Synthesis and Characterization of Potassium Bicarbonate and Urea-Modified Biochar from Rape Straw: Application in the Removal of Tetracycline from Aqueous Solution
Abstract
:1. Introduction
2. Materials and Experimental Methods
2.1. Reagents and Apparatus Used in the Experiment
2.1.1. Test Reagents
2.1.2. Laboratory Instruments
2.2. Preparation of Biochar
2.3. Adsorption Experiment
2.3.1. Batch Adsorption Experimental Method
2.3.2. Biochar Fixed-Bed Adsorption Experiment
2.4. UV-Vis Spectrophotometric Analysis of Tetracycline
3. Results and Discussion
3.1. Material Characterization Results
3.1.1. Analysis of Physical Properties of Materials
3.1.2. Analysis of Chemical Properties of Materials
3.2. Effect of pH on the Performance of Biochar for TC Adsorption
3.3. Influence of Biochar Dosage on TC Adsorption Performance
3.4. Adsorption Kinetic Modeling Analysis
- qe—The adsorbed amount of the adsorbent at equilibrium, mg/g.
- qt—The adsorbed amount of the adsorbent at time t, mg/g.
- K1—The quasi-primary kinetic adsorption rate constant, min−1.
- t—The adsorption time, min; K2, the quasi-secondary kinetic modeling rate constant, g/(mg·min).
- α—The initial adsorption rate, mg/(g·min).
- b—The desorption constant.
- Kip—The intra-particle diffusion rate constant, and C is a constant.
3.5. Adsorption Isotherm Modeling Analysis
- qe—The adsorption capacity of the adsorbent at the adsorption equilibrium, mg/g.
- qm—The theoretical saturated adsorption capacity of the adsorbent for pollutants, mg/g.
- Ce—The pollutant concentration in the solution at the adsorption equilibrium, mg/L.
- KL—The Langmuir adsorption constant, L/mg, indicating the adsorption strength of the adsorbent for the adsorbate.
- Kf—The Freundlich adsorption constant, (mg/g)·(L/mg)1/n, indicating the adsorption capacity of the adsorbent, which is related to the properties and dosage of the adsorbent and the reaction temperature.
- n—The nonlinear adsorption index, reflecting the heterogeneity of the adsorption sites on the surface of the adsorbent.
- bT and KT are the constants of the Temkin model; R is the universal gas constant, J/(mol·K); and T is the Kelvin temperature, K.
3.6. Thermodynamic Analysis of Adsorption
- ΔGθ—The Gibbs free energy, kJ/mol.
- ΔHθ—The enthalpy, kJ/mol.
- ΔSθ—The entropy, kJ/(mol·K).
- T—The absolute temperature, K.
- K—The Langmuir adsorption equilibrium constant, L/mg.
- R—The universal gas constant, J/(mol·K), R = 8.314 × 10−3, KJ/(mol·K).
3.7. Adsorption Mechanism Analysis
3.8. Experimental Adsorption of Tetracycline on Biochar Fixed-Bed and Adsorption Model Analysis
3.8.1. Biochar Fixed-Bed Adsorption of Tetracycline Experiment
3.8.2. Biochar Fixed-Bed Adsorption Modeling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Wang, Z. The road to agricultural power for small farmers in large countries: Restraint and cracking. Southwest Financ. 2023, 12, 41–53. [Google Scholar]
- Huang, L.; Zhu, Y.; Wang, Q.; Zhu, A.; Liu, Z.; Wang, Y.; Allen, D.T.; Li, L. Assessment of the effects of straw burning bans in China: Emissions, air quality, and health impacts. Sci. Total Environ. 2021, 789, 147935. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, X.; Hu, X.; Xu, X.; Yang, W.; Sun, R.; Xue, Y.; Xu, Z. The situation, utilization status and development suggestion of rape straw resources in China. Chin. J. Oil Crops 2024, 1–8. [Google Scholar] [CrossRef]
- Li, L.; Chen, B.; Yan, G.; Gao, G.; Xu, K.; Xie, T.; Zhang, F.; Wu, X. Proposed Strategies and Current Progress of Research and Utilization of Oilseed Rape Germplasm in China. J. Plant Genet. Resour. 2020, 21, 1–19. [Google Scholar]
- Doula, M.K.; Sarris, A.; Hliaoutakis, A.; Kydonakis, A.; Papadopoulos, N.S.; Argyriou, L. Building a strategy for soil protection at local and regional scale-the case of agricultural wastes landspreading. Environ. Monit. Assess. 2016, 188, 141. [Google Scholar] [CrossRef]
- Li, G.; Feng, Y.; Zhu, W.; Zhang, X. Enhanced adsorptive performance of tetracycline antibiotics on lanthanum modified diatomite. Korean J. Chem. Eng. 2015, 32, 2109–2115. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, Y.; Yuan, Y.; Xie, Y. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Sci. Total Environ. 2021, 798, 149205. [Google Scholar] [CrossRef]
- 2022 National Fishery Economic Statistical Bulletin. Chin. Aquat. Prod. 2023, 8, 7–8.
- Zuo, R.; Peng, J.; Li, R.; Liu, S.; Wang, Y.; Wen, Q.; Hou, H.; Lu, M.; Li, Y. Progress in environmental behavior and ecotoxicology of tetracycline veterinary drugs. Adv. Vet. Med. 2018, 39, 98–101. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, L.; Xu, M.; Zhang, Q.; Hong, J. The rhomboidal flaky Fe-Mn catalyst activated persulfate for degradation of tetracycline. Chin. Environ. Sci. 2021, 41, 5142–5152. [Google Scholar] [CrossRef]
- Wang, Z.; Bai, M.; Li, X.; Weng, L.; Ye, H. Research progress of microbial degradation of tetracycline antibiotics. J. Agric. Environ. Sci. 2022, 41, 2779–2786. [Google Scholar]
- Zou, S.-J.; Chen, Y.-F.; Zhang, Y.; Wang, X.-F.; You, N.; Fan, H.-T. A hybrid sorbent of α-iron oxide/reduced graphene oxide: Studies for adsorptive removal of tetracycline antibiotics. J. Alloys Compd. 2021, 863, 158475. [Google Scholar] [CrossRef]
- Chen, K.; Huang, D. Application of various adsorbent materials in removal of tetracycline antibiotic residues in water. J. Guangxi Med. Univ. 2018, 35, 1169–1172. [Google Scholar] [CrossRef]
- Du, C.; Wu, T.; Hu, T.; Liu, Y.; Deng, J. Preparation of biochar by ball milling and its adsorption of methylene blue. J. Sichuan Univ. Arts Sci. 2023, 33, 21–25. [Google Scholar]
- Zhang, T.; Yang, Y.; Li, W.; Zhou, Y.; Wu, L.; Cheng, Z. Adsorption of tetracycline by alkali-modified biochar. J. Yichun Univ. 2022, 44, 6–12+47. [Google Scholar]
- Sun, Y.; Zheng, L.; Zheng, X.; Xiao, D.; Yang, Y.; Zhang, Z.; Ai, B.; Sheng, Z. Adsorption of Sulfonamides in Aqueous Solution on Reusable Coconut-Shell Biochar Modified by Alkaline Activation and Magnetization. Front. Chem. 2022, 9, 814647. [Google Scholar] [CrossRef]
- Che, H.; Wei, G.; Fan, Z.; Zhu, Y.; Zhang, L.; Wei, Z.; Huang, X.; Wei, L. Super facile one-step synthesis of sugarcane bagasse derived N-doped porous biochar for adsorption of ciprofloxacin. J. Environ. Manag. 2023, 335, 117566. [Google Scholar] [CrossRef]
- Lu, S.; Huang, X.; Tang, M.; Peng, Y.; Wang, S.; Makwarimba, C.P. Synthesis of N-doped hierarchical porous carbon with excellent toluene adsorption properties and its activation mechanism. Environ. Pollut. 2021, 284, 117113. [Google Scholar] [CrossRef]
- Li, H.; Tang, M.; Huang, X.; Wang, L.; Liu, Q.; Lu, S. An efficient biochar adsorbent for CO2 capture: Combined experimental and theoretical study on the promotion mechanism of N-doping. Chem. Eng. J. 2023, 466, 143095. [Google Scholar] [CrossRef]
- Chen, X.; Oh, W.-D.; Hu, Z.-T.; Sun, Y.-M.; Webster, R.D.; Li, S.-Z.; Lim, T.-T. Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes. Appl. Catal. B-Environ. 2018, 225, 243–257. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, B.; Shen, J.; Yan, P.; Kang, J.; Wang, W.; Bi, L.; Zhu, X.; Li, Y.; Wang, S.; et al. Preparation of novel N-doped biochar and its high adsorption capacity for atrazine based on π–π electron donor-acceptor interaction. J. Hazard. Mater. 2022, 432, 128757. [Google Scholar] [CrossRef] [PubMed]
- Obanla, O.R.; Hestekin, J.A.; Ojewumi, M.E.; Bousrih, I.; Fawole, M.C. Enhancing rubber (Hevea brasiliensis) seed shell biochar through acid-base modification for effective phenol removal from aqueous environments. Results Eng. 2023, 20, 15. [Google Scholar] [CrossRef]
- Huang, Y.; Li, K.; Yao, W.; Gao, Y. Factors affecting the pore structure and adsorption performance of rice straw carbon prepared by potassium bicarbonate activation. Environ. Chem. 2018, 37, 569–575. [Google Scholar]
- Tian, W.; Zhang, H.; Sun, H.; Tade, M.O.; Wang, S. Template-free synthesis of N-doped carbon with pillared-layered pores as bifunctional materials for supercapacitor and environmental applications. Carbon 2017, 118, 98–105. [Google Scholar] [CrossRef]
- Li, Y.; Xing, B.; Wang, X.; Wang, K.; Zhu, L.; Wang, S. Nitrogen-Doped Hierarchical Porous Biochar Derived from Corn Stalks for Phenol-Enhanced Adsorption. Energy Fuels 2019, 33, 12459–12468. [Google Scholar] [CrossRef]
- Yim, S.D.; Kim, S.J.; Baik, J.H.; Nam, I.S.; Mok, Y.S.; Lee, J.H.; Cho, B.K.; Oh, S.H. Decomposition of urea into NH3 for the SCR process. Ind. Eng. Chem. Res. 2004, 43, 4856–4863. [Google Scholar] [CrossRef]
- Li, K.; Chen, W.; Yang, H.; Chen, Y.; Xia, S.; Xia, M.; Tu, X.; Chen, H. Mechanism of biomass activation and ammonia modification for nitrogen-doped porous carbon materials. Bioresour. Technol. 2019, 280, 260–268. [Google Scholar] [CrossRef]
- Chen, W.; Yang, H.P.; Chen, Y.Q.; Chen, X.; Fang, Y.; Chen, H.P. Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials. J. Anal. Appl. Pyrolysis 2016, 120, 186–193. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Duan, X.; Sun, H.; Kang, J.; Wang, Y.; Indrawirawan, S.; Wang, S. Insights into Heterogeneous Catalysis of Persulfate Activation on Dimensional-Structured Nanocarbons. ACS Catal. 2015, 5, 4629–4636. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Hu, G.; Hu, X.; Li, Z.; Shen, S.; Radosz, M.; Fan, M. Enhanced CO2 Capture Capacity of Nitrogen-Doped Biomass-Derived Porous Carbons. ACS Sustain. Chem. Eng. 2016, 4, 1439–1445. [Google Scholar] [CrossRef]
- Ying, Z.W.; Chen, X.W.; Li, H.; Liu, X.Q.; Zhang, C.; Zhang, J.; Yi, G.F. Efficient Adsorption of Methylene Blue by Porous Biochar Derived from Soybean Dreg Using a One-Pot Synthesis Method. Molecules 2021, 26, 661. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, X.P.; Zhang, J.Q.; Tang, Y.X.; Luo, Z. Preparation of magnetically modified sheep manure-derived ZVI-biochar and characterization of its activation over monosulfate for AO7 degradation. J. Environ. Sci. Eng. 2022, 42, 196–208. [Google Scholar] [CrossRef]
- Yu, H.X.; Gu, L.; Chen, L.; Wen, H.F.; Zhang, D.F.; Tao, H. Activation of grapefruit derived biochar by its peel extracts and its performance for tetracycline removal. Bioresour. Technol. 2020, 316, 123971. [Google Scholar] [CrossRef] [PubMed]
- Li, S.C.; Du, G.Y.; Hu, Z.H.; Zhang, H.T. Preparation of nitrogen-doped biochar and its adsorption characteristics on heavy metal lead in water. New Chem. Mater. 2023, 51, 214–220. [Google Scholar] [CrossRef]
- Kang, Y.X.; Kang, X.; Li, D.P.; Sun, Z.Y.; Song, X.S.; Zhao, X.X. Adsorption properties of pigeon feces biochar prepared at different pyrolysis temperatures on methicillin in water. J. Donghua Univ. 2021, 47, 100–108. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Liu, L.; Ju, M.; Zheng, K. Adsorption Behavior of Selective Recognition Functionalized Biochar to Cd(II) in Wastewater. Materials 2018, 11, 299. [Google Scholar] [CrossRef]
- Zhao, X.L.; Yang, L.N.; Wang, Y.; Dong, N. Adsorption removal of imidacloprid from water by biochar from tobacco stalks. Appl. Chem. 2024, 53, 308–313+318. [Google Scholar] [CrossRef]
- Jang, H.M.; Kan, E. A novel hay-derived biochar for removal of tetracyclines in water. Bioresour. Technol. 2019, 274, 162–172. [Google Scholar] [CrossRef]
- Xiang, Y.J.; Xu, Z.Y.; Wei, Y.Y.; Zhou, Y.Y.; Yang, X.; Yang, Y.; Yang, J.; Zhang, J.C.; Luo, L.; Zhou, Z. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors. J. Environ. Manag. 2019, 237, 128–138. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Li, B.; Sun, X.; Huang, W.; Lu, Y. Study on adsorption performance of rape straw biochar to water methylene blue. Water Treat. Technol. 2022, 48, 37–42+47. [Google Scholar] [CrossRef]
- Li, H.; Hu, J.; Meng, Y.; Su, J.; Wang, X. An investigation into the rapid removal of tetracycline using multilayered graphene-phase biochar derived from waste chicken feather. Sci. Total Environ. 2017, 603, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; She, A.L.; Zhang, Y.; Ni, F.Q.; Ao, T.Q.; Chen, W.Q. Effect of pyrolysis temperature on carbon structure, ash content and adsorption of tetracycline on corn kernel biochar. J. Agric. Environ. Sci. 2024, 1–18. [Google Scholar]
- Liu, S.; Li, J.; Xu, S.; Wang, M.; Zhang, Y.; Xue, X. A modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue at low temperature. Bioresour. Technol. 2019, 282, 48–55. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J. A general kinetic model for adsorption: Theoretical analysis and modeling. J. Mol. Liq. 2019, 288, 111100. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Ho, Y.S.; Wase, D.A.J.; Forster, C.F. Removal of lead ions from aqueous solution using sphagnum moss peat as adsorbent. Water SA 1996, 22, 219–224. [Google Scholar]
- Liu, H.; Xu, G.; Li, G. Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline. J. Colloid Interface Sci. 2021, 587, 271–278. [Google Scholar] [CrossRef]
- Yu, W.; Lian, F.; Cui, G.; Liu, Z. N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution. Chemosphere 2018, 193, 8–16. [Google Scholar] [CrossRef]
- Lian, F.; Cui, G.; Liu, Z.; Duo, L.; Zhang, G.; Xing, B. One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity. J. Environ. Manag. 2016, 176, 61–68. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, C.; Yan, Z.; Jiang, H.; Xu, H. Magnetic particles modification of coconut shell-derived activated carbon and biochar for effective removal of phenol from water. Chemosphere 2018, 211, 962–969. [Google Scholar] [CrossRef]
- Liu, L.; Deng, G.; Shi, X. Adsorption characteristics and mechanism of p-nitrophenol by pine sawdust biochar samples produced at different pyrolysis temperatures. Sci. Rep. 2020, 10, 5149. [Google Scholar] [CrossRef]
- Fierro, V.; Torne-Fernandez, V.; Montane, D.; Celzard, A. Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous Mesoporous Mater. 2008, 111, 276–284. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Cao, Y.; Han, L. Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresour. Technol. 2019, 285, 121348. [Google Scholar] [CrossRef]
- Cui, J.T.; Zhang, M.Y.; Mi, M.; Zhao, Y.M.; Jin, Z.W.; Wong, M.H.; Shan, S.D.; Ping, L.F. Effects of swine manure and straw biochars on fluorine adsorption-desorption in soils. PLoS ONE 2024, 19, 21. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Meng, X.; Zhang, Y.; Huang, Y. Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water. Bioresour. Technol. 2020, 311, 123455. [Google Scholar] [CrossRef] [PubMed]
- Nandhakumar, V.; Elavarasan, A.; Chandramohan, M.; Balasuramanian, N. Kinetics and isotherm studies on the adsorption of hexavalent chromium onto phosphoric acid activated Mimusops elengi leaves carbon. Int. J. Curr. Res. Chem. Pharm. Sci. 2017, 4, 67–76. [Google Scholar] [CrossRef]
- Garba, Z.N.; Lawan, I.; Zhou, W.; Zhang, M.; Wang, L.; Yuan, Z. Microcrystalline cellulose (MCC) based materials as emerging adsorbents for the removal of dyes and heavy metals—A review. Sci. Total Environ. 2020, 717, 135070. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.C.; Swamy, M.M.; Mall, I.D.; Prasad, B.; Mishra, I.M. Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics. Colloids Surf. A Physicochem. Eng. Asp. 2006, 272, 89–104. [Google Scholar] [CrossRef]
- Sun, A.H.; Bian, S.Y.; Li, L.Z.; Guo, Z.J.; Li, W.J.; Li, J.H.; Xu, S.Y.; Liu, P.D. Preparation of highly adsorptive biochar by sequential iron impregnation under refluxing and pyrolysis at low temperature for removal of tetracycline. Environ. Pollut. 2024, 348, 10. [Google Scholar] [CrossRef]
- Kamali, M.; Appels, L.; Kwon, E.E.; Aminabhavi, T.M.; Dewil, R. Biochar in water and wastewater treatment-a sustainability assessment. Chem. Eng. J. 2021, 420, 129946. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, J.; Zeng, Q.; Liang, Z.; Ye, X.; Lv, Y.; Liu, M. Preparation of Eucommia ulmoides lignin-based high-performance biochar containing sulfonic group: Synergistic pyrolysis mechanism and tetracycline hydrochloride adsorption. Bioresour. Technol. 2021, 329, 124856. [Google Scholar] [CrossRef]
- Yu, K.; Chen, Y.X.; Wang, C.B.; Sun, D.; Shen, Q. Adsorption performance of hydrothermal bamboo biochar on tetracycline hydrochloride. J. Huzhou Norm. Univ. 2021, 43, 54–58. [Google Scholar]
- Sewu, D.D.; Jung, H.; Kim, S.S.; Lee, D.S.; Woo, S.H. Decolorization of cationic and anionic dye-laden wastewater by steam-activated biochar produced at an industrial-scale from spent mushroom substrate. Bioresour. Technol. 2019, 277, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Ndoun, M.C.; Elliott, H.A.; Preisendanz, H.E.; Williams, C.F.; Knopf, A.; Watson, J.E. Adsorption of pharmaceuticals from aqueous solutions using biochar derived from cotton gin waste and guayule bagasse. Biochar 2021, 3, 89–104. [Google Scholar] [CrossRef]
- He, L.; Liu, F.-f.; Zhao, M.; Qi, Z.; Sun, X.; Afzal, M.Z.; Sun, X.; Li, Y.; Hao, J.; Wang, S. Electronic-property dependent interactions between tetracycline and graphene nanomaterials in aqueous solution. J. Environ. Sci. 2018, 66, 286–294. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Zhao, J.; Herbert, S.; Xing, B. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environ. Pollut. 2013, 181, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; He, Q.; Hu, X.; Zhang, K.; Chen, C.; Xue, Y. Enhanced adsorption for the removal of tetracycline hydrochloride (TC) using ball-milled biochar derived from crayfish shell. Colloids Surf. A Physicochem. Eng. Asp. 2021, 615, 126254. [Google Scholar] [CrossRef]
- Xu, Z.; Cai, J.-G.; Pan, B.-C. Mathematically modeling fixed-bed adsorption in aqueous systems. J. Zhejiang Univ.-Sci. A 2013, 14, 155–176. [Google Scholar] [CrossRef]
- Lin, J.; Zhan, Y.; Wang, H.; Chu, M.; Wang, C.; He, Y.; Wang, X. Effect of calcium ion on phosphate adsorption onto hydrous zirconium oxide. Chem. Eng. J. 2017, 309, 118–129. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, F.; Sun, Y.; Fang, W.; Li, X.; Dai, Y. New use for biochar derived from bovine manure for tetracycline removal. J. Environ. Chem. Eng. 2021, 9, 105585. [Google Scholar] [CrossRef]
- Kumar, P.A.; Chakraborty, S. Fixed-bed column study for hexavalent chromium removal and recovery by short-chain polyaniline synthesized on jute fiber. J. Hazard. Mater. 2009, 162, 1086–1098. [Google Scholar] [CrossRef] [PubMed]
- Dolatyari, L.; Yaftian, M.R.; Rostamnia, S. Adsorption of Th(IV) and U(VI) on functionalized SBA-15 mesoporous silica materials using fixed bed column method; breakthrough curves prediction and modeling. Sep. Sci. Technol. 2018, 53, 1282–1294. [Google Scholar] [CrossRef]
- Hasan, S.H.; Ranjan, D.; Talat, M. Agro-industrial waste ’wheat bran’ for the biosorptive remediation of selenium through continuous up-flow fixed-bed column. J. Hazard. Mater. 2010, 181, 1134–1142. [Google Scholar] [CrossRef]
- Wang, L.; Feng, J.J.; Tao, M.L. Dynamic adsorption of dyes by quaternary ammonium ionized acrylic fibers. Chem. Ind. Eng. 2020, 37, 73–79. [Google Scholar] [CrossRef]
Parameters | Unit | GBC800 | KGBC800 | N-KGBC800 |
---|---|---|---|---|
SBET | m2/g | 11.7 | 1477 | 2090 |
VTotal | cm3/g | 0.05 | 0.96 | 1.27 |
VMic | cm3/g | 0.00 | 0.41 | 0.36 |
L0 1 | nm | 16.56 | 2.59 | 2.43 |
Biochar | Percentage of Surface Elements/% | |||
---|---|---|---|---|
O1s | C1s | N1s | Other Elements | |
GBC800 | 25.22 | 63.41 | 1.15 | 10.22 |
KGBC800 | 13.82 | 84.32 | 0.45 | 1.41 |
N-KGBC800 | 13.37 | 83.95 | 1.04 | 1.64 |
Biochar | Kinetic Model | Parameters | Initial TC Concentration | ||
---|---|---|---|---|---|
10 mg/L | 50 mg/L | 100 mg/L | |||
GBC800 | Quasi-primary kinetic model | K1/min−1 | 0.0186 | 0.0124 | 0.0383 |
qe1,exp/(mg·g−1) | 11.3514 | 14.0823 | 16.9700 | ||
qe1/(mg·g−1) | 10.4794 | 13.7089 | 17.9445 | ||
R2 | 0.9156 | 0.9643 | 0.8851 | ||
Quasi-secondary kinetic model | K2/min−1 | 0.0023 | 0.0009 | 0.0026 | |
qe2,exp/(mg·g−1) | 11.3514 | 14.0823 | 16.9700 | ||
qe2/(mg·g−1) | 11.5208 | 15.6983 | 18.4010 | ||
R2 | 0.9624 | 0.9836 | 0.9399 | ||
Elovich kinetic model | β(mg/g) | 0.4773 | 0.2928 | 0.3214 | |
R2 | 0.9276 | 0.9568 | 0.9345 | ||
KGBC800 | Quasi-primary kinetic model | K1/min−1 | 0.1830 | 0.0503 | 0.0799 |
qe1,exp/(mg·g−1) | 76.5766 | 264.4726 | 294.8649 | ||
qe1/(mg·g−1) | 75.4745 | 242.3914 | 270.7169 | ||
R2 | 0.9909 | 0.9002 | 0.8927 | ||
Quasi-secondary kinetic model | K2/min−1 | 0.0046 | 0.0002 | 0.0004 | |
qe2,exp/(mg·g−1) | 76.5766 | 264.2799 | 294.8469 | ||
qe2/(mg·g−1) | 77.4602 | 258.8755 | 286.5655 | ||
R2 | 0.9974 | 0.9700 | 0.9674 | ||
Elovich kinetic model | β(mg/g) | 0.2281 | 0.0279 | 0.02954 | |
R2 | 0.9529 | 0.9636 | 0.9508 | ||
N-KGBC800 | Quasi-primary kinetic model | K1/min−1 | 0.6549 | 0.16286 | 0.063 |
qe1,exp/(mg·g−1) | 67.2072 | 336.0661 | 604.7147 | ||
qe1/(mg·g−1) | 66.7497 | 326.7898 | 566.6394 | ||
R2 | 0.9987 | 0.9665 | 0.9166 | ||
Quasi-secondary kinetic model | K2/min−1 | 0.0624 | 0.0008 | 0.0001 | |
qe2,exp/(mg·g−1) | 67.2072 | 336.0661 | 604.7147 | ||
qe2/(mg·g−1) | 67.0695 | 337.5815 | 598.7235 | ||
R2 | 0.9997 | 0.9969 | 0.9772 | ||
Elovich kinetic model | β(mg/g) | 1.5842 | 0.0427 | 0.0135 | |
R2 | 0.9796 | 0.9693 | 0.9804 |
Biochar | Parameters | Initial TC Concentration | ||
---|---|---|---|---|
10 mg/L | 50 mg/L | 100 mg/L | ||
GBC800 | KGBC,1 [mg/(g·min)] | 1.1472 | 1.1146 | 2.2700 |
CGBC,1 (mg/g) | −0.2934 | −0.1857 | 0.2270 | |
R12 | 0.8761 | 0.9948 | 0.9946 | |
KGBC,2 [mg/(g·min)] | 0.4552 | 0.5209 | 0.5179 | |
CGBC,2 (mg/g) | 2.8389 | 3.8104 | 11.0938 | |
R22 | 0.9588 | 0.9835 | 0.9625 | |
KGBC,3 [mg/(g·min)] | 0.1546 | 0.1309 | 0.0856 | |
CGBC,3 (mg/g) | 7.7316 | 11.1160 | 17.8559 | |
R32 | 0.8967 | 0.8797 | 0.8352 | |
KGBC800 | KKGBC,1 [mg/(g·min)] | 19.4498 | 33.3154 | 42.9313 |
CKGBC,1 (mg/g) | 1.2772 | 8.9329 | 14.5346 | |
R12 | 0.9702 | 0.9425 | 0.9098 | |
KKGBC,2 [mg/(g·min)] | 4.5743 | 9.8530 | 9.8794 | |
CKGBC,2 (mg/g) | 46.8038 | 109.2741 | 146.3773 | |
R22 | 0.8133 | 0.9556 | 0.9805 | |
KKGBC,3 [mg/(g·min)] | 0.0784 | 2.1578 | 1.5079 | |
CKGBC,3 (mg/g) | 74.5739 | 210.8439 | 256.5668 | |
R32 | 0.8758 | 0.8816 | 0.9202 | |
N-KGBC800 | KN-KGBC,1 [mg/(g·min)] | 22.1605 | 80.5541 | 99.6993 |
CN-KGBC,1 (mg/g) | 3.3464 | 6.9789 | 8.5941 | |
R12 | 0.8522 | 0.9488 | 0.9493 | |
KN-KGBC,2 [mg/(g·min)] | 0.2413 | 8.0325 | 31.8177 | |
CN-KGBC,2 (mg/g) | 64.6160 | 249.5722 | 217.5784 | |
R22 | 0.9359 | 0.8337 | 0.9533 | |
KN-KGBC,3 [mg/(g·min)] | 0.0132 | 0.2524 | 3.4903 | |
CN-KGBC,3 (mg/g) | 66.8827 | 329.9344 | 517.9382 | |
R32 | 0.8348 | 0.8519 | 0.8541 |
Biochar | Model | Parameters | Reaction Temperature (T) | ||
---|---|---|---|---|---|
288 K | 298 K | 308 K | |||
GBC800 | Langmuir | qm (mg/g) | 16.1679 | 20.8750 | 24.1704 |
KL (L/mg) | 1.0074 | 0.6959 | 0.3604 | ||
RL | 0.0098 | 0.0141 | 0.0269 | ||
R2 | 0.9384 | 0.9220 | 0.9425 | ||
Freundlich | KF [mg·g−1·(L·mg)−1/n] | 9.4458 | 10.2429 | 10.1680 | |
1/n | 0.1476 | 0.1733 | 0.2011 | ||
R2 | 0.9235 | 0.9197 | 0.8894 | ||
Temkin | bT (kJ/mol) | 1.2296 | 0.9503 | 0.7765 | |
KT (L/mg) | 90.1630 | 38.0677 | 15.2946 | ||
R2 | 0.9250 | 0.9768 | 0.9371 | ||
KGBC800 | Langmuir | qm (mg/g) | 268.4533 | 285.3526 | 306.5144 |
KL (L/mg) | 1.2706 | 1.4866 | 1.3825 | ||
RL | 0.0078 | 0.0066 | 0.0071 | ||
R2 | 0.9886 | 0.9727 | 0.9823 | ||
Freundlich | KF [mg·g−1·(L·mg)−1/n] | 149.3361 | 158.7649 | 167.5674 | |
1/n | 0.1638 | 0.1691 | 0.1739 | ||
R2 | 0.8550 | 0.8649 | 0.8711 | ||
Temkin | bT (kJ/mol) | 0.0717 | 0.0680 | 0.0648 | |
KT (L/mg) | 69.5907 | 65.3959 | 60.3399 | ||
R2 | 0.9377 | 0.9456 | 0.9523 | ||
N-KGBC800 | Langmuir | qm (mg/g) | 630.5727 | 660.6366 | 688.3172 |
KL (L/mg) | 1.0369 | 0.6756 | 0.6062 | ||
RL | 0.0095 | 0.0145 | 0.0162 | ||
R2 | 0.9973 | 0.9917 | 0.9868 | ||
Freundlich | KF [mg·g−1·(L·mg)−1/n] | 301.1075 | 300.6277 | 302.3327 | |
1/n | 0.1987 | 0.2198 | 0.2306 | ||
R2 | 0.8163 | 0.8801 | 0.8787 | ||
Temkin | bT (kJ/mol) | 0.0262 | 0.0261 | 0.0253 | |
KT (L/mg) | 25.6450 | 22.1160 | 18.4779 | ||
R2 | 0.9219 | 0.9549 | 0.9534 |
Biochar | Parameters | Temperature (K) | ||
---|---|---|---|---|
298 | 308 | 318 | ||
GBC800 | ΔG0 (kJ/mol) | 6.8480 | 6.0157 | 5.2736 |
ΔH0 (kJ/mol) | 30.2920 | |||
ΔS0 (J/mol·K) | 0.0787 | |||
R2 | 0.9989 | |||
KGBC800 | ΔG0 (kJ/mol) | −3.3619 | −3.8494 | −4.0779 |
ΔH0 (kJ/mol) | 27.2631 | |||
ΔS0 (J/mol·K) | 0.0358 | |||
R2 | 0.9782 | |||
N-KGBC800 | ΔG0 (kJ/mol) | −9.0964 | −10.4260 | −11.6034 |
ΔH0 (kJ/mol) | 28.232 | |||
ΔS0 (J/mol·K) | 0.1253 | |||
R2 | 0.9998 |
Parameters | Unit | GBC800 | KGBC800 | N-KGBC800 |
---|---|---|---|---|
SBET | m2/g | 9.6 | 1035 | 785 |
VTotal | cm3/g | 0.04 | 0.82 | 0.62 |
VMic | cm3/g | 0.00 | 0.17 | 0.19 |
L0 1 | nm | 13.50 | 3.16 | 3.15 |
Biochar | Conditional | Thomas Model Parameters | Yoon–Nelson Model Parameters | |||||
---|---|---|---|---|---|---|---|---|
KT (mL/(mg·min)) | qe (mg/g) | qexp (mg/g) | R2 | KY (L/min) | τ (min) | R2 | ||
GBC800 | Purified water | 0.3664 | 16.7136 | 15.1134 | 0.8842 | 0.0482 | 8.3346 | 0.8711 |
Salted water | 0.5024 | 15.4731 | 11.6302 | 0.8513 | 0.0716 | 7.8948 | 0.8321 | |
KGBC800 | Purified water | 0.4325 | 262.0138 | 238.3792 | 0.9949 | 0.0424 | 158.2122 | 0.9872 |
Salted water | 0.5212 | 230.5852 | 211.9348 | 0.9897 | 0.0540 | 128.0997 | 0.9818 | |
N-KGBC800 | Purified water | 0.3721 | 599.7145 | 601.0326 | 0.9973 | 0.0379 | 399.2547 | 0.9971 |
Salted water | 0.4690 | 585.2991 | 573.4281 | 0.9938 | 0.0479 | 321.3415 | 0.9932 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Tang, C.; Wang, H.; Zhong, M.; Ge, P.; Xu, W.; Chen, Y. Synthesis and Characterization of Potassium Bicarbonate and Urea-Modified Biochar from Rape Straw: Application in the Removal of Tetracycline from Aqueous Solution. Water 2024, 16, 2522. https://doi.org/10.3390/w16172522
Zhang Z, Tang C, Wang H, Zhong M, Ge P, Xu W, Chen Y. Synthesis and Characterization of Potassium Bicarbonate and Urea-Modified Biochar from Rape Straw: Application in the Removal of Tetracycline from Aqueous Solution. Water. 2024; 16(17):2522. https://doi.org/10.3390/w16172522
Chicago/Turabian StyleZhang, Zhipeng, Chenghan Tang, Hongbin Wang, Ming Zhong, Pengchao Ge, Wenlai Xu, and Yiyang Chen. 2024. "Synthesis and Characterization of Potassium Bicarbonate and Urea-Modified Biochar from Rape Straw: Application in the Removal of Tetracycline from Aqueous Solution" Water 16, no. 17: 2522. https://doi.org/10.3390/w16172522
APA StyleZhang, Z., Tang, C., Wang, H., Zhong, M., Ge, P., Xu, W., & Chen, Y. (2024). Synthesis and Characterization of Potassium Bicarbonate and Urea-Modified Biochar from Rape Straw: Application in the Removal of Tetracycline from Aqueous Solution. Water, 16(17), 2522. https://doi.org/10.3390/w16172522