Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,062)

Search Parameters:
Keywords = power conversion efficiency increase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1008 KiB  
Article
Variable Submodule Voltage Control for Enhanced Efficiency in DAB-Integrated Modular Multilevel Converters
by Marzio Barresi, Davide De Simone, Edoardo Ferri and Luigi Piegari
Energies 2025, 18(15), 4096; https://doi.org/10.3390/en18154096 (registering DOI) - 1 Aug 2025
Abstract
Modular multilevel converters (MMCs) are widely used in power-conversion applications, including distributed energy storage integration, because of their scalability, high efficiency, and reduced harmonic distortion. Integrating battery storage systems into MMC submodules using dual active bridge (DAB) converters provides electrical isolation and reduces [...] Read more.
Modular multilevel converters (MMCs) are widely used in power-conversion applications, including distributed energy storage integration, because of their scalability, high efficiency, and reduced harmonic distortion. Integrating battery storage systems into MMC submodules using dual active bridge (DAB) converters provides electrical isolation and reduces voltage stress, harmonics, and common-mode issues. However, voltage fluctuations due to the battery state of charge can compromise the zero-voltage switching (ZVS) operation of a DAB and increase the reactive power circulation, leading to higher losses and reduced system performance. To address these challenges, this study investigated an active control strategy for submodule voltage regulation in an MMC with DAB-based battery integration. Assuming single-phase-shift modulation, two control strategies were evaluated. The first strategy regulated the DAB voltage on one side to match the battery voltage on the other, scaled by the high-frequency transformer turns ratio, which facilitated the ZVS operation and reduced the reactive power. The second strategy optimized this voltage to minimize the total power-conversion losses. The proposed control strategies improved the efficiency, particularly at low power levels, achieving several percentage points of improvement compared to maintaining a constant voltage. Full article
15 pages, 930 KiB  
Article
The Effect of Nematic Liquid Crystal on the Performance of Dye-Sensitized Solar Cells
by Paweł Szubert and Stanisław A. Różański
Crystals 2025, 15(8), 705; https://doi.org/10.3390/cryst15080705 (registering DOI) - 31 Jul 2025
Abstract
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect [...] Read more.
The motivation for increasing the efficiency of renewable energy sources is the basic problem of ongoing research. Currently, intensive research is underway in technology based on the use of dye-sensitized solar cells (DSSCs). The aim of this work is to investigate the effect of modifying the iodide electrolyte with liquid crystals (LCs) known for the self-organization of molecules into specific mesophases. The current–voltage (I-V) and power–voltage (P-V) characteristics were determined for the ruthenium-based dyes N3, Z907, and N719 to investigate the influence of their structure and concentration on the efficiency of DSSCs. The addition of a nematic LC of 4-n-pentyl-4-cyanobiphenyl (5CB) to the iodide electrolyte influences the I-V and P-V characteristics. A modification of the I-V characteristics was found, especially a change in the values of short circuit current (ISC) and open circuit voltage (VOC). The conversion efficiency for cells with modified electrolyte shows a complex dependence that first increases and then decreases with increasing LC concentration. It may be caused by the orientational interaction of LC molecules with the titanium dioxide (TiO2) layer on the photoanode. A too high concentration of LC may lead to a reduction in total ionic conductivity due to the insulating effect of the elongated polar molecules. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
10 pages, 1855 KiB  
Article
TCAD Design and Optimization of In0.20Ga0.80N/In0.35Ga0.65N Quantum-Dot Intermediate-Band Solar Cells
by Salaheddine Amezzoug, Haddou El Ghazi and Walid Belaid
Crystals 2025, 15(8), 693; https://doi.org/10.3390/cryst15080693 - 30 Jul 2025
Viewed by 195
Abstract
Intermediate-band photovoltaics promise single-junction efficiencies that exceed the Shockley and Queisser limit, yet viable material platforms and device geometries remain under debate. Here, we perform comprehensive two-dimensional device-scale simulations using Silvaco Atlas TCAD to analyze p-i-n In0.20Ga0.80N solar cells [...] Read more.
Intermediate-band photovoltaics promise single-junction efficiencies that exceed the Shockley and Queisser limit, yet viable material platforms and device geometries remain under debate. Here, we perform comprehensive two-dimensional device-scale simulations using Silvaco Atlas TCAD to analyze p-i-n In0.20Ga0.80N solar cells in which the intermediate band is supplied by In0.35Ga0.65N quantum dots located inside the intrinsic layer. Quantum-dot diameters from 1 nm to 10 nm and areal densities up to 116 dots per period are evaluated under AM 1.5G, one-sun illumination at 300 K. The baseline pn junction achieves a simulated power-conversion efficiency of 33.9%. The incorporation of a single 1 nm quantum-dot layer dramatically increases efficiency to 48.1%, driven by a 35% enhancement in short-circuit current density while maintaining open-circuit voltage stability. Further increases in dot density continue to boost current but with diminishing benefit; the highest efficiency recorded, 49.4% at 116 dots, is only 1.4 percentage points above the 40-dot configuration. The improvements originate from two-step sub-band-gap absorption mediated by the quantum dots and from enhanced carrier collection in a widened depletion region. These results define a practical design window centred on approximately 1 nm dots and about 40 dots per period, balancing substantial efficiency gains with manageable structural complexity and providing concrete targets for epitaxial implementation. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

17 pages, 1540 KiB  
Article
Evaluating a Nationally Localized AI Chatbot for Personalized Primary Care Guidance: Insights from the HomeDOCtor Deployment in Slovenia
by Matjaž Gams, Tadej Horvat, Žiga Kolar, Primož Kocuvan, Kostadin Mishev and Monika Simjanoska Misheva
Healthcare 2025, 13(15), 1843; https://doi.org/10.3390/healthcare13151843 - 29 Jul 2025
Viewed by 256
Abstract
Background/Objectives: The demand for accessible and reliable digital health services has increased significantly in recent years, particularly in regions facing physician shortages. HomeDOCtor, a conversational AI platform developed in Slovenia, addresses this need with a nationally adapted architecture that combines retrieval-augmented generation [...] Read more.
Background/Objectives: The demand for accessible and reliable digital health services has increased significantly in recent years, particularly in regions facing physician shortages. HomeDOCtor, a conversational AI platform developed in Slovenia, addresses this need with a nationally adapted architecture that combines retrieval-augmented generation (RAG) and a Redis-based vector database of curated medical guidelines. The objective of this study was to assess the performance and impact of HomeDOCtor in providing AI-powered healthcare assistance. Methods: HomeDOCtor is designed for human-centered communication and clinical relevance, supporting multilingual and multimedia citizen inputs while being available 24/7. It was tested using a set of 100 international clinical vignettes and 150 internal medicine exam questions from the University of Ljubljana to validate its clinical performance. Results: During its six-month nationwide deployment, HomeDOCtor received overwhelmingly positive user feedback with minimal criticism, and exceeded initial expectations, especially in light of widespread media narratives warning about the risks of AI. HomeDOCtor autonomously delivered localized, evidence-based guidance, including self-care instructions and referral suggestions, with average response times under three seconds. On international benchmarks, the system achieved ≥95% Top-1 diagnostic accuracy, comparable to leading medical AI platforms, and significantly outperformed stand-alone ChatGPT-4o in the national context (90.7% vs. 80.7%, p = 0.0135). Conclusions: Practically, HomeDOCtor eases the burden on healthcare professionals by providing citizens with 24/7 autonomous, personalized triage and self-care guidance for less complex medical issues, ensuring that these cases are self-managed efficiently. The system also identifies more serious cases that might otherwise be neglected, directing them to professionals for appropriate care. Theoretically, HomeDOCtor demonstrates that domain-specific, nationally adapted large language models can outperform general-purpose models. Methodologically, it offers a framework for integrating GDPR-compliant AI solutions in healthcare. These findings emphasize the value of localization in conversational AI and telemedicine solutions across diverse national contexts. Full article
(This article belongs to the Special Issue Application of Digital Services to Improve Patient-Centered Care)
Show Figures

Figure 1

30 pages, 1981 KiB  
Article
Stochastic Control for Sustainable Hydrogen Generation in Standalone PV–Battery–PEM Electrolyzer Systems
by Mohamed Aatabe, Wissam Jenkal, Mohamed I. Mosaad and Shimaa A. Hussien
Energies 2025, 18(15), 3899; https://doi.org/10.3390/en18153899 - 22 Jul 2025
Viewed by 352
Abstract
Standalone photovoltaic (PV) systems offer a viable path to decentralized energy access but face limitations during periods of low solar irradiance. While batteries provide short-term storage, their capacity constraints often restrict the use of surplus energy, highlighting the need for long-duration solutions. Green [...] Read more.
Standalone photovoltaic (PV) systems offer a viable path to decentralized energy access but face limitations during periods of low solar irradiance. While batteries provide short-term storage, their capacity constraints often restrict the use of surplus energy, highlighting the need for long-duration solutions. Green hydrogen, generated via proton exchange membrane (PEM) electrolyzers, offers a scalable alternative. This study proposes a stochastic energy management framework that leverages a Markov decision process (MDP) to coordinate PV generation, battery storage, and hydrogen production under variable irradiance and uncertain load demand. The strategy dynamically allocates power flows, ensuring system stability and efficient energy utilization. Real-time weather data from Goiás, Brazil, is used to simulate system behavior under realistic conditions. Compared to the conventional perturb and observe (P&O) technique, the proposed method significantly improves system performance, achieving a 99.9% average efficiency (vs. 98.64%) and a drastically lower average tracking error of 0.3125 (vs. 9.8836). This enhanced tracking accuracy ensures faster convergence to the maximum power point, even during abrupt load changes, thereby increasing the effective use of solar energy. As a direct consequence, green hydrogen production is maximized while energy curtailment is minimized. The results confirm the robustness of the MDP-based control, demonstrating improved responsiveness, reduced downtime, and enhanced hydrogen yield, thus supporting sustainable energy conversion in off-grid environments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

13 pages, 2686 KiB  
Article
Synergistic Energy Level Alignment and Light-Trapping Engineering for Optimized Perovskite Solar Cells
by Li Liu, Wenfeng Liu, Qiyu Liu, Yongheng Chen, Xing Yang, Yong Zhang and Zao Yi
Coatings 2025, 15(7), 856; https://doi.org/10.3390/coatings15070856 - 20 Jul 2025
Viewed by 329
Abstract
Perovskite solar cells (PSCs) leverage the exceptional photoelectric properties of perovskite materials, yet interfacial energy level mismatches limit carrier extraction efficiency. In this work, energy level alignment was exploited to reduce the charge transport barrier, which can be conducive to the transmission of [...] Read more.
Perovskite solar cells (PSCs) leverage the exceptional photoelectric properties of perovskite materials, yet interfacial energy level mismatches limit carrier extraction efficiency. In this work, energy level alignment was exploited to reduce the charge transport barrier, which can be conducive to the transmission of photo-generated carriers and reduce the probability of electron–hole recombination. We designed a dual-transition perovskite solar cell (PSC) with the structure of FTO/TiO2/Nb2O5/CH3NH3PbI3/MoO3/Spiro-OMeTAD/Au by finite element analysis methods. Compared with the pristine device (FTO/TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au), the open-circuit voltage of the optimized cell increases from 0.98 V to 1.06 V. Furthermore, the design of a circular platform light-trapping structure makes up for the light loss caused by the transition at the interface. The short-circuit current density of the optimized device increases from 19.81 mA/cm2 to 20.36 mA/cm2, and the champion device’s power conversion efficiency (PCE) reaches 17.83%, which is an 18.47% improvement over the planar device. This model provides new insight for the optimization of perovskite devices. Full article
Show Figures

Figure 1

12 pages, 1874 KiB  
Article
Influence of 50 Hz and 20 kHz Plasma Generator Frequency on Ammonia Decomposition for Hydrogen Recovery
by Michalina Perron, Mateusz Wiosna, Wojciech Gajewski, Krzysztof Krawczyk and Michał Młotek
Energies 2025, 18(14), 3841; https://doi.org/10.3390/en18143841 - 19 Jul 2025
Viewed by 252
Abstract
The development of alternative energy is crucial to realizing the goals of the Paris Agreement. Hydrogen is a key energy carrier, and ammonia is considered its practical storage medium due to its high H2 content and efficient storage and transportation. However, efficient [...] Read more.
The development of alternative energy is crucial to realizing the goals of the Paris Agreement. Hydrogen is a key energy carrier, and ammonia is considered its practical storage medium due to its high H2 content and efficient storage and transportation. However, efficient NH3 decomposition methods are needed to recover stored hydrogen. Plasma-assisted decomposition offers a potential solution, but high energy consumption, mainly due to inefficient power supply systems, remains a challenge. This study examines the impact of varying the driving frequency of a gliding discharge plasma system on ammonia decomposition, comparing low-frequency 50 Hz and high-frequency 20 kHz power supplies. Results show that high-frequency plasma enhances electron density and energy distribution, increasing the amount of vibrationally excited nitrogen molecules. This improves catalyst activation, leading to higher ammonia conversion and hydrogen production. Compared to the thyristor-powered system, the high-frequency system increased ammonia decomposition productivity by 30% and reduced energy consumption by 36% using a coprecipitated catalyst. These findings emphasize the importance of a plasma generator optimizing plasma-assisted ammonia decomposition and improving efficiency in hydrogen production. Full article
(This article belongs to the Special Issue Searching for Ways of Optimizing the Attainment and Use of Energy)
Show Figures

Figure 1

23 pages, 3125 KiB  
Article
Classification of Complex Power Quality Disturbances Based on Lissajous Trajectory and Lightweight DenseNet
by Xi Zhang, Jianyong Zheng, Fei Mei and Huiyu Miao
Appl. Sci. 2025, 15(14), 8021; https://doi.org/10.3390/app15148021 - 18 Jul 2025
Viewed by 244
Abstract
With the increase in the penetration rate of distributed sources and loads, the sensor monitoring data is increasing dramatically. Power grid maintenance services require a rapid response in power quality data analysis. To achieve a rapid response and highly accurate classification of power [...] Read more.
With the increase in the penetration rate of distributed sources and loads, the sensor monitoring data is increasing dramatically. Power grid maintenance services require a rapid response in power quality data analysis. To achieve a rapid response and highly accurate classification of power quality disturbances (PQDs), this paper proposes an efficient classification algorithm for PQDs based on Lissajous trajectory (LT) and a lightweight DenseNet, which utilizes the concept of Lissajous curves to construct an ideal reference signal and combines it with the original PQD signal to synthesize a feature trajectory with a distinctive shape. Meanwhile, to enhance the ability and efficiency of capturing trajectory features, a lightweight L-DenseNet skeleton model is designed, and its feature extraction capability is further improved by integrating an attention mechanism with L-DenseNet. Finally, the LT image is input into the fusion model for training, and PQD classification is achieved using the optimally trained model. The experimental results demonstrate that, compared with current mainstream PQD classification methods, the proposed algorithm not only achieves superior disturbance classification accuracy and noise robustness but also significantly improves response speed in PQD classification tasks through its concise visualization conversion process and lightweight model design. Full article
Show Figures

Figure 1

15 pages, 2932 KiB  
Article
Optimization Study of the Line Array Layout of Slope–Pendulum Wave Energy Conversion Device
by Yue Zhao, Zhanhong Wan, Ze Li and Guiyu Cao
J. Mar. Sci. Eng. 2025, 13(7), 1367; https://doi.org/10.3390/jmse13071367 - 18 Jul 2025
Viewed by 233
Abstract
The development of wave energy is of great ecological and commercial value. This paper studies the linear vertical array arrangement of the slope–pendulum wave energy conversion device (S-PWEC). Based on the WEC-Sim open-source program, we build four wave energy-generating devices with linear vertical [...] Read more.
The development of wave energy is of great ecological and commercial value. This paper studies the linear vertical array arrangement of the slope–pendulum wave energy conversion device (S-PWEC). Based on the WEC-Sim open-source program, we build four wave energy-generating devices with linear vertical array distributions to study the power generation performance of the array platform and establish the factors influencing the array. S-PWEC is affected by radiation and a shading effect from neighboring devices in a linear vertical array configuration. The overall and individual power generation efficiencies are similar. An increase in the number of devices in the linear vertical array exacerbates the fluctuation of wave excitation moment and output power, indicating that there exists an optimal array configuration for maximizing the power generation efficiency. The performance of the array devices is significantly affected by the direction of incoming waves, and the spacing of the arrays should therefore be adjusted according to the periods of the sea state: increasing the spacing in small periods and decreasing the spacing in large periods can effectively improve the overall power generation. In the future, we will continue to study other array forms of S-PWEC to improve the conversion efficiency of array wave power generation devices. Full article
Show Figures

Figure 1

25 pages, 7503 KiB  
Article
Shaft Generator Design Analysis for Military Ships in Maritime Applications
by Kamer Gökbulut Belli and Tuğçe Demirdelen
Energies 2025, 18(14), 3792; https://doi.org/10.3390/en18143792 - 17 Jul 2025
Viewed by 227
Abstract
Naval ships are of paramount importance to national security, culture, and naval operations. A primary challenge for naval authorities is to balance the imperatives of maritime dominance with the operational demands of achieving sufficient, sustainable reliability. Shaft generators (SGs) are crucial to the [...] Read more.
Naval ships are of paramount importance to national security, culture, and naval operations. A primary challenge for naval authorities is to balance the imperatives of maritime dominance with the operational demands of achieving sufficient, sustainable reliability. Shaft generators (SGs) are crucial to the energy conversion systems on naval ships, functioning as part of the main power systems on board and providing both propulsion and power for various operational loads. In this sense, the design of shaft generators is an engineering element that has a major impact on the overall ship performance. The design process will be conducted within the MATLAB/Simulink environment, a platform that facilitates the study of the dynamic behaviors of the system through simulation. The increasing demand for efficiency, reliability, and sustainability in the military, along with the impact of emerging technologies, will further underscore the significance of shaft generators. Analyses carried out in MATLAB/Simulink demonstrate that the selection of the most suitable power system for naval ships is dictated by the system requirements and operational demands. The main construction is such that this work is the first of its kind in the field of shaft generator research for naval ships. Full article
(This article belongs to the Topic Marine Energy)
Show Figures

Figure 1

28 pages, 9135 KiB  
Article
Performance Analysis of a Reciprocating Refrigeration Compressor Under Variable Operating Speeds
by Willian T. F. D. da Silva, Vitor M. Braga and Cesar J. Deschamps
Machines 2025, 13(7), 609; https://doi.org/10.3390/machines13070609 - 15 Jul 2025
Viewed by 295
Abstract
Variable-speed reciprocating compressors (VSRCs) have been increasingly used in domestic refrigeration due to their ability to modulate cooling capacity and reduce energy consumption. A detailed understanding of performance-limiting factors such as volumetric and exergetic inefficiencies is essential for optimizing their operation. An experimentally [...] Read more.
Variable-speed reciprocating compressors (VSRCs) have been increasingly used in domestic refrigeration due to their ability to modulate cooling capacity and reduce energy consumption. A detailed understanding of performance-limiting factors such as volumetric and exergetic inefficiencies is essential for optimizing their operation. An experimentally validated simulation model was developed using GT-SUITE to analyze a VSRC operating with R-600a across speeds from 1800 to 6300 rpm. Volumetric inefficiencies were quantified using a stratification methodology, while an exergy-based approach was adopted to assess the main sources of thermodynamic inefficiency in the compressor. Unlike traditional energy analysis, exergy analysis reveals where and why irreversibilities occur, linking them directly to power consumption and providing a framework for optimizing design. Results reveal that neither volumetric nor exergy efficiency varies monotonically with compressor speed. At low speeds, exergetic losses are dominated by the electrical motor (up to 19% of input power) and heat transfer (up to 13.5%). Conversely, at high speeds, irreversibilities from fluid dynamics become critical, with losses from discharge valve throttling reaching 5.8% and bearing friction increasing to 6.5%. Additionally, key volumetric inefficiencies arise from piston–cylinder leakage, which causes up to a 4.5% loss at low speeds, and discharge valve backflow, causing over a 5% loss at certain resonant speeds. The results reveal complex speed-dependent interactions between dynamic and thermodynamic loss mechanisms in VSRCs. The integrated modeling approach offers a robust framework for diagnosing inefficiencies and supports the development of more energy-efficient compressor designs. Full article
(This article belongs to the Special Issue Theoretical and Experimental Study on Compressor Performance)
Show Figures

Figure 1

26 pages, 5733 KiB  
Article
Design Optimization of Cesium Contents for Mixed Cation MA1−xCsxPbI3-Based Efficient Perovskite Solar Cell
by Syed Abdul Moiz, Ahmed N. M. Alahmadi and Mohammed Saleh Alshaikh
Nanomaterials 2025, 15(14), 1085; https://doi.org/10.3390/nano15141085 - 13 Jul 2025
Viewed by 347
Abstract
Perovskite solar cells (PSCs) have already been reported as a promising alternative to traditional energy sources due to their excellent power conversion efficiency, affordability, and versatility, which is particularly relevant considering the growing worldwide demand for energy and increasing scarcity of natural resources. [...] Read more.
Perovskite solar cells (PSCs) have already been reported as a promising alternative to traditional energy sources due to their excellent power conversion efficiency, affordability, and versatility, which is particularly relevant considering the growing worldwide demand for energy and increasing scarcity of natural resources. However, operational concerns under environmental stresses hinder its economic feasibility. Through the addition of cesium (Cs), this study investigates how to optimize perovskite solar cells (PSCs) based on methylammonium lead-iodide (MAPbI3) by creating mixed-cation compositions of MA1−xCsxPbI3 (x = 0, 0.25, 0.5, 0.75, 1) for devices A to E, respectively. The impact of cesium content on the following factors, such as open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and power conversion efficiency (PCE), was investigated using simulation software, with ITO/TiO2/MA1−xCsxPbI3/Spiro-OMeTAD/Au as a device architecture. Due to diminished defect density, the device with x = 0.5 (MA0.5Cs0.5PbI3) attains a maximum power conversion efficiency of 18.53%, with a Voc of 0.9238 V, Jsc of 24.22 mA/cm2, and a fill factor of 82.81%. The optimal doping density of TiO2 is approximately 1020 cm−3, while the optimal thicknesses of the electron transport layer (TiO2, 10–30 nm), the hole-transport layer (Spiro-OMeTAD, about 10–20 nm), and the perovskite absorber (750 nm) were identified to maximize efficiency. The inclusion of a small amount of Cs may improve photovoltaic responses; however, at elevated concentrations (x > 0.5), power conversion efficiency (PCE) diminished due to the presence of trap states. The results show that mixed-cation perovskite solar cells can be a great commercially viable option because they strike a good balance between efficiency and performance. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

13 pages, 2498 KiB  
Article
Evaluation of Dynamic On-Resistance and Trapping Effects in GaN on Si HEMTs Using Rectangular Gate Voltage Pulses
by Pasquale Cusumano, Alessandro Sirchia and Flavio Vella
Electronics 2025, 14(14), 2791; https://doi.org/10.3390/electronics14142791 - 11 Jul 2025
Cited by 1 | Viewed by 325
Abstract
Dynamic on-resistance (RON) of commercial GaN on Si normally off high-electron-mobility transistor (HEMT) devices is a very important parameter because it is responsible for conduction losses that limit the power conversion efficiency of high-power switching converters. Due to charge trapping effects, [...] Read more.
Dynamic on-resistance (RON) of commercial GaN on Si normally off high-electron-mobility transistor (HEMT) devices is a very important parameter because it is responsible for conduction losses that limit the power conversion efficiency of high-power switching converters. Due to charge trapping effects, dynamic RON is always higher than in DC, a behavior known as current collapse. To study how short-time dynamics of charge trapping and release affects RON we use rectangular 0–5 V gate voltage pulses with durations in the 1 μs to 100 μs range. Measurements are first carried out for single pulses of increasing duration, and it is found that RON depends on both pulse duration and drain current ID, being higher at shorter pulse durations and lower ID. For a train of five pulses, RON decreases with pulse number, reaching a steady state after a time interval of 100 μs. The response to a five pulses train is compared to that of a square-wave signal to study the time evolution of RON toward a dynamic steady state. The DC RON is also measured, and it is a factor of ten smaller than dynamic RON at the same ID. This confirms that a reduction in trapped charges takes place in DC as compared to the square-wave switching operation. Additional off-state stress tests at VDS = 55 V reveal the presence of residual surface traps in the drain access region, leading to four times increase in RON in comparison to pristine devices. Finally, the dynamic RON is also measured by the double-pulse test (DPT) technique with inductive load, giving a good agreement with results from single-pulse measurements. Full article
Show Figures

Figure 1

15 pages, 1099 KiB  
Article
Enhanced Efficiency and Mechanical Stability in Flexible Perovskite Solar Cells via Phenethylammonium Iodide Surface Passivation
by Ibtisam S. Almalki, Tamader H. Alenazi, Lina A. Mansouri, Zainab H. Al Mubarak, Zainab T. Al Nahab, Sultan M. Alenzi, Yahya A. Alzahrani, Ghazal S. Yafi, Abdulmajeed Almutairi, Abdurhman Aldukhail, Bader Alharthi, Abdulaziz Aljuwayr, Faisal S. Alghannam, Anas A. Almuqhim, Huda Alkhaldi, Fawziah Alhajri, Nouf K. AL-Saleem, Masfer Alkahtani, Anwar Q. Alanazi and Masaud Almalki
Nanomaterials 2025, 15(14), 1078; https://doi.org/10.3390/nano15141078 - 11 Jul 2025
Viewed by 504
Abstract
Flexible perovskite solar cells (FPSCs) hold great promise for lightweight and wearable photovoltaics, but improving their efficiency and durability under mechanical stress remains a key challenge. In this work, we fabricate and characterize flexible planar FPSCs on a polyethylene terephthalate (PET). A phenethylammonium [...] Read more.
Flexible perovskite solar cells (FPSCs) hold great promise for lightweight and wearable photovoltaics, but improving their efficiency and durability under mechanical stress remains a key challenge. In this work, we fabricate and characterize flexible planar FPSCs on a polyethylene terephthalate (PET). A phenethylammonium iodide (PEAI) surface passivation layer is introduced on the perovskite to form a two-dimensional capping layer, and its impact on device performance and stability is systematically studied. The champion PEAI-passivated flexible device achieves a power conversion efficiency (PCE) of ~16–17%, compared to ~14% for the control device without PEAI. The improvement is primarily due to an increased open-circuit voltage and fill factor, reflecting effective surface defect passivation and improved charge carrier dynamics. Importantly, mechanical bending tests demonstrate robust flexibility: the PEAI-passivated cells retain ~85–90% of their initial efficiency after 700 bending cycles (radius ~5 mm), significantly higher than the ~70% retention of unpassivated cells. This work showcases that integrating a PEAI surface treatment with optimized electron (SnO2) and hole (spiro-OMeTAD) transport layers (ETL and HTL) can simultaneously enhance the efficiency and mechanical durability of FPSCs. These findings pave the way for more reliable and high-performance flexible solar cells for wearable and portable energy applications. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

10 pages, 2014 KiB  
Article
A Study on the Morphology of Poly(Triaryl Amine)-Based Hole Transport Layer via Solvent Optimization for High-Performance Inverted Perovskite Solar Cells
by Xiaoyin Xie, Xi Liu, Chufei Ding, Han Yang, Xueyi Liu, Guanchen Liu, Zhihai Liu and Eun-Cheol Lee
Inorganics 2025, 13(7), 232; https://doi.org/10.3390/inorganics13070232 - 9 Jul 2025
Viewed by 308
Abstract
Poly[bis(4-phenyl) (2,5,6-trimethylphenyl) amine (PTAA), as a hole transfer material, has been widely used in perovskite solar cells (PSCs). However, the optimal solvent for preparing the PTAA solution and coating the PTAA layer is still uncertain. In this work, we investigated three types of [...] Read more.
Poly[bis(4-phenyl) (2,5,6-trimethylphenyl) amine (PTAA), as a hole transfer material, has been widely used in perovskite solar cells (PSCs). However, the optimal solvent for preparing the PTAA solution and coating the PTAA layer is still uncertain. In this work, we investigated three types of organic solvents (toluene, chlorobenzene and dichlorobenzene) for processing PTAA layers as the hole transport layer in PSCs. Based on the experimental verification and molecular dynamics simulation results, all the evidence indicated that toluene performs best among the three candidates. This is attributed to the significant polarity difference between toluene and PTAA, which leads to the formation of a uniform surface morphology characterized by granular protuberances after spin coating. The contact area of the hole transfer layer with the surface aggregation is increased in reference to the rough surface, and the hydrophilicity of the PTAA layer is also increased. The improvement of these two aspects are conducive to the effective interfacial charge transfer. This leads to the generation of more photocurrent. The PSCs employing toluene-processed PTAA exhibit an average power conversion efficiency (PCE) of 19.1%, which is higher than that of PSCs using chlorobenzene- and dichlorobenzene-processed PTAA (17.3–17.9%). This work provides a direct optimization strategy for researchers aiming to fabricate PSCs based on PTAA as a hole transport layer and lays a solid foundation for the development of high-efficiency inverted PSCs. Full article
(This article belongs to the Special Issue Optical and Quantum Electronics: Physics and Materials)
Show Figures

Figure 1

Back to TopTop