Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = positive resonant frequency shift

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 9805 KiB  
Article
Fluid–Structure Interaction Study in Unconventional Energy Horizontal Wells Driven by Recursive Algorithm and MPS Method
by Xikun Gao, Dajun Zhao, Yi Zhang, Yong Chen, Zhanzhao Gao, Xiaojiao Zhang and Shengda Wang
Appl. Sci. 2025, 15(12), 6743; https://doi.org/10.3390/app15126743 - 16 Jun 2025
Viewed by 296
Abstract
With the unconventional energy sector (e.g., shale gas) increasingly focused on precision drilling and cost-effective extraction, slim-hole horizontal well technology is gaining prominence. However, drill string dynamics in narrow, complex fluid environments are not fully understood. This study presents a novel bidirectional fluid–structure [...] Read more.
With the unconventional energy sector (e.g., shale gas) increasingly focused on precision drilling and cost-effective extraction, slim-hole horizontal well technology is gaining prominence. However, drill string dynamics in narrow, complex fluid environments are not fully understood. This study presents a novel bidirectional fluid–structure interaction (FSI) model, uniquely integrating recursive algorithms with the Moving Particle Semi-implicit (MPS) method to couple drill string–wellbore contact with drilling fluid interactions. Key findings show that drilling fluid significantly impacts drill string behavior; for instance, it can reduce natural frequencies by 20–25%, while stiff formations amplify lateral resonance risks. Optimizing fluid properties can substantially cut energy losses, though TREE is marginally elevated when viscosity exceeds the threshold (2.5 × 10−5 m2/s). The drill string typically displaces rightward, but higher viscosity can shift it left; a moderate friction coefficient aids centering. Excessive lateral displacement impairs cuttings removal, affecting fracturing. These insights enable actionable strategies: adjusting fluid viscosity and drag reducers can optimize drill string position and enhance cleaning. This research provides a framework for energy-efficient drilling in complex reservoirs, balancing efficiency with wellbore integrity and improving outcomes in the unconventional energy sector. Full article
Show Figures

Figure 1

27 pages, 6659 KiB  
Article
Blood Glucose Monitoring Biosensor Based on Multiband Split-Ring Resonator Monopole Antenna
by Dalia N. Elsheakh, EL-Hawary Mohamed and Angie R. Eldamak
Biosensors 2025, 15(4), 250; https://doi.org/10.3390/bios15040250 - 15 Apr 2025
Cited by 3 | Viewed by 1043
Abstract
This paper introduces a novel-shaped, compact, multiband monopole antenna sensor incorporating an irregular curved split-ring resonator (SRR) design for non-invasive, continuous monitoring of human blood glucose levels (BGL). The sensor operates at multiple resonance frequencies: 0.94, 1.5, 3, 4.6, and 6.3 GHz, achieving [...] Read more.
This paper introduces a novel-shaped, compact, multiband monopole antenna sensor incorporating an irregular curved split-ring resonator (SRR) design for non-invasive, continuous monitoring of human blood glucose levels (BGL). The sensor operates at multiple resonance frequencies: 0.94, 1.5, 3, 4.6, and 6.3 GHz, achieving coefficient reflection impedance bandwidths ≤ −10 dB of 4%, 1%, 3.5%, 65%, and 50%, respectively. Additionally, novel shapes of two SRR metamaterial cells create notches at 1.7 GHz and 4.4 GHz. The antenna is fabricated on an economical FR4 substrate with compact dimensions of 35 × 50 × 1.6 mm3. The sensor’s performance is evaluated using 3D electromagnetic software, incorporating a human finger phantom model and applying the Cole–Cole model to mimic the blood layer’s sensitivity to blood glucose variations. The phantom model is positioned at different angles relative to the biosensor to detect frequency shifts corresponding to different glucose levels. Experimental validation involves placing a real human finger around the sensor to measure resonant frequency, magnitude, and phase changes. The fabricated sensor demonstrates a superior sensitivity of 24 MHz/mg/dL effectiveness compared to existing methods. This emphasizes its potential for practical, non-invasive glucose monitoring applications. Full article
(This article belongs to the Special Issue Advances in Glucose Biosensors Toward Continuous Glucose Monitoring)
Show Figures

Figure 1

23 pages, 5906 KiB  
Article
Design and Performance Assessment of Biocompatible Capacitive Pressure Sensors with Circular and Square Geometries Using ANSYS Workbench
by Md Shams Tabraiz Alam, Shabana Urooj, Abdul Quaiyum Ansari and Areiba Arif
Sensors 2025, 25(8), 2423; https://doi.org/10.3390/s25082423 - 11 Apr 2025
Viewed by 2429
Abstract
This research outlines the design of capacitive pressure sensors fabricated from three biocompatible materials, featuring both circular and square geometries. The sensors were structured with a dielectric layer positioned between gold-plated electrodes at the top and bottom. Their performance was assessed through simulations [...] Read more.
This research outlines the design of capacitive pressure sensors fabricated from three biocompatible materials, featuring both circular and square geometries. The sensors were structured with a dielectric layer positioned between gold-plated electrodes at the top and bottom. Their performance was assessed through simulations conducted with ANSYS Workbench. Of the various sensor configurations tested, the circular design that included two crescent-shaped slots and a 20 µm thick PDMS dielectric material demonstrated the highest sensitivity of 10.68 fF/mmHg. This study further investigated the relationship between resonant frequency shifts and arterial blood pressure, revealing an exceptionally linear response, as evidenced by a Pearson’s correlation coefficient of −0.99986 and an R-squared value of 0.99972. This confirmed the sensor’s applicability for obtaining precise blood pressure measurements. Additionally, a 3 × 30 mm cobalt–chromium (Co-Cr) stent was obtained, and its inductance was measured using an impedance analyzer. Full article
(This article belongs to the Special Issue Advances in E-health, Biomedical Sensing, Biosensing Applications)
Show Figures

Figure 1

21 pages, 10680 KiB  
Article
A Long-Range, High-Efficiency Resonant Wireless Power Transfer via Imaginary Turn Ratio Air Voltage Transformer
by Hsien-Chung Tang, Chun-Hao Chen, Edward-Yi Chang, Da-Jeng Yao, Wei-Hua Chieng and Jun-Ying He
Energies 2025, 18(6), 1329; https://doi.org/10.3390/en18061329 - 8 Mar 2025
Viewed by 1063
Abstract
This paper presents a resonant wireless power transfer method that leverages a 90-degree voltage phase shift between the transmitting and receiving coils to enhance efficiency and maximize power transfer. When the resonant coupling is achieved, the secondary coil with an adjustable capacitor forms [...] Read more.
This paper presents a resonant wireless power transfer method that leverages a 90-degree voltage phase shift between the transmitting and receiving coils to enhance efficiency and maximize power transfer. When the resonant coupling is achieved, the secondary coil with an adjustable capacitor forms a tuned LC circuit. If the primary coil is driven at the resonant frequency of both the primary and secondary sides, the system can transmit 250W of power between the coils over a distance of 50 cm. Using a single power transmitting unit (PTU) board with multiple paralleled gallium nitride high-electron-mobility transistors (GaN HEMTs), the system achieves a maximum power transfer efficiency of 88%, highlighting the effectiveness of the design in high-efficiency, long-distance wireless power transmission. The key to the success of high-power, high-efficiency RWPT is in exhibiting the imaginary turn ratio presented on the air transformer. The imaginary turn ratio can realize the negative impedance conversion that converts the positive resistance on the power-receiving unit into a negative one, and thus, the damping of the resonance oscillation becomes negative and positively encourages more power to be delivered to the power-receiving unit (PRU) load. This paper derives the theory of the imaginary turn ratio and demonstrates the implementation of the RWPT system that exhibits the imaginary turn ratio effect. Full article
Show Figures

Figure 1

18 pages, 6130 KiB  
Article
The Role of Asymmetry on the Resonances of Conjoined Split-Ring Resonators
by Mei Zhu, Xitao Wang, Lian Zhang, Jiguo Geng and Jun Chen
Symmetry 2025, 17(3), 332; https://doi.org/10.3390/sym17030332 - 22 Feb 2025
Viewed by 2004
Abstract
The conjoined split-ring resonator (Co-SRR) is proposed as the unit cell to construct terahertz (THz) metamaterial. The size and position of the gaps on both sides of the structure were adjusted, and the impact on the electromagnetic response to the incident THz wave [...] Read more.
The conjoined split-ring resonator (Co-SRR) is proposed as the unit cell to construct terahertz (THz) metamaterial. The size and position of the gaps on both sides of the structure were adjusted, and the impact on the electromagnetic response to the incident THz wave was investigated via simulation. Results show that by properly controlling the structural asymmetry, the resonances can be tuned simultaneously or independently. The devices exhibit frequency shifts of up to 510 GHz, a tuning range of free spectral range (FSR) as wide as 613 GHz, and a high modulation depth (MD) of 93.4%. Additionally, a wide range of amplitude modulation can occur across multiple frequencies. Incorporating spatial asymmetry further enhances the performance, resulting in a high quality factor (Q) of 44.8 and a figure of merit (FOM) of 40.1. The impressive characteristics prove that Co-SRR-based metamaterial is a great candidate for applications in optical sensing, switching, filtering and programming devices. Full article
Show Figures

Figure 1

19 pages, 15140 KiB  
Article
Evaluation of Impact of Soil on Performance of Monopole Antenna for IoT Applications in Urban Agriculture
by Nikolay Todorov Atanasov, Blagovest Nikolaev Atanasov and Gabriela Lachezarova Atanasova
Electronics 2025, 14(3), 544; https://doi.org/10.3390/electronics14030544 - 29 Jan 2025
Viewed by 862
Abstract
Built indoor IoT-based urban farms successfully combine the cultivation of fresh vegetables with attractive architectural designs. Moreover, implementing IoT-driven urban agriculture requires installing multiple IoT devices containing sensors, controllers, transceivers, and antennas for real-time data transmission. In this context, several factors, including the [...] Read more.
Built indoor IoT-based urban farms successfully combine the cultivation of fresh vegetables with attractive architectural designs. Moreover, implementing IoT-driven urban agriculture requires installing multiple IoT devices containing sensors, controllers, transceivers, and antennas for real-time data transmission. In this context, several factors, including the height of the IoT device above the soil level and the water content in the soil, can affect antenna performance and, consequently, the propagation of radio waves. This paper presents the results from numerical and experimental studies that evaluate the impact of soil on the performance of a monopole antenna for three different antenna positions relative to the soil in a pot and two soil water contents, presented by twelve scenarios. The results show that the antenna has a stable performance in six of the twelve scenarios, with a minimal shift in the resonant frequency of 3% and a narrowing of the frequency bandwidth by 2% compared to the antenna in free space. In the worst-case scenario, the antennas demonstrate a reduction in radiation efficiency of 44%, with the frequency bandwidth narrowing by up to 14% for the antenna fabricated on a PLA substrate and up to 17% for the one built on a foam board substrate. Full article
(This article belongs to the Special Issue Antennas for IoT Devices)
Show Figures

Figure 1

12 pages, 2988 KiB  
Article
Metamaterial Sensing of Cyanobacteria Using THz Thermal Curve Analysis
by Tae Hee Jeong, Seung Won Jun and Yeong Hwan Ahn
Biosensors 2024, 14(11), 519; https://doi.org/10.3390/bios14110519 - 23 Oct 2024
Viewed by 1269
Abstract
In this study, we perform thermal curve analyses based on terahertz (THz) metamaterials for the label-free sensing of cyanobacteria. In the presence of bacterial films, significant frequency shifts occur at the metamaterial resonance, but these shifts become saturated at a certain thickness owing [...] Read more.
In this study, we perform thermal curve analyses based on terahertz (THz) metamaterials for the label-free sensing of cyanobacteria. In the presence of bacterial films, significant frequency shifts occur at the metamaterial resonance, but these shifts become saturated at a certain thickness owing to the limited sensing volume of the metamaterial. The saturation value was used to determine the dielectric constants of various cyanobacteria, which are crucial for dielectric sensing. For label-free identification, we performed thermal curve analysis of THz metamaterials coated with cyanobacteria. The resonant frequency of the cyanobacteria-coated metasensor changed with temperature. The differential thermal curves (DTC) obtained from temperature-dependent resonance exhibited peaks unique to individual cyanobacteria, which helped identify individual species. Interestingly, despite being classified as Gram negative, cyanobacteria exhibit DTC profiles similar to those of Gram-positive bacteria, likely due to their unique extracellular structures. DTC analysis can reveal unique characteristics of various cyanobacteria that are not easily accessible by conventional approaches. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

13 pages, 2413 KiB  
Article
Modeling and Vibration Analysis of Carbon Nanotubes as Nanomechanical Resonators for Force Sensing
by Jun Natsuki, Xiao-Wen Lei, Shihong Wu and Toshiaki Natsuki
Micromachines 2024, 15(9), 1134; https://doi.org/10.3390/mi15091134 - 6 Sep 2024
Viewed by 1480
Abstract
Carbon nanotubes (CNTs) have attracted considerable attention as nanomechanical resonators because of their exceptional mechanical properties and nanoscale dimensions. In this study, a novel CNT-based probe is proposed as an efficient nanoforce sensing nanomaterial that detects external pressure. The CNT probe was designed [...] Read more.
Carbon nanotubes (CNTs) have attracted considerable attention as nanomechanical resonators because of their exceptional mechanical properties and nanoscale dimensions. In this study, a novel CNT-based probe is proposed as an efficient nanoforce sensing nanomaterial that detects external pressure. The CNT probe was designed to be fixed by clamping tunable outer CNTs. By using the mobile-supported outer CNT, the position of the partially clamped outer CNT can be controllably shifted, effectively tuning its resonant frequency. This study comprehensively investigates the modeling and vibration analysis of gigahertz frequencies with loaded CNTs used in sensing applications. The vibration frequency of a partially clamped CNT probe under axial loading was modeled using continuum mechanics, considering various parameters such as the clamping location, length, and boundary conditions. In addition, the interaction between external forces and CNT resonators was investigated to evaluate their sensitivity for force sensing. Our results provide valuable insights into the design and optimization of CNT-based nanomechanical resonators for high-performance force sensing applications. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Electronic and Optoelectronic Devices)
Show Figures

Figure 1

11 pages, 1736 KiB  
Article
Controllable Goos-Hänchen Shift in Photonic Crystal Heterostructure Containing Anisotropic Graphene
by Haishan Tian, Huabing Wang, Jingke Zhang and Gang Sun
Coatings 2024, 14(9), 1092; https://doi.org/10.3390/coatings14091092 - 26 Aug 2024
Cited by 1 | Viewed by 1192
Abstract
In this study, we investigate the electrically and magnetically tunable Goos–Hänchen (GH) shift of a reflected light beam at terahertz frequencies. Our study focuses on a photonic crystal heterostructure incorporating a monolayer anisotropic graphene. We observe a tunable and enhanced GH shift facilitated [...] Read more.
In this study, we investigate the electrically and magnetically tunable Goos–Hänchen (GH) shift of a reflected light beam at terahertz frequencies. Our study focuses on a photonic crystal heterostructure incorporating a monolayer anisotropic graphene. We observe a tunable and enhanced GH shift facilitated by a drastic change in the reflected phase at the resonance angle owing to the excitation of the topological edge state. Considering the quantum response of graphene, we demonstrate the ability to switch positive and negative GH shifts through the manipulation of graphene’s conductivity properties. Moreover, we show that the GH shift can be actively tuned by the external electric field and magnetic field, as well as by controlling the structural parameters of the system. We believe that this tunable and enhanced GH shift scheme offers excellent potential for preparing terahertz shift devices. Full article
(This article belongs to the Special Issue Optical Properties of Crystals and Thin Films, Volume II)
Show Figures

Figure 1

13 pages, 4802 KiB  
Article
Terahertz Sensing of L-Valine and L-Phenylalanine Solutions
by Jingyi Shu, Xinli Zhou, Jixuan Hao, Haochen Zhao, Mingming An, Yichen Zhang and Guozhong Zhao
Sensors 2024, 24(12), 3798; https://doi.org/10.3390/s24123798 - 12 Jun 2024
Cited by 4 | Viewed by 1256
Abstract
To detect and differentiate two essential amino acids (L-Valine and L-Phenylalanine) in the human body, a novel asymmetrically folded dual-aperture metal ring terahertz metasurface sensor was designed. A solvent mixture of water and glycerol with a volume ratio of 2:8 was proposed to [...] Read more.
To detect and differentiate two essential amino acids (L-Valine and L-Phenylalanine) in the human body, a novel asymmetrically folded dual-aperture metal ring terahertz metasurface sensor was designed. A solvent mixture of water and glycerol with a volume ratio of 2:8 was proposed to reduce the absorption of terahertz waves by reducing the water content. A sample chamber with a controlled liquid thickness of 15 μm was fabricated. And a terahertz time-domain spectroscopy (THz-TDS) system, which is capable of horizontally positioning the samples, was assembled. The results of the sensing test revealed that as the concentration of valine solution varied from 0 to 20 mmol/L, the sensing resonance peak shifted from 1.39 THz to 1.58 THz with a concentration sensitivity of 9.98 GHz/mmol∗L−1. The resonance peak shift phenomenon in phenylalanine solution was less apparent. It is assumed that the coupling enhancement between the absorption peak position of solutes in the solution and the sensing peak position amplified the terahertz localized electric field resonance, which resulted in the increase in frequency shift. Therefore, it could be shown that the sensor has capabilities in performing the marker sensing detection of L-Valine. Full article
(This article belongs to the Special Issue Terahertz Sensors)
Show Figures

Figure 1

14 pages, 2291 KiB  
Article
A Thiourea Derivative of 2-[(1R)-1-Aminoethyl]phenol as a Chiral Sensor for the Determination of the Absolute Configuration of N-3,5-Dinitrobenzoyl Derivatives of Amino Acids
by Federica Aiello, Alessandra Recchimurzo, Federica Balzano, Gloria Uccello Barretta and Federica Cefalì
Molecules 2024, 29(6), 1319; https://doi.org/10.3390/molecules29061319 - 15 Mar 2024
Cited by 3 | Viewed by 1453
Abstract
In the exploration of chiral solvating agents (CSAs) for nuclear magnetic resonance (NMR) spectroscopy designed for the chiral analysis of amino acid derivatives, notable advancements have been made with thiourea–CSAs. 1-TU, derived from 2-[(1R)-1-aminoethyl]phenol and benzoyl isothiocyanate, is effective in [...] Read more.
In the exploration of chiral solvating agents (CSAs) for nuclear magnetic resonance (NMR) spectroscopy designed for the chiral analysis of amino acid derivatives, notable advancements have been made with thiourea–CSAs. 1-TU, derived from 2-[(1R)-1-aminoethyl]phenol and benzoyl isothiocyanate, is effective in the enantiodifferentiation of N-3,5-dinitrobenzoyl (N-DNB) amino acids. In order to broaden the application of 1-TU for configurational assignment, enantiomerically enriched N-DNB amino acids were analyzed via NMR. A robust correlation was established between the relative position of specific 1H and 13C NMR resonances of the enantiomers in the presence of 1-TU. 1,4-Diazabicyclo[2.2.2]octane (DABCO) was selected for the complete solubilization of amino acid substrates. Notably, the para and ortho protons of the N-DNB moiety displayed higher frequency shifts for the (R)-enantiomers as opposed to the (S)-enantiomers. This trend was consistently observed in the 13C NMR spectra for quaternary carbons bonded to NO2 groups. Conversely, an inverse correlation was noted for quaternary carbon resonances of the carboxyl moiety, amide carbonyl, and methine carbon at the chiral center. This observed trend aligns with the interaction mechanism previously reported for the same chiral auxiliary. The configurational correlation can be effectively exploited under conditions of high dilution or, significantly, under sub-stoichiometric conditions. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

12 pages, 4684 KiB  
Article
Graphene-Based Tunable Dual-Frequency Terahertz Sensor
by Maixia Fu, Yuchao Ye, Yingying Niu, Shaoshuai Guo, Zhaoying Wang and Xueying Liu
Nanomaterials 2024, 14(4), 378; https://doi.org/10.3390/nano14040378 - 18 Feb 2024
Cited by 6 | Viewed by 2019
Abstract
A tunable dual-band terahertz sensor based on graphene is proposed. The sensor consists of a metal bottom layer, a middle dielectric layer, and single-layer graphene patterned with four strips on the top. The numerical simulations results show that the proposed sensor exhibits two [...] Read more.
A tunable dual-band terahertz sensor based on graphene is proposed. The sensor consists of a metal bottom layer, a middle dielectric layer, and single-layer graphene patterned with four strips on the top. The numerical simulations results show that the proposed sensor exhibits two significant absorption peaks at 2.58 THz and 6.07 THz. The corresponding absorption rates are as high as nearly 100% and 98%, respectively. The corresponding quality factor (Q) value is 11.8 at 2.58 THz and 29.6 at 6.07 THz. By adjusting the external electric field or chemical doping of graphene, the positions of the dual-frequency resonance peak can be dynamically tuned. The excitation of plasma resonance in graphene can illustrate the mechanism of the sensor. To verify the practical application of the device, the terahertz response of different kinds and different thicknesses of the analyte is investigated and analyzed. A phenomenon of obvious frequency shifts of the two resonance peaks can be observed. Therefore, the proposed sensor has great potential applications in terahertz fields, such as material characterization, medical diagnosis, and environmental monitoring. Full article
Show Figures

Figure 1

19 pages, 7572 KiB  
Article
Experimental and Numerical Investigations on the Dynamic Response of Blades with Dual Friction Dampers
by Jixin Man, Beirao Xue, Xiangde Bian, Wengao Yan, Da Qiao and Wu Zeng
Aerospace 2023, 10(12), 977; https://doi.org/10.3390/aerospace10120977 - 22 Nov 2023
Cited by 3 | Viewed by 1761
Abstract
Friction dampers are widely employed to reduce blade resonance vibration amplitude in turbomachinery. In this paper, a study was performed on the forced response of two blades with dual friction dampers. Numerical simulation and experimental testing were conducted. Firstly, the dynamics of the [...] Read more.
Friction dampers are widely employed to reduce blade resonance vibration amplitude in turbomachinery. In this paper, a study was performed on the forced response of two blades with dual friction dampers. Numerical simulation and experimental testing were conducted. Firstly, the dynamics of the blade and dual friction damper system assembly are modeled. A nonlinear code based on the multi-harmonic balance method was developed to calculate the resonance response. In this analysis, both the blade and the damper are modeled with the finite element and the matrices reduced with the component mode synthesis method, while the contact forces are modeled with a one-dimensional variable normal load array element. Secondly, a test rig made of two blades and dual friction dampers, the material of which was steel, was established to measure the nonlinear frequency response function curves of the blade system. The results indicate that when a dual friction damper is applied, superior vibration reduction characteristics are demonstrated, with the system exhibiting an average 21% reduction in the response amplitude levels and an increase of 3% in the frequency shifting range compared to a single damper. Dampers positioned at relatively higher locations contribute significantly to the vibration reduction process. In the end, the numerical predictions match very well with the experimental ones. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

13 pages, 1073 KiB  
Article
Ultra-Narrow Bandwidth Microwave Photonic Filter Implemented by Single Longitudinal Mode Parity Time Symmetry Brillouin Fiber Laser
by Jiaxin Hou, Yajun You, Yuan Liu, Kai Jiang, Xuefeng Han, Wenjun He, Wenping Geng, Yi Liu and Xiujian Chou
Micromachines 2023, 14(7), 1322; https://doi.org/10.3390/mi14071322 - 27 Jun 2023
Cited by 5 | Viewed by 2658
Abstract
In this paper, a novel microwave photonic filter (MPF) based on a single longitudinal mode Brillouin laser achieved by parity time (PT) symmetry mode selection is proposed, and its unparalleled ultra-narrow bandwidth as low as to sub-kHz together with simple and agile tuning [...] Read more.
In this paper, a novel microwave photonic filter (MPF) based on a single longitudinal mode Brillouin laser achieved by parity time (PT) symmetry mode selection is proposed, and its unparalleled ultra-narrow bandwidth as low as to sub-kHz together with simple and agile tuning performance is experimentally verified. The Brillouin fiber laser ring resonator is cascaded with a PT symmetric system to achieve this MPF. Wherein, the Brillouin laser resonator is excited by a 5 km single mode fiber to generate Brillouin gain, and the PT symmetric system is configured with Polarization Beam Splitter (PBS) and polarization controller (PC) to achieve PT symmetry. Thanks to the significant enhancement of the gain difference between the main mode and the edge mode when the polarization state PT symmetry system breaks, a single mode oscillating Brillouin laser is generated. Through the selective amplification of sideband modulated signals by ultra-narrow linewidth Brillouin single mode laser gain, the MPF with ultra-narrow single passband performance is obtained. By simply tuning the central wavelength of the stimulated Brillouin scattering (SBS) pumped laser to adjust the Brillouin oscillation frequency, the gain position of the Brillouin laser can be shifted, thereby achieving flexible tunability. The experimental results indicate that the MPF proposed in this paper achieves a single pass band narrow to 72 Hz and the side mode rejection ratio of more than 18 dB, with a center frequency tuning range of 0–20 GHz in the testing range of vector network analysis, which means that the MPF possesses ultra high spectral resolution and enormous potential application value in the domain of ultra fine microwave spectrum filtering such as radar imaging and electronic countermeasures. Full article
(This article belongs to the Special Issue Progress and Application of Ultra-Precision Laser Interferometry)
Show Figures

Figure 1

8 pages, 1503 KiB  
Communication
Biomechanical Performance of a Novel Implant Design in Simulated Extraction Sites and Sinuslift Procedures
by Virgilia Klär, Rüdiger Zimmerer, Annika Schulz and Bernd Lethaus
Appl. Sci. 2023, 13(13), 7541; https://doi.org/10.3390/app13137541 - 26 Jun 2023
Cited by 3 | Viewed by 1434
Abstract
With increasing experience and in an attempt to shorten overall treatment times, implant placement in combination with tooth extractions and sinus lift procedures has become popular. In both cases, primary stability has to be achieved by either engaging apical and oral regions of [...] Read more.
With increasing experience and in an attempt to shorten overall treatment times, implant placement in combination with tooth extractions and sinus lift procedures has become popular. In both cases, primary stability has to be achieved by either engaging apical and oral regions of trabecular bone or by engaging residual host bone beneath the sinus cavity. Extraction sites were formed by pressing a root analog into homogeneous low density polyurethane foam which was used as bone surrogate while a 3 mm thick sheet of medium density foam was used for mimicking a sinus lift situation. Two types (n = 10) of bone level implants with a conventional tapered design and a cervical back taper (NobelActive; control) and a novel design characterized by a shift in core diameter and thread geometry (AlfaGate; test) were placed in these models following conventional osteotomy preparation. Insertion torque was measured using a surgical motor and primary stability was determined by resonance frequency analysis. Statistical analysis was based on Welch two sample t tests with the level of significance set at α = 0.05. In sinuslifting, NobelActive implants required significantly higher insertion torques as compared to AlfaGate (p = 0.000) but did not achieve greater implant stability (p = 0.076). In extraction sites, AlfaGate implants showed both, significantly higher insertion torques (p = 0.004) and significantly greater implant stability (p = 0.000). The novel implant design allowed for greater primary stability when being placed in simulated extraction sockets and sinuslift situations. While in extraction sockets the position of condensing threads in combination with an increase in core diameter is beneficial, the deep cervical threads of the novel implant lead to superior performance in sinuslift situations. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

Back to TopTop