas Propag. 2017, 65, 2117–2122. [Google Scholar] [CrossRef]
- Zarifi, D.; Farahbakhsh, A.; Zaman, A.U. A Gap Waveguide-Fed Wideband Patch Antenna Array for 60-GHz Applications. IEEE Trans. Antennas Propag. 2017, 65, 4875–4879. [Google Scholar] [CrossRef]
- Vosoogh, A.; Sorkherizi, M.S.; Zaman, A.U.; Yang, J.; Kishk, A.A. An Integrated Ka-Band Diplexer-Antenna Array Module Based on Gap Waveguide Technology with Simple Mechanical Assembly and No Electrical Contact Requirements. IEEE Trans. Microw. Theory Tech. 2018, 66, 962–972. [Google Scholar] [CrossRef]
- Farahbakhsh, A.; Zarifi, D.; Zaman, A.U. A mmWave Wideband Slot Array Antenna Based on Ridge Gap Waveguide with 30% Bandwidth. IEEE Trans. Antennas Propag. 2018, 66, 1008–1013. [Google Scholar] [CrossRef]
- Rezaee, M.; Zaman, A.U. Realisation of carved and iris groove gap waveguide filter and E-plane diplexer for V-band radio link application. IET Microw. Antennas Propag. 2017, 11, 2109–2115. [Google Scholar] [CrossRef]
- Sievenpiper, D.; Zhang, L.; Broas, R.F.J.; Alexopolous, N.G.; Yablonovitch, E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 1999, 47, 2059–2074. [Google Scholar] [CrossRef]
- Silveirinha, M.G.; Fernandes, C.A.; Costa, J.R. Electromagnetic Characterization of Textured Surfaces Formed by Metallic Pins. IEEE Trans. Antennas Propag. 2008, 56, 405–415. [Google Scholar] [CrossRef]
- Rajo-Iglesias, E.; Kildal, P.-S.; Zaman, A.U.; Kishk, A. Bed of Springs for Packaging of Microstrip Circuits in the Microwave Frequency Range. IEEE Trans. Compon. Packag. Manuf. Technol. 2012, 2, 1623–1628. [Google Scholar] [CrossRef]
- Rajo-Iglesias, E.; Pucci, E.; Kishk, A.A.; Kildal, P.-S. Suppression of Parallel Plate Modes in Low Frequency Microstrip Circuit Packages Using Lid of Printed Zigzag Wires. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 359–361. [Google Scholar] [CrossRef]
- Zaman, A.U.; Vassilev, V.; Kildal, P.-S.; Kishk, A. Increasing parallel plate stop-band in gap waveguides using inverted pyramid-shaped nails for slot array application above 60GHz. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 11–15 April 2011; pp. 2254–2257. [Google Scholar]
- Yong, W.Y.; Vosoogh, A.; Bagheri, A.; Van De Ven, C.; Haddadi, A.; Glazunov, A.A. An Overview of Recent Development of the Gap-Waveguide Technology for mmWave and sub-THz Applications. TechRxiv, 2023; preprint. [Google Scholar] [CrossRef]
- Wang, E.; Zaman, A.U.; Yan, Z.; Yang, J. Pattern Distributed Pins in Half-mode Groove Gap Waveguide for Stable Performance and Low Cost. In Proceedings of the 2023 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, 26–31 March 2023; IEEE: Hoboken, NJ, USA, 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Ferrando-Rocher, M.; Herranz-Herruzo, J.I.; Valero-Nogueira, A.; Baquero-Escudero, M. A Half-Mode Groove Gap Waveguide for Single-Layer Antennas in the Millimeter-Wave Band. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 2402–2406. [Google Scholar] [CrossRef]
- Marini, S.; Rocher, M.F.; Hernández, A.M.; Nieves, E.G.; López, A.J.; Boria, V.E. Ka-band diplexer design based on half-mode groove gap waveguide. AEU-Int. J. Electron. Commun. 2024, 175, 155062. [Google Scholar] [CrossRef]
- Rajo-Iglesias, E.; Kildal, P.-S. Numerical studies of bandwidth of parallel-plate cut-off realised by a bed of nails, corrugations and mushroom-type electromagnetic bandgap for use in gap waveguides. IET Microw. Antennas Propag. 2011, 5, 282. [Google Scholar] [CrossRef]
- Rs-261-B; Waveguides and RF. EIA Standards and Technology Department: Herndon, Virginia, 2018.
- Polemi, A.; Rajo-Iglesias, E.; Maci, S. Analytical Dispersion Characteristic of a Gap-Groove Waveguide. Prog. Electromagn. Res. M 2011, 18, 55–72. [Google Scholar] [CrossRef]
- Hu, L.; Wang, G.; Liang, J.; Zhang, C. Novel Compact Mushroom-Type EBG Structure for Electromagnetic Coupling Reduction of Microstrip Antenna array. Frequenz 2015, 69. [Google Scholar] [CrossRef]
- Coulombe, M.; Koodiani, S.F.; Caloz, C. Compact Elongated Mushroom (EM)-EBG Structure for Enhancement of Patch Antenna Array Performances. IEEE Trans. Antennas Propag. 2010, 58, 1076–1086. [Google Scholar] [CrossRef]
Cut-Off Frequency of Lowest Mode (GHz) | Cut-Off Frequency of Upper Mode (GHz) | Recommended Frequency Band (GHz) |
---|---|---|
2.078 | 4.156 | 2.6~3.95 |
Category of Unit Cell | Bandgap between the First and Second Propagation Modes |
---|---|
Bed-of-nails-based EBG | First mode cut-off frequency = 1.91533 GHz Second mode cut-off frequency = 4.2251 GHz Bandgap = 2.309 GHz |
Proposed mushroom-unit-cell-based EBG | First mode cut-off frequency = 1.6049 GHz Second mode cut-off frequency = 4.1056 GHz Bandgap = 2.50 GHz A significant increase of 191 MHz (8%) is achieved for the proposed new unit cell |
Geometric Parameter | Dimension | Geometric Parameter | Dimension |
---|---|---|---|
h2 (WR284, EIA standard) | 34.036 mm | w1 | 10 mm |
g1 | 4.036 mm | w2 | 15 mm |
h1 | 25 mm | p | 20 mm |
h3 | 05 mm |
GGW Simulated with | Bandwidth of Straight Structure (Figure 6) | Bandwidth of Single 90° Bend (Figure 7) | Bandwidth of Double 90° Bend (Figure 8) |
---|---|---|---|
Bed-of-nails GGW | 2.248 GHz @20 dB | 1.136 GHz @20 dB | 0.766 GHz @20 dB |
Proposed MGGW Design | 2.632 GHz @20 dB (14.5% greater) | 1.368 GHz @20 dB (16.9% greater) | 1.136 GHz @20 dB (32.5% greater) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahir, G.; Hassan, A.; Ali, S.; Bermak, A. Unit Cell Optimization of Groove Gap Waveguide for High Bandwidth Microwave Applications. Appl. Sci. 2024, 14, 10891. https://doi.org/10.3390/app142310891
Tahir G, Hassan A, Ali S, Bermak A. Unit Cell Optimization of Groove Gap Waveguide for High Bandwidth Microwave Applications. Applied Sciences. 2024; 14(23):10891. https://doi.org/10.3390/app142310891
Chicago/Turabian StyleTahir, Ghiayas, Arshad Hassan, Shawkat Ali, and Amine Bermak. 2024. "Unit Cell Optimization of Groove Gap Waveguide for High Bandwidth Microwave Applications" Applied Sciences 14, no. 23: 10891. https://doi.org/10.3390/app142310891
APA StyleTahir, G., Hassan, A., Ali, S., & Bermak, A. (2024). Unit Cell Optimization of Groove Gap Waveguide for High Bandwidth Microwave Applications. Applied Sciences, 14(23), 10891. https://doi.org/10.3390/app142310891