Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = positioning and anti-swing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2003 KiB  
Article
Adaptive Hierarchical Sliding Mode Control for Double-Pendulum Gantry Crane Based on Neural Network
by Linxiao Yao, Yihao Chen, Bing Li, Linjian Shangguan and Jingwen Yan
Appl. Sci. 2025, 15(15), 8338; https://doi.org/10.3390/app15158338 - 26 Jul 2025
Viewed by 241
Abstract
Gantry cranes play a pivotal role in industrial production. Gantry cranes exhibit clear double-swing characteristics in actual working conditions, complicating anti-swing control. Most existing anti-swing control methods are based on a simplified single-pendulum model. The present paper puts forward a double-pendulum model for [...] Read more.
Gantry cranes play a pivotal role in industrial production. Gantry cranes exhibit clear double-swing characteristics in actual working conditions, complicating anti-swing control. Most existing anti-swing control methods are based on a simplified single-pendulum model. The present paper puts forward a double-pendulum model for gantry cranes and proposes an adaptive hierarchical sliding mode control based on a neural network according to the actual working conditions. The use of a neural network and adaptive layered sliding mode control can effectively inhibit chattering, thus improving control performance and stability and achieving the goal of anti-shaking control, thus effectively inhibiting residual oscillation. This method has been demonstrated to be effective in achieving the objective of anti-shudder control, thereby effectively suppressing residual oscillation. Compared with hierarchical sliding mode control, the proposed method reduces the maximum residual oscillation angle of the hook and payload by approximately 80%. In comparison with the conventional sliding mode control, the maximum residual oscillation angle is reduced by approximately 84%. Furthermore, the control force amplitude is reduced to 5.23 N, representing decreases of 30.2% and 37.4%, respectively. These comparative results demonstrate the superior oscillation suppression. The system also shows a reliable performance against potential disturbances. Full article
Show Figures

Figure 1

17 pages, 4352 KiB  
Article
Phase Plane Trajectory Planning for Double Pendulum Crane Anti-Sway Control
by Kai Zhang, Wangqing Niu and Kailun Zhang
Algorithms 2025, 18(5), 246; https://doi.org/10.3390/a18050246 - 24 Apr 2025
Viewed by 304
Abstract
In view of the double pendulum characteristics of cranes in actual production, simply equating them to single pendulum characteristics and ignoring the mass of the hook will lead to significant errors in the oscillation frequency. To tackle this issue, an input-shaping double pendulum [...] Read more.
In view of the double pendulum characteristics of cranes in actual production, simply equating them to single pendulum characteristics and ignoring the mass of the hook will lead to significant errors in the oscillation frequency. To tackle this issue, an input-shaping double pendulum anti-sway control method based on phase plane trajectory planning is proposed. This method generates the required acceleration signal by designing an input shaper and calculates the acceleration switching time and amplitude of the trolley according to the phase plane swing angle and the physical constraints of the system. Through this strategy, it is ensured that the speed of the trolley and the swing angle of the load are always kept within the constraint range so that the trolley can reach the target position accurately. The comparative analysis of numerical simulation and existing control methods shows that the proposed control method can significantly reduce the swing angle amplitude and enable the system to enter the swing angle stable state faster. Numerical simulation and physical experiments show the effectiveness of the control method. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

16 pages, 4542 KiB  
Article
Energy-Based Adaptive Control for Variable-Rope-Length Double-Pendulum Ship-Borne Cranes: A Disturbance Rejection Stabilization Controller Without Overshoot
by Ken Zhong, Yuzhe Qian, He Chen and Shujie Wu
Actuators 2025, 14(2), 52; https://doi.org/10.3390/act14020052 - 24 Jan 2025
Viewed by 787
Abstract
The operation process of double-pendulum ship-borne cranes with variable rope lengths is frequently complex, with numerous unpredictable circumstances, such as the swing of the load and external environmental interferences, which undoubtedly make the analysis of the swing characteristics of the system and the [...] Read more.
The operation process of double-pendulum ship-borne cranes with variable rope lengths is frequently complex, with numerous unpredictable circumstances, such as the swing of the load and external environmental interferences, which undoubtedly make the analysis of the swing characteristics of the system and the controller design more difficult. On this basis, an active disturbance rejection controller based on an energy coupling method is proposed to inhibit the double-pendulum swing angle. The controller can suppress the swing of the hook and load within 0.5 degrees under the conditions of continuous sea wave disturbances and external disturbances. Firstly, the energy function of the system is constructed by analyzing the dynamic model of the system. Then, an adaptive control method is designed by analyzing the energy function of the system. In addition, an overshoot limit term and an anti-swing term are added to limit the overshoot and swing of underactuated parts of the system. Then, the stability of the closed-loop system is strictly proven by using Lyapunov analysis. Finally, the simulation and experimental results indicate that the proposed controller ensures the accurate positioning of the jib and rope length without overshoot. Additionally, it effectively reduces the double-pendulum swing angle when there is an external interference such as waves, demonstrating strong robustness. Full article
(This article belongs to the Special Issue Modeling and Nonlinear Control for Complex MIMO Mechatronic Systems)
Show Figures

Figure 1

16 pages, 2102 KiB  
Article
Advanced Control for Shipboard Cranes with Asymmetric Output Constraints
by Mingxuan Cao, Meng Xu, Yongqiao Gao, Tianlei Wang, Anan Deng and Zhenyu Liu
J. Mar. Sci. Eng. 2025, 13(1), 91; https://doi.org/10.3390/jmse13010091 - 6 Jan 2025
Cited by 2 | Viewed by 782
Abstract
Considering the anti-swing control and output constraint problems of shipboard cranes, a nonlinear anti-swing controller based on asymmetric barrier Lyapunov functions (BLFs) is designed. First, model transformation mitigates the explicit effects of ship roll on the desired position and payload fluctuations. Then, a [...] Read more.
Considering the anti-swing control and output constraint problems of shipboard cranes, a nonlinear anti-swing controller based on asymmetric barrier Lyapunov functions (BLFs) is designed. First, model transformation mitigates the explicit effects of ship roll on the desired position and payload fluctuations. Then, a newly constructed BLF is introduced into the energy-based Lyapunov candidate function to generate nonlinear displacement and angle constraint terms to control the rope length and boom luffing angle. Among these, constraints with positive bounds are effectively handled by the proposed BLF. For the swing constraints of the unactuated payload, a carefully designed relevant constraint term is embedded in the controller by constructing an auxiliary signal, and strict theoretical analysis is provided by using a reductio ad absurdum argument. Additionally, the auxiliary signal effectively couples the boom and payload motions, thereby improving swing suppression performance. Finally, the asymptotic stability is proven using LaSalle’s invariance principle. The simulation comparison results indicate that the proposed method exhibits satisfactory performance in swing suppression control and output constraints. In all simulation cases, the payload swing angle complies with the 3° constraint and converges to the desired range within 6 s. This study provides an effective solution to the control challenges of shipboard crane systems operating in confined spaces, offering significant practical value and applicability. Full article
(This article belongs to the Special Issue Advanced Control Strategies for Autonomous Maritime Systems)
Show Figures

Figure 1

21 pages, 19154 KiB  
Article
Time-Delay-Based Sliding Mode Tracking Control for Cooperative Dual Marine Lifting System Subject to Sea Wave Disturbances
by Yiwen Cong, Gang Li, Jifu Li, Jianyan Tian and Xin Ma
Actuators 2024, 13(12), 491; https://doi.org/10.3390/act13120491 - 2 Dec 2024
Cited by 1 | Viewed by 816
Abstract
Dual marine lifting systems are complicated, fully actuated mechatronics systems with multi-input and multi-output capabilities. The anti-swing cooperative lifting control of dual marine lifting systems with dual ships’ sway, heave, and roll motions is still open. The uncertainty regarding system parameters makes the [...] Read more.
Dual marine lifting systems are complicated, fully actuated mechatronics systems with multi-input and multi-output capabilities. The anti-swing cooperative lifting control of dual marine lifting systems with dual ships’ sway, heave, and roll motions is still open. The uncertainty regarding system parameters makes the task of achieving stable performance more challenging. To adjust both the attitude and position of large distributed-mass payloads to their target positions, this paper presents a time-delay-based sliding mode-tracking controller for cooperative dual marine lifting systems impacted by sea wave disturbances. Firstly, a dynamic model of a dual marine lifting system is established by using Lagrange’s method. Then, a kinematic coupling-based cooperative trajectory planning strategy is proposed by analyzing the coupling relationship between the dual marine lifting system and dual ship motion. After that, an improved sliding mode tracking controller is proposed by using time-delay estimation technology, which estimates unknown system parameters online. The finite-time convergence of full-state variables is rigorously proven. Finally, the simulation results verify the designed controller in terms of anti-swing control performance. The hardware experiments revealed that the proposed controller significantly reduces the actuator positioning errors by 83.33% compared with existing control methods. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

22 pages, 9220 KiB  
Article
Anti-Sway Adaptive Fast Terminal Sliding Mode Control Based on the Finite-Time State Observer for the Overhead Crane System
by Xin Wang, Zhenxin He, Chuntong Liu and Wenzheng Du
Electronics 2024, 13(23), 4709; https://doi.org/10.3390/electronics13234709 - 28 Nov 2024
Cited by 1 | Viewed by 883
Abstract
This work proposes an adaptive rapid terminal SMC (sliding mode control) approach based on the FFTSO (fast finite-time state observer) for overhead crane trajectory tracking and anti-swing control in the presence of external disturbances and parameter uncertainty. First, the system state observation under [...] Read more.
This work proposes an adaptive rapid terminal SMC (sliding mode control) approach based on the FFTSO (fast finite-time state observer) for overhead crane trajectory tracking and anti-swing control in the presence of external disturbances and parameter uncertainty. First, the system state observation under the constraint of unknown system parameters is accomplished by designing the FFTSO based on finite-time theory. Next, a parameter-adaptive fast terminal SMC is created for an overhead crane based on the model transformation. This technique can still monitor the intended trajectory and reduce payload swing even in cases when the payload mass and wire rope length are uncertain. Next, the Lyapunov theorem is used to demonstrate the stability of the overhead crane system’s positioning and anti-swing angle control mechanism. Lastly, the platform experiments confirm that the suggested closed-loop system control technique is successful. Full article
(This article belongs to the Special Issue Advanced Intelligent Control and Automation in Industrial 4.0 Era)
Show Figures

Figure 1

28 pages, 8679 KiB  
Article
Adaptive Sliding Mode Control of Quadrotor System with Elastic Load Connection of Unknown Mass
by Longchao Ru, Jiale Liu, Binqi Chen, Dengnuo Chen and Zeyin Fan
Drones 2024, 8(12), 708; https://doi.org/10.3390/drones8120708 - 27 Nov 2024
Cited by 2 | Viewed by 1151
Abstract
During quadrotor load transport, the cable’s elasticity exacerbates load fluctuations, which may result in platform instability or a potential crash. This paper introduced a model of the connecting cable as a spring-damper system and established the dynamic model of the suspension system based [...] Read more.
During quadrotor load transport, the cable’s elasticity exacerbates load fluctuations, which may result in platform instability or a potential crash. This paper introduced a model of the connecting cable as a spring-damper system and established the dynamic model of the suspension system based on Newton’s law. Nonsingular fast terminal sliding mode control (NFTSMC) was employed for attitude, position, and anti-swing controller design. Adaptive controllers were integrated into altitude control to address uncertainties related to load mass and cable length. The inclusion of an anti-swing controller into the position control loop effectively dampens load oscillations while ensuring accurate position tracking. Numerical simulations demonstrated that the proposed controller outperforms both the energy-based controller and the conventional linear sliding mode controller. Full article
(This article belongs to the Special Issue Swarm Intelligence-Inspired Planning and Control for Drones)
Show Figures

Figure 1

18 pages, 4207 KiB  
Article
Sliding Mode Control with a Prescribed-Time Disturbance Observer for Bridge Crane Positioning and Anti-Swing
by Yin’an Feng, Zhuoyuan Liu and Hao Zhang
Electronics 2024, 13(17), 3499; https://doi.org/10.3390/electronics13173499 - 3 Sep 2024
Cited by 2 | Viewed by 1018
Abstract
To address the issue of reduced positioning and anti-swing accuracy of bridge cranes under disturbed conditions within a prescribed time, a positioning and anti-swing control algorithm, based on a prescribed-time disturbance observer, is proposed. Unlike existing research, the novel disturbance observer is designed [...] Read more.
To address the issue of reduced positioning and anti-swing accuracy of bridge cranes under disturbed conditions within a prescribed time, a positioning and anti-swing control algorithm, based on a prescribed-time disturbance observer, is proposed. Unlike existing research, the novel disturbance observer is designed to accurately estimate disturbances within a prescribed time, ensuring precise disturbance compensation. This allows for high-precision positioning and anti-swing of bridge cranes under disturbed conditions within a prescribed time. Firstly, a prescribed-time disturbance observer is designed to ensure accurate disturbance estimation. Secondly, a new prescribed-time sliding mode surface and a prescribed-time reaching law with a recursive structure are designed to ensure that the system state converges accurately within the prescribed time. Finally, theoretical analysis and simulation verify that the proposed control algorithm achieves the control objective of high-precision positioning and anti-swing of bridge cranes under disturbed conditions within a prescribed time. Full article
(This article belongs to the Special Issue High Performance Control and Industrial Applications)
Show Figures

Figure 1

22 pages, 814 KiB  
Article
Nonlinear Adaptive Control Design for Quadrotor UAV Transportation System
by Boyu Zhu and Dazhi Wang
Drones 2024, 8(9), 420; https://doi.org/10.3390/drones8090420 - 24 Aug 2024
Cited by 2 | Viewed by 1326
Abstract
In response to the non-linear and underactuated characteristics of quadrotor UAV suspension transportation system, this paper proposes a novel control strategy aimed at achieving precise position control, attitude control, and anti-swing capabilities. Firstly, a dynamical model required for controller design is established through [...] Read more.
In response to the non-linear and underactuated characteristics of quadrotor UAV suspension transportation system, this paper proposes a novel control strategy aimed at achieving precise position control, attitude control, and anti-swing capabilities. Firstly, a dynamical model required for controller design is established through the Newton-Euler method. In the controller design process, the paper employs the energy method and barrier Lyapunov function to design a double-closed-loop nonlinear controller. This controller is capable of not only accurately controlling the position and attitude angles of the quadrotor UAV suspension transportation system but also effectively suppressing the swing of the payload. Building on this, considering the elastic deformation of the lifting cable, and by analyzing the forces in the Newton-Euler equations, this paper proposes an adaptive control design for the case where the length of the cable connecting the UAV and the payload is unknown. To validate the effectiveness of the proposed control scheme, comparative experiments were conducted in the MATLAB simulation environment, and the results indicate that the method proposed in this paper exhibits superior control performance compared to traditional controllers. Full article
(This article belongs to the Special Issue Dynamics Modeling and Conceptual Design of UAVs)
Show Figures

Figure 1

29 pages, 7505 KiB  
Article
Application of a Multi-Strategy Improved Sparrow Search Algorithm in Bridge Crane PID Control Systems
by Youyuan Zhang, Lisang Liu, Jingrun Liang, Jionghui Chen, Chengyang Ke and Dongwei He
Appl. Sci. 2024, 14(12), 5165; https://doi.org/10.3390/app14125165 - 13 Jun 2024
Cited by 6 | Viewed by 1549
Abstract
To address the anti-swing issue of the payload in bridge cranes, Proportional–Integral–Derivative (PID) control is a commonly used method. However, parameter tuning of the PID controller relies on empirical knowledge and often leads to system overshoot. This paper proposes an Improved Sparrow Search [...] Read more.
To address the anti-swing issue of the payload in bridge cranes, Proportional–Integral–Derivative (PID) control is a commonly used method. However, parameter tuning of the PID controller relies on empirical knowledge and often leads to system overshoot. This paper proposes an Improved Sparrow Search Algorithm (ISSA) to optimize the gains of PID controllers, alleviating adverse effects on payload oscillation and trolley positioning during the operation of overhead cranes. First, tent map chaos mapping is introduced to initialize the sparrow population, enhancing the algorithm’s global search capability. Then, by integrating sine and cosine concepts along with nonlinear learning factors, the updating mechanism of discoverer positions is dynamically adjusted, expediting the solving process. Finally, the Lévy flight strategy is employed to update follower positions, thereby enhancing the algorithm’s local escape capability. Additionally, a fitness function containing overshoot penalties is proposed to address overshoot issues. Simulation results indicate that the overshoot rates of all algorithms remain less than 3%. Moreover, compared with the Sparrow Search Algorithm (SSA), Particle Swarm Optimization (PSO), Simulated Annealing (SA), and Whale optimization Algorithm (WOA), the optimized PID control system with the ISSA algorithm exhibits superior control performance and possesses certain robustness and adaptability. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

16 pages, 4142 KiB  
Article
A Novel Active Anti-Disturbance Control Strategy for Unmanned Aerial Manipulator Based on Variable Coupling Disturbance Compensation
by Hai Li, Zhan Li, Tong Wu, Chen Dong, Quman Xu, Yipeng Yang and Xinghu Yu
Electronics 2024, 13(8), 1477; https://doi.org/10.3390/electronics13081477 - 13 Apr 2024
Viewed by 1177
Abstract
Inspired by the kangaroo’s active tail wagging to stabilize its body posture while jumping, this paper proposes an active anti-disturbance control strategy for unmanned aerial manipulators based on variable coupling disturbance compensation (AADCVCD), which can achieve the active and energy-saving [...] Read more.
Inspired by the kangaroo’s active tail wagging to stabilize its body posture while jumping, this paper proposes an active anti-disturbance control strategy for unmanned aerial manipulators based on variable coupling disturbance compensation (AADCVCD), which can achieve the active and energy-saving anti-disturbance performance of “using the enemy’s strength against the enemy” to keep the UAM stable under disturbances. First, the goal of using the coupling disturbance generated by the active swing of the manipulator as a control input signal for active anti-disturbance is clarified. Then, based on the proposed variable coupling disturbance model, this goal is formulated as a nonlinear programming optimization problem under specific physical constraints and solved. Finally, the coupling disturbance torque generated when the manipulator executes an active swing to the solved desired joint angles can be used to compensate and suppress other disturbances of the UAM, thereby achieving active anti-disturbance. The effectiveness and superiority of the proposed AADCVCD were validated through two simulations in Simscape. The simulation results demonstrated that our approach achieved a good active anti-disturbance and energy-saving performance, significantly reducing the position offset of the UAM caused by disturbances and improving the UAM’s ability to maintain stability. Full article
Show Figures

Figure 1

18 pages, 4222 KiB  
Article
The Prescribed-Time Sliding Mode Control for Underactuated Bridge Crane
by Yin’an Feng, Hao Zhang and Chan Gu
Electronics 2024, 13(1), 219; https://doi.org/10.3390/electronics13010219 - 3 Jan 2024
Cited by 11 | Viewed by 1936
Abstract
In this article, a prescribed-time sliding mode controller is proposed for the design of the positioning and anti-swing time of the underactuated bridge crane under different initial conditions. Compared with the existing crane positioning and anti-swing controller, the controller can directly specify the [...] Read more.
In this article, a prescribed-time sliding mode controller is proposed for the design of the positioning and anti-swing time of the underactuated bridge crane under different initial conditions. Compared with the existing crane positioning and anti-swing controller, the controller can directly specify the positioning and anti-swing time of the bridge crane system through the controller parameters. Firstly, in order to solve the underdrive problem of the bridge crane system, the crane system model is transformed by constructing composite variables; secondly, a new prescribed-time convergence rate and a new prescribed-time sliding mode surface are designed to ensure that the state of the bridge crane system can converge within the prescribed time; finally, the Lyapunov stability analysis and simulation results show that the designed controller can enable the crane to position and anti-swing within the prescribed time. Full article
(This article belongs to the Special Issue High Performance Control and Industrial Applications)
Show Figures

Figure 1

14 pages, 951 KiB  
Communication
Anti-Swing Control for Quadrotor-Slung Load Transportation System with Underactuated State Constraints
by Feng Ding, Chong Sun and Shunfan He
Sensors 2023, 23(21), 8995; https://doi.org/10.3390/s23218995 - 6 Nov 2023
Cited by 4 | Viewed by 1991
Abstract
Quadrotors play a crucial role in the national economy. The control technology for quadrotor-slung load transportation systems has become a research hotspot. However, the underactuated load’s swing poses significant challenges to the stability of the system. In this paper, we propose a Lyapunov-based [...] Read more.
Quadrotors play a crucial role in the national economy. The control technology for quadrotor-slung load transportation systems has become a research hotspot. However, the underactuated load’s swing poses significant challenges to the stability of the system. In this paper, we propose a Lyapunov-based control strategy, to ensure the stability of the quadrotor-slung load transportation system while satisfying the constraints of the load’s swing angles. Firstly, a position controller without swing angle constraints is proposed, to ensure the stability of the system. Then, a barrier Lyapunov function based on the load’s swing angle constraints is constructed, and an anti-swing controller is designed to guarantee the states’ asymptotic stability. Finally, a PD controller is designed, to drive the actual angles to the virtual ones, which are extracted from the position controller. The effectiveness of the control method is verified by comparing it to the results of the LQR algorithm. The proposed control method not only guarantees the payload’s swing angle constraints but also reduces energy consumption. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

16 pages, 613 KiB  
Article
Data-Driven Active Learning Control for Bridge Cranes
by Haojie Lin and Xuyang Lou
Math. Comput. Appl. 2023, 28(5), 101; https://doi.org/10.3390/mca28050101 - 9 Oct 2023
Cited by 3 | Viewed by 2354
Abstract
For positioning and anti-swing control of bridge cranes, the active learning control method can reduce the dependence of controller design on the model and the influence of unmodeled dynamics on the controller’s performance. By only using the real-time online input and output data [...] Read more.
For positioning and anti-swing control of bridge cranes, the active learning control method can reduce the dependence of controller design on the model and the influence of unmodeled dynamics on the controller’s performance. By only using the real-time online input and output data of the bridge crane system, the active learning control method consists of the finite-dimensional approximation of the Koopman operator and the design of an active learning controller based on the linear quadratic optimal tracking control. The effectiveness of the control strategy for positioning and anti-swing of bridge cranes is verified through numerical simulations. Full article
Show Figures

Figure 1

23 pages, 7469 KiB  
Article
Research on Swing Model and Fuzzy Anti Swing Control Technology of Bridge Crane
by Zhen Yu, Hao-Ming Dong and Chang-Ming Liu
Machines 2023, 11(6), 579; https://doi.org/10.3390/machines11060579 - 23 May 2023
Cited by 6 | Viewed by 2702
Abstract
A bridge crane is often used in a complex environment and is often subject to the interference of all loads. Some uncertain factors often have an inevitable impact on its swing. So the force situation of the bridge crane during a working cycle [...] Read more.
A bridge crane is often used in a complex environment and is often subject to the interference of all loads. Some uncertain factors often have an inevitable impact on its swing. So the force situation of the bridge crane during a working cycle is analyzed, and a three-dimensional dynamic mathematical model of the bridge crane is built. Through the simulation analysis of the model under the action of a driving force and wind load, the change law of the swing angle of the bridge crane is studied. Then, the fuzzy control theory is used to determine the control parameter in the anti-sway control process. The position, swing angle deviation, and deviation rate of the bridge crane are taken as the input, and the parameter correction is obtained after the fuzzification by using the center of gravity method. The anti-sway fuzzy control system of the bridge crane is designed and simulated. The research results show that the swing model of the crane is reasonable and the fuzzy PID anti-sway controller can not only improve the adaptability of the control system, but also overcome the large overshoot, quickly restrain the swing, and effectively realize the anti-sway function of the bridge crane. Full article
Show Figures

Figure 1

Back to TopTop