Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (146)

Search Parameters:
Keywords = potassium doped

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 13921 KiB  
Article
Improving CMTS Physical Properties Through Potassium Doping for Enhanced Rhodamine B Degradation
by Amira Bouali, Olfa Kamoun, Moez Hajji, Ileana Nicoleta Popescu, Ruxandra Vidu and Najoua Turki Kamoun
Technologies 2025, 13(7), 301; https://doi.org/10.3390/technologies13070301 - 12 Jul 2025
Viewed by 351
Abstract
This study investigated the enhancement of Cu2MnSnS4 (CMTS) thin films’ photocatalytic properties through potassium (K) doping for rhodamine B degradation under visible light. K-doped CMTS films synthesized using spray pyrolysis technology achieved a 98% degradation efficiency within 120 min. The [...] Read more.
This study investigated the enhancement of Cu2MnSnS4 (CMTS) thin films’ photocatalytic properties through potassium (K) doping for rhodamine B degradation under visible light. K-doped CMTS films synthesized using spray pyrolysis technology achieved a 98% degradation efficiency within 120 min. The physical property improvements were quantitatively validated through X-ray diffraction (XRD) analysis, which confirmed enhanced crystallinity. Scanning electron microscopy (SEM) revealed significant modifications in surface morphology as a function of potassium content, highlighting its influence on film growth dynamics. Optical characterization demonstrated a pronounced reduction in transmittance, approaching negligible values at 7.5% potassium doping, and a narrowed optical band gap of 1.41 eV, suggesting superior light absorption capabilities. Photocatalytic performance was significantly enhanced, achieving a Rhodamine B degradation efficiency of up to 98% at 7.5% doping. These enhancements collectively improved the material’s light-harvesting capabilities and charge separation efficiency, positioning K-doped CMTS as a highly effective photocatalyst compared to other ternary and quaternary materials. Full article
(This article belongs to the Special Issue Sustainable Water and Environmental Technologies of Global Relevance)
Show Figures

Figure 1

15 pages, 3461 KiB  
Article
A Computational Approach for Graphene Doped with N,P,B Structures as Possible Electrode Materials for Potassium Ion Batteries (PIBs): A DFT Investigation
by A. Ahmad, A. A. M. Abahussain, M. H. Nazir and S. Z. J. Zaidi
Micromachines 2025, 16(7), 735; https://doi.org/10.3390/mi16070735 - 23 Jun 2025
Viewed by 342
Abstract
Although lithium-ion batteries are considered an ideal postulant for renewable energy harvesting, storage and applications, these batteries show promising performance; however, at the same time, these harvesting devices suffer from some major limitations, including scarce lithium resources, high cost, toxicity and safety concerns. [...] Read more.
Although lithium-ion batteries are considered an ideal postulant for renewable energy harvesting, storage and applications, these batteries show promising performance; however, at the same time, these harvesting devices suffer from some major limitations, including scarce lithium resources, high cost, toxicity and safety concerns. Potassium ion batteries (PIBs) can be proven a favorable alternative to metal ion batteries because of their widespread potassium reserves, low costs and enhanced protection against sparks. In this study, DFT simulations were employed using the B3LYP/6-311++g(d p) method to explore the application of graphene and its doped variants (N,B,P-graphene) as potential anode materials for PIBs. Various key parameters such as adsorption energy, Gibbs free energy, molecular orbital energies, non-covalent interactions, cell voltage, electron density distribution and density of states were computed as a means to evaluate the suitability of materials for PIB applications. Among the four structures, nitrogen- and phosphorus-doped graphene exhibited negative Gibbs free energy values of −0.020056 and −0.021117 hartree, indicating the thermodynamic favorability of charge transfer processes. Doping graphene with nitrogen and phosphorus decreases the HOMO-LUMO gap energy, facilitating efficient ion storage and charge transport. The doping of nitrogen and phosphorus increases the cell voltage from −1.05 V to 0.54 V and 0.57 V, respectively, while boron doping decreases the cell voltage. The cell voltage produced by graphene and its doped variants in potassium ion batteries has the following order: P-graphene (0.57 V) > N-graphene (0.54 V) > graphene (−1.05 V) > B-graphene (−1.54 V). This study illustrates how nitrogen- and phosphorus-doped graphene can be used as a propitious anode electrode for PIBs. Full article
(This article belongs to the Special Issue Nanotechnology in Li-Ion Batteries and Beyond)
Show Figures

Figure 1

12 pages, 3031 KiB  
Article
Doping Effects on Magnetic and Electronic Transport Properties in BaZn2As2
by Guoqiang Zhao, Gangxu Gu, Shuai Yang, Yi Peng, Xiang Li, Kenji M. Kojima, Chaojing Lin, Xiancheng Wang, Timothy Ziman, Yasutomo J. Uemura, Bo Gu, Gang Su, Sadamichi Maekawa, Yongqing Li and Changqing Jin
Crystals 2025, 15(6), 582; https://doi.org/10.3390/cryst15060582 - 19 Jun 2025
Viewed by 641
Abstract
Novel diluted magnetic semiconductors derived from BaZn2As2 are of considerable importance owing to their elevated Curie temperature of 260 K, the diversity of magnetic states they exhibit, and their prospective applications in multilayer heterojunctions. However, the transition from the intrinsic [...] Read more.
Novel diluted magnetic semiconductors derived from BaZn2As2 are of considerable importance owing to their elevated Curie temperature of 260 K, the diversity of magnetic states they exhibit, and their prospective applications in multilayer heterojunctions. However, the transition from the intrinsic semiconductor BaZn2As2 (BZA) to its doped compounds has not been extensively explored, especially in relation to the significant intermediate compound Ba(Zn,Mn)2As2 (BZMA). This study aims to address this gap by performing susceptibility and magnetization measurements, in addition to electronic transport analyses, on these compounds in their single crystal form. Key findings include the following: (1) carriers can significantly modulate the magnetism, transitioning from a non-magnetic BZA to a weak magnetic BZMA, and subsequently to a hard ferromagnet (Ba,K)(Zn,Mn)2As2 with potassium (K) doping to BZMA; (2) two distinct sets of metal-insulator transitions were identified, which can be elucidated by the involvement of carriers and the emergence of various magnetic states, respectively; and (3) BZMA exhibits colossal negative magnetoresistance, and by lanthanum (La) doping, a potential n-type (Ba,La)(Zn,Mn)2As2 single crystal was synthesized, demonstrating promising prospects for p-n junction applications. This study enhances our understanding of the magnetic interactions and evolutions among these compounds, particularly in the low-doping regime, thereby providing a comprehensive physical framework that complements previous findings related to the high-doping region. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

19 pages, 35077 KiB  
Article
X-Ray Emissions from Hydrogen Rydberg Matter Detected Using Timepix3 CdTe Detector
by Sindre Andre Zeiner-Gundersen and Sveinn Olafsson
Catalysts 2025, 15(6), 526; https://doi.org/10.3390/catal15060526 - 26 May 2025
Viewed by 730
Abstract
This study investigates the X-ray emissions from Hydrogen Rydberg Matter (HRM) using a state of-the-art Timepix3 detector with a Cadmium Telluride (CdTe) sensor, which offers imaging operation. The experimental setup featured an ultra-high vacuum (UHV) chamber containing potassium-doped iron oxide catalytic source, exposed [...] Read more.
This study investigates the X-ray emissions from Hydrogen Rydberg Matter (HRM) using a state of-the-art Timepix3 detector with a Cadmium Telluride (CdTe) sensor, which offers imaging operation. The experimental setup featured an ultra-high vacuum (UHV) chamber containing potassium-doped iron oxide catalytic source, exposed to hydrogen or deuterium gas flowing through the source. A 1064 nm pulsed YAG laser was used to stimulate the HRM. The Timepix detector was calibrated with Cs-137 662 keV and 21 keV source. Results show a prominent emission peak in the 25–50 keV range, with significant contributions at 406 keV identified through aluminum foil attenuation experiments. These findings advance our understanding of radiation phenomena in hydrogen-loaded systems and suggest new avenues for exploring the unique emissions from HRM, potentially impacting material science and catalysis. Full article
(This article belongs to the Special Issue Catalysis by Metals and Metal Oxides)
Show Figures

Figure 1

21 pages, 9608 KiB  
Article
Impact of K on the Basicity and Selectivity of Pt/m-ZrO2 Catalysts for Methanol Steam Reforming with co-fed H2
by Braedon McFee, Michela Martinelli, Dali Qian, Phoenix Macfarlane, Fernanda Perez Marin and Gary Jacobs
Catalysts 2025, 15(5), 435; https://doi.org/10.3390/catal15050435 - 29 Apr 2025
Viewed by 525
Abstract
This study investigates the effect of potassium (K) promotion on Pt/m-ZrO2 catalysts in methanol steam reforming (MSR), revealing critical insights into reaction pathways and catalyst performance. While increasing K loading reduces catalytic activity, it selectively enhances the hydrogen-producing formate dehydrogenation and de-carboxylation [...] Read more.
This study investigates the effect of potassium (K) promotion on Pt/m-ZrO2 catalysts in methanol steam reforming (MSR), revealing critical insights into reaction pathways and catalyst performance. While increasing K loading reduces catalytic activity, it selectively enhances the hydrogen-producing formate dehydrogenation and de-carboxylation pathway. Structural analyses using HR-TEM and DRIFTS show that higher K concentrations block Pt sites and promote agglomeration, reshaping catalytic behavior. Notably, the 3.1% K-promoted catalyst achieves high stability at 358 °C, with a CO2 selectivity exceeding 80% and minimal methane formation, outperforming the unpromoted catalyst in terms of CO and CH4 selectivity. Temperature studies further demonstrate reduced CO selectivity at higher temperatures, highlighting distinct advantages of K-doped catalysts. These findings underscore the role of K in enhancing surface basicity and its impact on formate interaction, offering valuable insights for optimizing MSR catalysts and advancing hydrogen production technologies. Full article
(This article belongs to the Special Issue Catalytic Processes for Green Hydrogen Production)
Show Figures

Figure 1

15 pages, 13259 KiB  
Article
N- and O- Doped Porous Carbon Nanosheets Prepared from Templating Methodology for Supercapacitors
by Baoning Zhu, Jinghua Liu, Qijun Zhong, Yaru Wen, Qianqian Dong, Yuhao Li, Qianqian Jin and Yao Lu
Polymers 2025, 17(9), 1198; https://doi.org/10.3390/polym17091198 - 27 Apr 2025
Viewed by 464
Abstract
Heteroatom-doped biomass-derived porous carbon materials show promising applications as electrode components in energy storage technologies. In this investigation, we present a template-assisted pyrolysis procedure to fabricate nitrogen–oxygen dual-doped carbon materials. Firstly, the precursor and template initially polymerized to form a white jelly-like gel, [...] Read more.
Heteroatom-doped biomass-derived porous carbon materials show promising applications as electrode components in energy storage technologies. In this investigation, we present a template-assisted pyrolysis procedure to fabricate nitrogen–oxygen dual-doped carbon materials. Firstly, the precursor and template initially polymerized to form a white jelly-like gel, which was freeze-dried to create a nanosheet-assembled structure. Subsequent high-temperature pyrolysis induced the formation of a porous structure with nanosheet morphology. The CMC-ZnK sample derived from the dual template of potassium citrate and zinc acetate pyrolyzed at 800 °C exhibits optimal electrochemical performance, delivering a specific capacitance of 271.4 F g−1 at 1 A g−1 in a three-electrode configuration, along with outstanding rate capability (90% retention, 244 F g−1 at 10 A g−1). The constructed supercapacitor demonstrated an energy density of 6.5 Wh kg−1 under a power density of 500 W kg−1. Furthermore, this study systematically investigated the performance variation mechanisms at different temperatures, revealing the relationship between structural composition and temperature in biomass materials. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 6280 KiB  
Article
Effect of Defects on Piezoelectric Properties of Sm-Doped K0.47Na0.53NbO3 Ceramics
by Pengkun Wu, Dandan Wang, Fengzi Zhou, Yongpeng Ren, Junhu Zhang, Guozhong Zang, Xiaofei Wang and Xingzhong Cao
Materials 2025, 18(8), 1760; https://doi.org/10.3390/ma18081760 - 11 Apr 2025
Viewed by 393
Abstract
Rare earth element (Sm)-doped potassium sodium niobate (KNN)-based ceramics are fabricated using spark plasma sintering method and their properties are investigated. The results show that all the samples crystallize in a typical perovskite structure with a single orthorhombic phase. With increasing the Sm [...] Read more.
Rare earth element (Sm)-doped potassium sodium niobate (KNN)-based ceramics are fabricated using spark plasma sintering method and their properties are investigated. The results show that all the samples crystallize in a typical perovskite structure with a single orthorhombic phase. With increasing the Sm doping, the ceramics gradually shift toward the relaxor ferroelectric state and the value of dielectric loss angle tangent (tanδ) is smaller than 0.05 for x ≤ 0.003 ceramic samples. Meanwhile, the optimized piezoelectric charge coefficient d33 = 128 pC/N, and piezoelectric voltage coefficient g33 = 18.9 × 10−3 Vm/N are obtained when x = 0.001. Compared with the undoped sample, the d33 of x = 0.001 ceramics has been significantly enhanced by 28%. The positron annihilation lifetime results indicate that the main defect types in the ceramics are the A-site vacancies and defect dipoles. Based on the aforementioned results, the optimized piezoelectric performance and the lowest defect dipoles concentration in x = 0.001, may be attributed to the low internal oxygen vacancy concentration in it. This work may provide insights for the further study of KNN-based piezoelectric ceramics. Full article
Show Figures

Figure 1

10 pages, 11508 KiB  
Article
Laser Ignition of Potassium Picrate with Multi-Walled Carbon Nanotube Additives
by Jianhua Wang, Jinjian Chen, Chen Shen, Yucun Liu, Junming Yuan and Yanwu Yu
Molecules 2025, 30(4), 935; https://doi.org/10.3390/molecules30040935 - 18 Feb 2025
Viewed by 685
Abstract
Experimental investigations of the diode-laser-induced ignition of potassium picrate (KP) with a multi-walled carbon nanotube (MWNT) additive are presented in this article. KP/MWNT composites with varying contents were prepared directly by adding different quantities of MWNTs to a KP solution after the last [...] Read more.
Experimental investigations of the diode-laser-induced ignition of potassium picrate (KP) with a multi-walled carbon nanotube (MWNT) additive are presented in this article. KP/MWNT composites with varying contents were prepared directly by adding different quantities of MWNTs to a KP solution after the last synthesis step. Due to capillary action, the MWNTs homogeneously coated the surface of the KP, and some KP crystallized inside the MWNTs. The samples were characterized by scanning and transmission electron microscopy, differential thermal analysis, and laser ignition tests. At a constant laser power density, the doped KP showed a much shorter ignition delay time than the undoped KP (from 28.8 ms to 4.5 ms). Therefore, the higher the dopant MWNT ratio is, the shorter the ignition delay time is. Additionally, the more MWNTs are used to dope KP, the lower the required ignition power is. Full article
(This article belongs to the Special Issue Advanced Carbon Nanomaterials and Their Applications)
Show Figures

Figure 1

13 pages, 1216 KiB  
Article
Can N-Doped Biochar Achieve Safe Vegetable Production in Soil Heavily Contaminated by Heavy Metals?
by Ming Chen, Yangzhou Wang, Junchao Pan, Lin Zhong, Mengjiao Qiao, Chenyang Gao, Tianqi Li and Yangyang Wang
Toxics 2025, 13(2), 79; https://doi.org/10.3390/toxics13020079 - 23 Jan 2025
Cited by 1 | Viewed by 853
Abstract
Although the cultivation of food crops in farmland heavily contaminated by heavy metals is prohibited in China, vegetables can still be planted on a small-scale due to their short growth cycles and flexible sale models, posing a significant threat to local consumers. In [...] Read more.
Although the cultivation of food crops in farmland heavily contaminated by heavy metals is prohibited in China, vegetables can still be planted on a small-scale due to their short growth cycles and flexible sale models, posing a significant threat to local consumers. In this study, a pot culture experiment was conducted to investigate the feasibility of safe production through the in-situ stabilization of heavy metals in heavily contaminated soil. The remediation efficiency of wheat straw biochar and N-doped biochar, the growth of spinach, the heavy metal accumulation in spinach, and potential health risks were also explored. The results indicated that both biochar and N-doped biochar significantly affected the soil pH, cation exchange capacity, organic matter, available phosphorus, available potassium, alkaline nitrogen content, and spinach biomass, but the trends were variable. Additionally, the diethylenetriaminepentaacetic-extractable Pb, Cd, Cu, Zn, and Ni concentrations decreased 9.23%, 7.54%, 5.95, 7.44%, and 16.33% with biochar, and 10.46%, 12.91%, 21.98%, 12.62%, and 12.24% with N-doped biochar, respectively. Furthermore, N-doped biochar significantly reduced the accumulation of Pb, Cd, and Ni in spinach by 35.50%, 33.25%, and 30.31%, respectively. Health risk assessment revealed that the non-carcinogenic risk index for adults and children decreased from 17.0 and 54.8 to 16.3 and 52.5 with biochar and 11.8 and 38.2 with N-doped biochar, respectively, but remained significantly higher than the acceptable range (1.0). The carcinogenic risk assessment revealed that the risk posed by Cd in spinach exceeded the acceptable value (10−4) for both adults and children across all treatments. These results may imply that biochar and N-doped biochar cannot achieve the safe production of vegetables in soil heavily contaminated by heavy metals through in-situ stabilization. Full article
(This article belongs to the Special Issue Assessment and Remediation of Heavy Metal Contamination in Soil)
Show Figures

Figure 1

19 pages, 4341 KiB  
Article
Alkali Metal Ion Insertion in Polypyrrole Polyoxometalates for Multifunctional Actuator–Sensor–Energy Storage Devices
by Rudolf Kiefer, Ngoc Tuan Nguyen and Quoc Bao Le
Polymers 2025, 17(3), 262; https://doi.org/10.3390/polym17030262 - 21 Jan 2025
Viewed by 773
Abstract
Modern research technology’s goal is to produce multifunctional materials that require low energy. In this work, we have applied polypyrrole (PPy) doped with dodecyl benzenesulfonate (DBS-) with the addition of polyoxometalates (POM) such as phosphotungstic acid (PTA) forming PPyDBS-PT composites. Two different PTA [...] Read more.
Modern research technology’s goal is to produce multifunctional materials that require low energy. In this work, we have applied polypyrrole (PPy) doped with dodecyl benzenesulfonate (DBS-) with the addition of polyoxometalates (POM) such as phosphotungstic acid (PTA) forming PPyDBS-PT composites. Two different PTA concentrations (4 mM and 8 mM) were used to form PPyDBS-PT4 and PPyDBS-PT8. The higher concentration of PTA created a highly dense and compact film which can be observed from scanning electron microscopy (SEM cross-section image), and also contains fewer phosphotungstate anions (PT3−) inclusion (via energy-dispersive X-ray spectroscopy, EDX). Three different aqueous electrolytes, LiCl (lithium chloride), NaCl (sodium chloride), and KCl (potassium chloride), were applied to investigate how those alkali metal ions perform as typical cation-driven actuators. Cyclic voltammetry with linear actuation revealed the tendency LiCl > NaCl > KCl in view of better strain, charge density, electronic conductivity, and Young’s modulus of PPyDBS-PT4 outperformed PPyDBS-PT8. Chronopotentiometric measurements showed high specific capacitance for PPyDBS-PT4 at 260.6 ± 21 F g−1 with capacity retention after 5000 cycles of 88.5%. The sensor calibration of PPyDBS-PT4 revealed that the alkali cations (Li+, Na+, and K+) can be differentiated from each other. The PPyDBS-PT4 has multifunctional applications such as actuators, sensors, and energy storage. Full article
(This article belongs to the Special Issue Functional Hybrid Polymeric Composites, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 4507 KiB  
Article
A Mechanical–Electrochemical Dual-Model E-Skin for the Monitoring of Cardiovascular Healthcare
by Jianxiao Fang, Yunting Jia, Zelong Liao, Bairui Qi and Tao Huang
Biosensors 2025, 15(1), 5; https://doi.org/10.3390/bios15010005 - 26 Dec 2024
Viewed by 1110
Abstract
The early monitoring of cardiovascular biomarkers is essential for the prevention and management of some cardiovascular diseases. Here, we present a novel, compact, and highly integrated skin electrode as a mechanical–electrochemical dual-model E-skin, designed for the real-time monitoring of heart rate and sweat [...] Read more.
The early monitoring of cardiovascular biomarkers is essential for the prevention and management of some cardiovascular diseases. Here, we present a novel, compact, and highly integrated skin electrode as a mechanical–electrochemical dual-model E-skin, designed for the real-time monitoring of heart rate and sweat ion concentration, two critical parameters for assessing cardiovascular health. As a pressure sensor, this E-skin is suitable for accurate heart rate monitoring, as it exhibits high sensitivity (25.2 pF·kPa−1), a low detection limit of 6 Pa, and a rapid response time of ~20 ms, which is attributed to the iontronic sensing interface between the skin and the electrode. Additionally, the electrode functions as a potassium ion-selective electrode based on chemical doping, achieving an enhanced response of 11 mV·mM−1. A test based on the real-time monitoring of a subject riding an indoor bike demonstrated the device’s capability to monitor heart rate and sweat potassium ion levels reliably and accurately. This advancement in wearable technology offers significant potential for enhancing patient care based on the early detection and proactive management of cardiovascular conditions. Full article
Show Figures

Figure 1

22 pages, 5030 KiB  
Review
Hard Carbon as Anodes for Potassium-Ion Batteries: Developments and Prospects
by Peng Qiu, Haohong Chen, Hanzhi Zhang, Han Wang, Lianhao Wang, Yingying Guo, Ji Qi, Yong Yi and Guobin Zhang
Inorganics 2024, 12(12), 302; https://doi.org/10.3390/inorganics12120302 - 25 Nov 2024
Cited by 1 | Viewed by 1915
Abstract
Potassium-ion batteries (PIBs) are regarded as a potential substitute for LIBs owing to the benefits of potassium’s abundance, low cost, and high safety. Nonetheless, the practical implementation of potassium-ion batteries still encounters numerous challenges, with the selection and design of anode materials standing [...] Read more.
Potassium-ion batteries (PIBs) are regarded as a potential substitute for LIBs owing to the benefits of potassium’s abundance, low cost, and high safety. Nonetheless, the practical implementation of potassium-ion batteries still encounters numerous challenges, with the selection and design of anode materials standing out as a key factor impeding their progress. Hard carbon, characterized by its amorphous structure, high specific surface area, and well-developed pore structure, facilitates the insertion/extraction of potassium ions, demonstrating excellent rate performance and cycling stability. This review synthesizes the recent advancements in hard carbon materials utilized in PIB anodes, with a particular focus on the potassium storage mechanism, electrochemical properties, and modification strategies of hard carbon. Ultimately, we present a summary of the current challenges and future development directions of hard carbon materials, with the objective of providing a reference for the design and optimization of hard carbon materials for PIBs. Full article
(This article belongs to the Special Issue New Insights in Alkali Metal Ion Batteries: Materials and Properties)
Show Figures

Graphical abstract

14 pages, 4772 KiB  
Article
Potassium and Boron Co-Doping of g-C3N4 Tuned CO2 Reduction Mechanism for Enhanced Photocatalytic Performance: A First-Principles Investigation
by Gang Fu, Wenqing Zhen, Hongyi Wang, Xin Zhou, Li Yang and Jiaxu Zhang
Molecules 2024, 29(22), 5339; https://doi.org/10.3390/molecules29225339 - 13 Nov 2024
Cited by 3 | Viewed by 1248
Abstract
Graphitic phase carbon nitride (g-C3N4, abbreviated as CN) can be used as a photocatalyst to reduce the concentration of atmospheric carbon dioxide. However, there is still potential for improvement in the small band gap and carrier migration properties of [...] Read more.
Graphitic phase carbon nitride (g-C3N4, abbreviated as CN) can be used as a photocatalyst to reduce the concentration of atmospheric carbon dioxide. However, there is still potential for improvement in the small band gap and carrier migration properties of intrinsic materials. K-B co-doped CN (KBCN) was investigated as a promising photocatalyst for carbon dioxide reduction via the Density Functional Theory (DFT) method. The electronic and optical properties of CN and KBCN indicate that doping K and B can improve the catalytic performance of CN by promoting charge migration and separation. In terms of the Gibbs free energy change, the CO2 reduction reaction catalysed by KBCN results in CH3OH, and its optimal pathway is CO2 → *CO2 → *COOH → CO → *OCH → HCHO → *OCH3 → CH3OH. Compared with CN, the doping elements K and B shift the rate-determining step from CO2 → *CO2 to *CO2 → *COOH. The K and B elements co-doping tuned the charge distribution between the catalyst and the adsorbate and reduced the Gibbs free energy of the rate-determining step from 1.571 to 0.861 eV, suggesting that the CO2 reduction activity of KBCN is superior to that of CN. Our work provides useful insights for the design of metallic–nonmetallic co-doped CN for photocatalytic CO2 reduction (CO2PR) reactions. Full article
Show Figures

Graphical abstract

17 pages, 1208 KiB  
Article
First-Principles Linear Combination of Atomic Orbitals Calculations of K2SiF6 Crystal: Structural, Electronic, Elastic, Vibrational and Dielectric Properties
by Leonid L. Rusevich, Mikhail G. Brik, Denis Gryaznov, Alok M. Srivastava, Ilya Chervyakov, Guntars Zvejnieks, Dmitry Bocharov and Eugene A. Kotomin
Materials 2024, 17(19), 4865; https://doi.org/10.3390/ma17194865 - 2 Oct 2024
Cited by 4 | Viewed by 1236
Abstract
The results of first-principles calculations of the structural, electronic, elastic, vibrational, dielectric and optical properties, as well as the Raman and infrared (IR) spectra, of potassium hexafluorosilicate (K2SiF6; KSF) crystal are discussed. KSF doped with manganese atoms (KSF:Mn4+ [...] Read more.
The results of first-principles calculations of the structural, electronic, elastic, vibrational, dielectric and optical properties, as well as the Raman and infrared (IR) spectra, of potassium hexafluorosilicate (K2SiF6; KSF) crystal are discussed. KSF doped with manganese atoms (KSF:Mn4+) is known for its ability to function as a phosphor in white LED applications due to the efficient red emission from Mn⁴⁺ activator ions. The simulations were performed using the CRYSTAL23 computer code within the linear combination of atomic orbitals (LCAO) approximation of the density functional theory (DFT). For the study of KSF, we have applied and compared several DFT functionals (with emphasis on hybrid functionals) in combination with Gaussian-type basis sets. In order to determine the optimal combination for computation, two types of basis sets and four different functionals (three advanced hybrid—B3LYP, B1WC, and PBE0—and one LDA functional) were used, and the obtained results were compared with available experimental data. For the selected basis set and functional, the above-mentioned properties of KSF were calculated. In particular, the B1WC functional provides us with a band gap of 9.73 eV. The dependencies of structural, electronic and elastic parameters, as well as the Debye temperature, on external pressure (0–20 GPa) were also evaluated and compared with previous calculations. A comprehensive analysis of vibrational properties was performed for the first time, and the influence of isotopic substitution on the vibrational frequencies was analyzed. IR and Raman spectra were simulated, and the calculated Raman spectrum is in excellent agreement with the experimental one. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

27 pages, 9279 KiB  
Article
Synthesis and Characterization of Potassium Bicarbonate and Urea-Modified Biochar from Rape Straw: Application in the Removal of Tetracycline from Aqueous Solution
by Zhipeng Zhang, Chenghan Tang, Hongbin Wang, Ming Zhong, Pengchao Ge, Wenlai Xu and Yiyang Chen
Water 2024, 16(17), 2522; https://doi.org/10.3390/w16172522 - 5 Sep 2024
Cited by 1 | Viewed by 1397
Abstract
Using rapeseed straw as a raw material and potassium bicarbonate (KHCO3) and urea (CO(NH2)2) as modification reagents, the pyrolysis raw materials were mixed in a certain proportion, and the unmodified biochar GBC800, KHCO3-modified biochar KGBC800, [...] Read more.
Using rapeseed straw as a raw material and potassium bicarbonate (KHCO3) and urea (CO(NH2)2) as modification reagents, the pyrolysis raw materials were mixed in a certain proportion, and the unmodified biochar GBC800, KHCO3-modified biochar KGBC800, and (KHCO3)/(CO(NH2)2) co-modified biochar N-KGBC800 were, respectively, prepared using the one-pot method at 800 °C. The physicochemical properties, such as surface morphology, pore characteristics, functional group distribution, and elemental composition of the three biochars, were characterized, and the adsorption performance and mechanism of the typical antibiotic tetracycline (TC) in water were studied. The results showed that the surface of GBC800 was smooth and dense, with no obvious pore structure, and both the specific surface area and total pore volume were small; the surface of KGBC800 showed an obvious coral-like three-dimensional carbon skeleton, the number of micropores and the specific surface area were significantly improved, and the degree of carbonization and aromatization was enhanced; N-KGBC800 had a coral-like three-dimensional carbon skeleton similar to KGBC800, and there were also many clustered carbon groups. The carbon layer changed significantly with interlayer gaps, presenting a multi-level porous structure. After N doping, the content of N increased, and new nitrogen-containing functional groups were formed. When the initial TC concentration was 100 mg/L, pH ≈ 3.4, the temperature was 25 °C, and the dosage of the three biochars was 0.15 g/L, the adsorption equilibrium was reached before 720 min. The adsorption capacities of GBC800, KGBC800, and N-KGBC800 for TC were 16.97 mg/g, 294.86 mg/g, and 604.71 mg/g, respectively. Fitting the kinetic model to the experimental data, the adsorption of TC by the three biochars was more in line with the pseudo-second-order adsorption kinetic model, and the adsorption isotherm was more in line with the Langmuir model. This adsorption process was a spontaneous endothermic reaction, mainly chemical adsorption, specifically involving multiple adsorption mechanisms such as pore filling, electrostatic attraction, hydrogen bonds, nπ interaction, Lewis acid–base interaction, ππ stacking, or cation −π interaction between the aromatic ring structure of the carbon itself and TC. A biochar-adsorption column was built to investigate the dynamic adsorption process of tetracycline using the three biochars against the background of laboratory pure water and salt water. The adsorption results show that the Thomas model and the Yoon–Nelson model both provide better predictions for dynamic adsorption processes. The modified biochars KGBC800 and N-KGBC800 can be used as preferred materials for the efficient adsorption of TC in water. Full article
(This article belongs to the Special Issue The Application of Electrochemical Methods in Water Treatment)
Show Figures

Figure 1

Back to TopTop