Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = potamodromous cyprinid species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2 pages, 207 KiB  
Abstract
Two-Way Migration of a Potamodromous Cyprinid in a Small Hydropower Plant with a Pool Type Fishway
by Francisco Javier Bravo-Córdoba, Ana García-Vega, Juan Francisco Fuentes-Pérez, Leandro Fernandes-Celestino, Sergio Makrakis and Francisco Javier Sanz-Ronda
Biol. Life Sci. Forum 2022, 13(1), 38; https://doi.org/10.3390/blsf2022013038 - 6 Jun 2022
Viewed by 1041
Abstract
Most freshwater fish need to move freely through rivers to complete their life cycles. Thus, river barriers that hinder or block their longitudinal movement (e.g., dams, culverts, gauging stations), directly affect their reproductive, feeding, and habitat routes. A holistic solution to these barriers [...] Read more.
Most freshwater fish need to move freely through rivers to complete their life cycles. Thus, river barriers that hinder or block their longitudinal movement (e.g., dams, culverts, gauging stations), directly affect their reproductive, feeding, and habitat routes. A holistic solution to these barriers would need to allow directed, undistracted, and bidirectional fish migration between different habitats; that is to say, it would need to allow two-way migration. The most extended solution that would allow upstream fish migration is a fishway. However, for downstream migration fish have alternate routes such as spillways, turbines, or bypasses. Studies and discussions about two-way migration and bidirectional movement through a fishway have been focused on large dams and reservoirs; thus, there is a lack of available data on other environments, less popular species, or smaller dams and weirs. In this sense, it is possible to hypothesize that a fishway, especially in a smaller facility, could enhance two-way migration by allowing bidirectional movement. Therefore, as a first step to analyzing the possibility, we studied longitudinal connectivity (two-way migration and bidirectional movements) through a small run-of-river hydropower plant (HPP) with a step-pool type fishway, a common and representative configuration of several small HPPs around the world. A potamodromous cyprinid—the Iberian barbel (Luciobarbus bocagei)—was selected as the target species. In this study, radio and PIT tracking data were collected for four different years and combined to characterize movement in the full system: fishway, turbines/spillways, and the river reach downstream (up to 3 km) and upstream (up to 4 km) from the HPP. The results demonstrated the existence of several types of movement with inter-annual and intra-annual variability. Several fish even returned over the years. This suggests that, in this type of HPP facility, a fishway can provide bidirectional connectivity and two-way migration, thus ensuring that a great proportion of fish complete their life cycles. Full article
(This article belongs to the Proceedings of The IX Iberian Congress of Ichthyology)
22 pages, 3438 KiB  
Article
Assessment of Fish Abundance, Biodiversity and Movement Periodicity Changes in a Large River over a 20-Year Period
by Jean-Philippe Benitez, Arnaud Dierckx, Gilles Rimbaud, Billy Nzau Matondo, Séverine Renardy, Xavier Rollin, Alain Gillet, Frédéric Dumonceau, Pascal Poncin, Jean-Claude Philippart and Michaël Ovidio
Environments 2022, 9(2), 22; https://doi.org/10.3390/environments9020022 - 29 Jan 2022
Cited by 18 | Viewed by 6901
Abstract
A river is an ecosystem where fish fauna represents an important structural element. To re-establish connectivity, it is imperative to allow movement between functional habitats. Due to the hydromorphological complexity of large anthropized rivers and the lack of study techniques that can be [...] Read more.
A river is an ecosystem where fish fauna represents an important structural element. To re-establish connectivity, it is imperative to allow movement between functional habitats. Due to the hydromorphological complexity of large anthropized rivers and the lack of study techniques that can be used in such environments, relevant data with regard to fish ecology are scarce. On the River Meuse, Belgium, at a point 323 km upstream from the North Sea, the Lixhe hydroelectric dam is equipped with two fishways. Both were continuously monitored using capture traps for 20 consecutive years (from 1999 to 2018), representing 4151 monitoring events. The objectives of the present study were to describe the overall abundance and movement indicators of mainly holobiotic potamodromous fish species and to analyse their temporal evolution. We captured 388,631 individuals (n = 35 fish species) during the 20 years of fishway monitoring; 22.7% were adults (>75% of which were cyprinids), and 83.3% juveniles (>90% cyprinids). From 1999 to 2018, the results showed a drastic reduction in yearly captures for some native species as well as the apparent emergence of non-native (e.g., Silurus glanis) and reintroduced species (e.g., Salmo salar). The annual capture periodicities associated with environmental factors were clearly defined and were mostly related to the spring spawning migration of the adult stage. This long-term monitoring demonstrated how the fishways are used by the whole fish community and allowed a better understanding of their movement ecology in a large lowland anthropized river. The appearance of non-native species and the drastic decline in abundance of some common and widespread European fish should prompt river managers to adopt conservation measures. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Figure 1

20 pages, 7364 KiB  
Article
Turning Pools in Stepped Fishways: Biological Assessment via Fish Response and CFD Models
by Francisco Javier Bravo-Córdoba, Juan Francisco Fuentes-Pérez, Jorge Valbuena-Castro, Andrés Martínez de Azagra-Paredes and Francisco Javier Sanz-Ronda
Water 2021, 13(9), 1186; https://doi.org/10.3390/w13091186 - 25 Apr 2021
Cited by 16 | Viewed by 3957
Abstract
With the aim of building more compact fishways and adapting them to field conditions to improve their location by fish, it is common to use turning pools, reducing the longitudinal development of the construction. However, depending on their design, turning pools may affect [...] Read more.
With the aim of building more compact fishways and adapting them to field conditions to improve their location by fish, it is common to use turning pools, reducing the longitudinal development of the construction. However, depending on their design, turning pools may affect the hydraulic performance of the fishway and consequently the fish passage. To study these phenomena, turning pools in a vertical slot and in different configurations of submerged notches with bottom orifice fishway types were assessed. Both types of fishways were studied using numerical 3D models via OpenFOAM, a computational fluid dynamics software, in combination with fish responses, assessed with PIT (Passive Integrated Transponder) tag telemetry for three different species of potamodromous cyprinids in several fishways. Results show differences between the hydrodynamics of straight and turning pools, with lower values in the hydrodynamic variables in turning pools. Regarding fish behavior, the ascent was slower in turning pools but with no effect on passage success and without being a problem for fish migration. This information validates the use of turning pools as a key design component for fishways for studied species. Full article
(This article belongs to the Special Issue Fish Passage at Hydropower Dams)
Show Figures

Figure 1

12 pages, 5798 KiB  
Article
Evaluation of Low-Head Ramped Weirs for a Potamodromous Cyprinid: Effects of Substrate Addition and Discharge on Fish Passage Performance, Stress and Fatigue
by Susana D. Amaral, Paulo Branco, Filipe Romão, Maria Teresa Ferreira, António N. Pinheiro and José Maria Santos
Water 2021, 13(6), 765; https://doi.org/10.3390/w13060765 - 11 Mar 2021
Cited by 6 | Viewed by 2247
Abstract
Requalification of low-head ramped weirs through the addition of substrates (retrofitting) has attracted attention in recent years. However, few studies are available on how this measure affects the negotiation of ramped weirs by fish. This study aimed to assess the performance of an [...] Read more.
Requalification of low-head ramped weirs through the addition of substrates (retrofitting) has attracted attention in recent years. However, few studies are available on how this measure affects the negotiation of ramped weirs by fish. This study aimed to assess the performance of an experimental ramped weir (3.00 m long with 10% slope; 0.30 m head-drop) to enhance the passage of a potamodromous cyprinid species, the Iberian barbel (Luciobarbus bocagei). Attention was given to testing the effects of the addition of a substrate, in this case cobbles, to the ramp (Nature) vs. a smooth bottom (Control), and discharge (Q; 55 L·s−1 and 110 L·s−1 (or specific discharge per unit width, q = 92 L·s−1·m−1 and 183 L·s−1·m−1)) on fish passage performance. Fish physiological responses to stress and fatigue, measured by glucose and lactate concentrations in blood samples, were also analysed. Results showed that the Nature design generally increased fish movements and successful upstream passages, and enhanced fish passage performance by enabling faster negotiations. Fish movements were also affected by increasing discharge, registering reductions with 110 L·s−1. Results of the physiological parameters indicate that both glucose and lactate concentrations were also influenced by discharge. The outcomes from this study present important information about fish passage performance across low-head ramped weirs and could provide data needed to help biologists and engineers to develop more effective structures to alleviate small instream obstacles. Full article
Show Figures

Figure 1

16 pages, 2221 KiB  
Article
Passability of Potamodromous Species through a Fish Lift at a Large Hydropower Plant (Touvedo, Portugal)
by Daniel Mameri, Rui Rivaes, João M. Oliveira, João Pádua, Maria T. Ferreira and José M. Santos
Sustainability 2020, 12(1), 172; https://doi.org/10.3390/su12010172 - 24 Dec 2019
Cited by 14 | Viewed by 4296
Abstract
River fragmentation by large hydropower plants (LHP) has been recognized as a major threat for potamodromous fish. Fishways have thus been built to partially restore connectivity, with fish lifts representing the most cost-effective type at high head obstacles. This study assessed the effectiveness [...] Read more.
River fragmentation by large hydropower plants (LHP) has been recognized as a major threat for potamodromous fish. Fishways have thus been built to partially restore connectivity, with fish lifts representing the most cost-effective type at high head obstacles. This study assessed the effectiveness with which a fish lift in a LHP on the River Lima (Touvedo, Portugal), allows potamodromous fish—Iberian barbel (Luciobarbus bocagei), Northern straight-mouth nase (Pseudochondrostoma duriense) and brown trout (Salmo trutta fario)- to migrate upstream. Most fish (79.5%) used the lift between summer and early-fall. Water temperature was the most significant predictor of both cyprinids’ movements, whereas mean daily flow was more important for trout. Movements differed according to peak-flow magnitude: nase (67.8%) made broader use of the lift in the absence of turbined flow, whereas a relevant proportion of barbel (44.8%) and trout (44.2%) passed when the powerhouse was operating at half (50 m3s−1) and full-load (100 m3s−1), respectively. Size-selectivity found for barbel and trout could reflect electrofishing bias towards smaller sizes. The comparison of daily abundance patterns in the river with fish lift records allowed the assessment of the lift’s efficacy, although biological requirements of target species must be considered. Results are discussed in the context of management strategies, with recommendations for future studies. Full article
Show Figures

Figure 1

18 pages, 2980 KiB  
Article
Assessment of Retrofitted Ramped Weirs to Improve Passage of Potamodromous Fish
by Susana D. Amaral, Ana L. Quaresma, Paulo Branco, Filipe Romão, Christos Katopodis, Maria T. Ferreira, António N. Pinheiro and José M. Santos
Water 2019, 11(12), 2441; https://doi.org/10.3390/w11122441 - 21 Nov 2019
Cited by 21 | Viewed by 4280
Abstract
The addition of substrates to small instream obstacles, like low-head ramped weirs, has been considered a useful management solution to retrofit those structures and enhance fish passage. Substrate dimensions and spatial arrangement, together with discharge, and consequently water depths, appear as important factors [...] Read more.
The addition of substrates to small instream obstacles, like low-head ramped weirs, has been considered a useful management solution to retrofit those structures and enhance fish passage. Substrate dimensions and spatial arrangement, together with discharge, and consequently water depths, appear as important factors for the creation of hydrodynamic conditions that may facilitate the successful passage of fish, though related studies are scarce to support decision-making. This study assessed the influence of discharge (Q) and different retrofitting designs (RD) on the upstream passage performance of a potamodromous cyprinid, the Iberian barbel (Luciobarbus bocagei). Different substrates (small boulders, large boulders, cobbles) and spatial arrangements (aligned, offset) were tested. Numerical modelling was performed to characterize the hydrodynamics. Results indicate that Q and RD influenced the upstream negotiation of ramped weirs. Cobbles randomly distributed along the ramp (Nature design) was the most successful configuration, recording the highest number of upstream passages. Low velocities along the ramp, and low turbulence downstream, were registered in this configuration, indicating that the use of natural substrate may help to increase the permeability of ramped weirs to fish movements. The outcomes from this work can help engineers and biologists to design more appropriate passage structures for low-head instream obstacles. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

14 pages, 1294 KiB  
Article
Passage Performance of Technical Pool-Type Fishways for Potamodromous Cyprinids: Novel Experiences in Semiarid Environments
by Francisco Javier Sanz-Ronda, Francisco Javier Bravo-Córdoba, Ana Sánchez-Pérez, Ana García-Vega, Jorge Valbuena-Castro, Leandro Fernandes-Celestino, Mar Torralva and Francisco José Oliva-Paterna
Water 2019, 11(11), 2362; https://doi.org/10.3390/w11112362 - 11 Nov 2019
Cited by 26 | Viewed by 4004
Abstract
Endemic freshwater fish from semiarid environments are among the most threated species in the world due to water overexploitation and habitat fragmentation problems. Stepped or pool-type fishways are used worldwide to reestablish longitudinal connectivity and mitigate fish migration problems. Many of them are [...] Read more.
Endemic freshwater fish from semiarid environments are among the most threated species in the world due to water overexploitation and habitat fragmentation problems. Stepped or pool-type fishways are used worldwide to reestablish longitudinal connectivity and mitigate fish migration problems. Many of them are being installed or planned in rivers of semiarid environments, however, very few studies about fish passage performance through pool-type fishways has been carried out to date on these regions. The present work focuses on the passage performance of two potamodromous cyprinids endemic of these regions, with different ecological and swimming behavior: southern Iberian barbel (Luciobarbus sclateri) and Iberian straight-mouth nase (Pseudochondrostoma polylepis). These are assessed in two of the most common types of stepped fishways: vertical slot and submerged notch with bottom orifice fishways. Experiments were carried out during the spawning season in the Segura River (southeastern Spain), using a passive integrated transponder (PIT) tag and antenna system. Ascent success was greater than 80%, with a median transit time lower than 17 minutes per meter of height in all trials, and for both species and fishway types. Results show that both types of fishways, if correctly designed and constructed, provide interesting alternatives for the restoration of fish migration pathways in these regions. Full article
(This article belongs to the Special Issue Ecohydraulics of Pool-Type Fishways)
Show Figures

Figure 1

10 pages, 1377 KiB  
Article
Passage Performance of Potamodromous Cyprinids over an Experimental Low-Head Ramped Weir: The Effect of Ramp Length and Slope
by Susana Dias Amaral, Paulo Branco, Christos Katopodis, Maria Teresa Ferreira, António Nascimento Pinheiro and José Maria Santos
Sustainability 2019, 11(5), 1456; https://doi.org/10.3390/su11051456 - 9 Mar 2019
Cited by 15 | Viewed by 3684
Abstract
Low-head ramped weirs are a common instream obstacle to fish movements. Fish passability of these structures, where water passes over but does not generate a waterfall, is primarily related to ramp length and slope, but their relative contribution has seldom been considered. This [...] Read more.
Low-head ramped weirs are a common instream obstacle to fish movements. Fish passability of these structures, where water passes over but does not generate a waterfall, is primarily related to ramp length and slope, but their relative contribution has seldom been considered. This study aims to assess the passage performance of a potamodromous cyprinid, the Iberian barbel (Luciobarbus bocagei), negotiating an experimental ramped weir with varying ramp length (L) and slope (S). Four configurations were tested, with a constant discharge of 110 L∙s−1. Results suggest that both factors influenced passage performance of fish. Attraction efficiency (AE) increased with increasing L and S, whereas the number of successes (N) and passage efficiency (PE) decreased upon increasing L. For S, it was found that both N and PE peaked at the intermediate level (20%). These results suggest that configurations with the lowest slopes may not necessarily be the best option because they may be less attractive for the fish and their demand for space is higher. Higher slopes (but not excessive) could be more attractive to fish, less space-demanding, and therefore, more cost-effective. Future studies should investigate how discharge and boulder placement influence fish passage across ramped weirs, to improve habitat connectivity. Full article
Show Figures

Figure 1

13 pages, 1858 KiB  
Article
How Does Season Affect Passage Performance and Fatigue of Potamodromous Cyprinids? An Experimental Approach in a Vertical Slot Fishway
by Filipe Romão, José M. Santos, Christos Katopodis, António N. Pinheiro and Paulo Branco
Water 2018, 10(4), 395; https://doi.org/10.3390/w10040395 - 28 Mar 2018
Cited by 25 | Viewed by 4281
Abstract
Most fishway studies are conducted during the reproductive period, yet uncertainty remains on whether results may be biased if the same studies were performed outside of the migration season. The present study assessed fish passage performance of a potamodromous cyprinid, the Iberian barbel [...] Read more.
Most fishway studies are conducted during the reproductive period, yet uncertainty remains on whether results may be biased if the same studies were performed outside of the migration season. The present study assessed fish passage performance of a potamodromous cyprinid, the Iberian barbel (Luciobarbus bocagei), in an experimental full-scale vertical slot fishway during spring (reproductive season) and early-autumn (non-reproductive season). Results revealed that no significant differences were detected on passage performance metrics, except for entry efficiency. However, differences between seasons were noted in the plasma lactate concentration (higher in early-autumn), used as a proxy for muscular fatigue after the fishway navigation. This suggests that, for potamodromous cyprinids, the evaluation of passage performance in fishways does not need to be restricted to the reproductive season and can be extended to early-autumn, when movements associated with shifts in home range may occur. The increased effort during the non-reproductive period suggests that adapting the operational regime of fishways, at biologically meaningful seasons in a year, should be assessed by considering the physiological state of the target species. Full article
Show Figures

Figure 1

Back to TopTop