Passage Performance of Potamodromous Cyprinids over an Experimental Low-Head Ramped Weir: The Effect of Ramp Length and Slope
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aarts, B.G.; Van Den Brink, F.W.; Nienhuis, P.H. Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe: The transversal floodplain gradient. Regul. River 2003, 20, 3–23. [Google Scholar] [CrossRef]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [PubMed]
- King, S.; O’Hanley, J.R.; Newbold, L.R.; Kemp, P.S.; Diebel, M.W. A toolkit for optimizing fish passage barrier mitigation actions. J. Appl. Ecol. 2017, 54, 599–611. [Google Scholar] [CrossRef]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for the community action in the field of water policy. Off. J. Eur. Comm. 2000, 22, L327. [Google Scholar]
- Reyjo, Y.; Argillier, C.; Bonne, W.; Borja, A.; Buijse, A.D.; Cardoso, A.C.; Daufresne, M.; Kernan, M.; Ferreira, M.T.; Poikane, S.; et al. Assessing the ecological status in the context of the European Water Framework Directive: Where do we go now? Sci. Total Environ. 2014, 497–498, 332–344. [Google Scholar] [CrossRef]
- Barry, J.; Coghlan, B.; Cullagh, A.; Kerr, J.R.; King, J.J. Comparison of coarse-resolution rapid methods for assessing fish passage at riverine barriers: ICE and SNIFFER protocols. River Res. Appl. 2018, 34, 1168–1178. [Google Scholar] [CrossRef]
- Ovidio, M.; Capra, H.; Philippart, J.C. Field protocol for assessing small obstacles to migration of brown trout Salmo trutta, and European grayling Thymallus thymallus: A contribution to the management of free movement in rivers. Fish. Manag. Ecol. 2007, 14, 41–50. [Google Scholar] [CrossRef]
- Solà, C.; Ordeix, M.; Pou-Rovira, Q.; Sellarès, N.; Queralt, A.; Bardina, M.; Casamitjana, A.; Munné, A. Longitudinal connectivity in hydromorphological quality assessments of rivers. The ICF index: A river connectivity index and its application to Catalan rivers. Limnetica 2011, 30, 273–292. [Google Scholar]
- Schmutz, S.; Mielach, C. Measures for Ensuring Fish Migration at Transversal Structures—Technical Paper; ICPDR—International Commission for the Protection of the Danube River: Vienna, Austria, 2013; p. 52. [Google Scholar]
- Ovidio, M.; Philippart, J.C. The impact of small physical obstacles on upstream movements of six species of fish—Synthesis of a 5-year telemetry study in the River Meuse basin. Hydrobiologia 2002, 483, 55–69. [Google Scholar] [CrossRef]
- Weibel, D.; Peter, A. Effectiveness of different types of block ramps for fish upstream movement. Aquat. Sci. 2013, 75, 251–260. [Google Scholar] [CrossRef]
- Ordeix, M. Fish migration and fish ramp assessment at a gauging station on a Mediterranean river (Catalonia, NE Iberian Peninsula). Limnetica 2017, 36, 427–443. [Google Scholar] [CrossRef]
- Birnie-Gauvin, K.; Candee, M.M.; Baktoft, H.; Larsen, M.H.; Koed, A.; Aarestrup, K. River connectivity reestablished: Effects and implications of six weir removals on brown trout smolt migration. River Res. Appl. 2018, 34, 548–554. [Google Scholar] [CrossRef] [Green Version]
- Ordeix, M.; González, G.; Sanz-Ronda, F.J.; Santos, J.M. Restoring fish migration in the rivers of the Iberian Peninsula. In From Sea to Source 2.0. Protection and Restoration of Fish Migration in Rivers Worldwide; Brink, K., Gough, P., Royte, J., Schollema, P.P., Wanningen, H., Eds.; World Fish Migration Foundation: Groningen, The Netherlands, 2018; pp. 174–179. [Google Scholar]
- Amaral, S.D.; Branco, P.; Silva, A.T.; Katopodis, C.; Viseu, T.; Ferreira, M.T.; Pinheiro, A.N.; Santos, J.M. Upstream passage of potamodromous cyprinids over small weirs: The influence of key-hydraulic parameters. J. Ecohydraulics 2016, 1, 79–89. [Google Scholar] [CrossRef]
- Branco, P.; Amaral, S.D.; Ferreira, M.T.; Santos, J.M. Do small barriers affect the movement of freshwater fish by increasing residency? Sci. Total Environ. 2017, 581–582, 486–494. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO)/DVWK. Fish Passes—Design, Dimensions and Monitoring; FAO: Rome, Italy, 2002; p. 119. [Google Scholar]
- Ferreira, T.; Oliveira, J.; Caiola, N.; De Sostoa, A.; Casals, F.; Cortes, R.; Economou, A.; Zogaris, S.; Garcia-Jalon, D.; Ilhéu, M.; et al. Ecological traits of fish assemblages from Mediterranean Europe and their responses to human disturbance. Fish. Manag. Ecol. 2007, 14, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Baudoin, J.M.; Burgun, V.; Chanseau, M.; Larinier, M.; Ovidio, M.; Sremski, W.; Steinbach, P.; Voegtle, B. Assessing the Passage of Obstacles by Fish. Concepts, Design and Application; Onema: Paris, France, 2014; p. 200. [Google Scholar]
- Harris, J.H.; Kingsford, R.T.; Peirson, W.; Baumgartner, L.J. Mitigating the effects of barriers to freshwater fish migrations: The Australian experience. Mar. Freshw. Res. 2016, 68, 614–628. [Google Scholar] [CrossRef]
- Kemp, P.S.; O’Hanley, J.R. Procedures for evaluating and prioritising the removal of fish passage barriers: A synthesis. Fish. Manag. Ecol. 2010, 17, 297–322. [Google Scholar] [CrossRef]
- Katopodis, C.; Gervais, R. Fish Swimming Performance Database and Analyses; Canadian Science Advisory Secretariat: Ottawa, Canada, 2016; Available online: http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2016/2016_002-eng.html (accessed on 30 November 2018).
- Newton, M.; Dodd, J.A.; Barry, J.; Boylan, P.; Adams, C.E. The impact of a small-scale riverine obstacle on the upstream migration of Atlantic Salmon. Hydrobiologia 2018, 806, 251–264. [Google Scholar] [CrossRef]
- Baker, C.F. Effect of ramp length and slope on the efficacy of a baffled fish pass. J. Fish Biol. 2014, 84, 491–502. [Google Scholar] [CrossRef]
- Santos, J.M.; Branco, P.; Katopodis, C.; Ferreira, T.; Pinheiro, A. Retrofitting pool-and-weir fishways to improve passage performance of benthic fishes: Effect of boulder density and fishway discharge. Ecol. Eng. 2014, 73, 335–344. [Google Scholar] [CrossRef]
- Romão, F.; Branco, P.; Quaresma, A.L.; Amaral, S.D.; Pinheiro, A.N. Effectiveness of a multi-slot vertical slot fishway versus a standard vertical slot fishway for potamodromous cyprinids. Hydrobiologia 2018, 816, 153–163. [Google Scholar] [CrossRef]
- Vogt, J.; Soille, P.; De Jager, A.; Rimaviciute, E.; Mehl, W.; Foisneau, S.; Bodis, K.; Dusart, J.; Paracchini, M.L.; Haastrup, P.; et al. A pan-European River and Catchment Database; European Commission—Joint Research Centre—Institute for Environment and Sustainability: Luxembourg, 2007. [Google Scholar]
- Amaral, S.D.; Branco, P.; Katopodis, C.; Ferreira, M.T.; Pinheiro, A.N.; Santos, J.M. To swim or to jump? Passage behaviour of a potamodromous cyprinid over an experimental broad-crested weir. River Res. Appl. 2018, 34, 1–9. [Google Scholar] [CrossRef]
- Santos, J.M.; Ferreira, M.T.; Godinho, F.N.; Bochechas, J. Efficacy of a nature-like bypass channel in a Portuguese lowland river. J. Appl. Ichthyol. 2005, 21, 381–388. [Google Scholar] [CrossRef]
- Romão, F.S.; Quaresma, A.; Branco, P.; Santos, J.M.; Amaral, S.D.; Ferreira, M.T.; Katopodis, C.; Pinheiro, A. Passage performance of two Cyprinids with different ecological traits in a fishway with distinct vertical slot configurations. Ecol. Eng. 2017, 105, 180–188. [Google Scholar] [CrossRef]
- Pitcher, T.J.; Parrish, J.K. Functions of shoaling behaviour in teleosts. In Behaviour of Teleost Fishes; Pitcher, T.J., Ed.; Chapman and Hall: London, UK, 1993; pp. 363–439. [Google Scholar]
- Amaral, S.D.; Branco, P.; Romão, F.; Viseu, T.; Ferreira, M.T.; Pinheiro, A.N.; Santos, J.M. The effect of weir crest width and discharge on passage performance of a potamodromous cyprinid. Mar. Freshw. Res. 2018, 69, 1795–1804. [Google Scholar] [CrossRef]
- Dinno, A. dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums. R package version 1.2.3. 2015. Available online: http://CRAN.R-project.org/package=dunn.test (accessed on 30 November 2018).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: http://www.R-project.org/ (accessed on 30 November 2018).
- Rice, S.P.; Lancaster, J.; Kemp, P. Experimentation at the interface of fluvial geomorphology, stream ecology and hydraulic engineering and the development of an effective, interdisciplinary river science. Earth Surf. Process. Landf. 2010, 35, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Ordeix, M.; Pou-Rovira, Q.; Sellarès, N.; Bardina, M.; Casamitjana, A.; Solà, C.; Munnè, A. Fish pass assessment in the rivers of Catalonia (NE Iberian Peninsula). A case study of weirs associated with hydropower plants and gauging stations. Limnetica 2011, 30, 405–426. [Google Scholar]
- Lacey, R.W.J.; Neary, V.S.; Liao, J.C.; Enders, E.C.; Tritico, H.M. The IPOS Framework: Linking fish swimming performance in altered flows from laboratory experiments to rivers. River Res. Appl. 2012, 28, 429–443. [Google Scholar] [CrossRef]
- Wang, R.W.; Hartlieb, A. Experimental and field approach to the hydraulics of nature-like pool-type fish migration facilities. Knowl. Manag. Aquat. Ec. 2011, 400, 5. [Google Scholar] [CrossRef]
- Kemp, P.S.; Gessel, M.H.; Sandford, B.P.; Williams, J.G. The behaviour of Pacific salmonid smolts during passage over two experimental weirs under light and dark conditions. River Res. Appl. 2006, 22, 429–440. [Google Scholar] [CrossRef]
- Martin, P.R.; Bateson, P.P.G. Measuring Behaviour: An Introductory Guide, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007; p. 176. [Google Scholar]
- Alexandre, C.M.; Quintella, B.R.; Silva, A.T.; Mateus, C.S.; Romao, F.; Branco, P.; Ferreira, M.T.; Almeida, P.R. Use of electromyogram telemetry to assess the behavior of the Iberian barbel (Luciobarbus bocagei Steindachner, 1864) in a pool-type fishway. Ecol. Eng. 2013, 51, 191–202. [Google Scholar] [CrossRef]
- Goerig, E.; Castro-Santos, T. Is motivation important to brook trout passage through culverts? Can. J. Fish. Aquat. Sci. 2017, 74, 885–893. [Google Scholar] [CrossRef] [Green Version]
- Pavlov, D.S.; Lupandin, A.I.; Skorobogatov, M.A. The effects of flow turbulence on the behavior and distribution of fish. J. Ichthyol. 2000, 40, S232–S261. [Google Scholar]
- Elder, J.; Coombs, S. The influence of turbulence on the sensory basis of rheotaxis. J. Com. Physiol. A 2015, 201, 667–680. [Google Scholar] [CrossRef]
- Liao, J.C. A review of fish swimming mechanics and behavior in altered flows. Philos. T. Roy. Soc. B 2007, 362, 1973–1993. [Google Scholar] [CrossRef]
- Baki, A.; Zhu, D.; Rajaratnam, N. Flow Simulation in a Rock-Ramp Fish Pass. J. Hydraul. Eng. 2016, 142, 04016031. [Google Scholar] [CrossRef]
- Muraoka, K.; Nakanishi, S.; Kayaba, Y. Boulder arrangement on a rocky ramp fishway based on the swimming behavior of fish. Limnologica 2017, 62, 188–193. [Google Scholar] [CrossRef]
- Aramburu, E.; Lara, Á.; Morcillo, F.; Castillo, M.; Berges, J.A. Escalas de Peces de Hendidura Vertical; CEDEX: Madrid, Spain, 2016; p. 144. [Google Scholar]
- Romão, F.; Quintella, B.R.; Pereira, T.J.; Almeida, P.R. Swimming performance of two Iberian cyprinids: The Tagus nase Pseudochondrostoma polylepis (Steindachner, 1864) and the bordallo Squalius carolitertii (Doadrio, 1988). J. Appl. Ichthyol. 2012, 28, 26–30. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, S.D.; Branco, P.; Katopodis, C.; Ferreira, M.T.; Pinheiro, A.N.; Santos, J.M. Passage Performance of Potamodromous Cyprinids over an Experimental Low-Head Ramped Weir: The Effect of Ramp Length and Slope. Sustainability 2019, 11, 1456. https://doi.org/10.3390/su11051456
Amaral SD, Branco P, Katopodis C, Ferreira MT, Pinheiro AN, Santos JM. Passage Performance of Potamodromous Cyprinids over an Experimental Low-Head Ramped Weir: The Effect of Ramp Length and Slope. Sustainability. 2019; 11(5):1456. https://doi.org/10.3390/su11051456
Chicago/Turabian StyleAmaral, Susana Dias, Paulo Branco, Christos Katopodis, Maria Teresa Ferreira, António Nascimento Pinheiro, and José Maria Santos. 2019. "Passage Performance of Potamodromous Cyprinids over an Experimental Low-Head Ramped Weir: The Effect of Ramp Length and Slope" Sustainability 11, no. 5: 1456. https://doi.org/10.3390/su11051456
APA StyleAmaral, S. D., Branco, P., Katopodis, C., Ferreira, M. T., Pinheiro, A. N., & Santos, J. M. (2019). Passage Performance of Potamodromous Cyprinids over an Experimental Low-Head Ramped Weir: The Effect of Ramp Length and Slope. Sustainability, 11(5), 1456. https://doi.org/10.3390/su11051456