Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (368)

Search Parameters:
Keywords = porous organic polymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4457 KiB  
Article
The Mechanical Reinforcing Mechanism and Self-Healing Properties of Biomimetic Hybrid Cement Composites via In-Situ Polymerization
by Wenhui Bao, Jian Zhao, Bumin Guo, Shuan Li, Jinwei Shen, Mengyuan Liu, Jingmin Han, Susu Xing, Miaomiao Hu and Jintang Guo
Materials 2025, 18(16), 3763; https://doi.org/10.3390/ma18163763 - 11 Aug 2025
Viewed by 323
Abstract
Addressing the inherent brittleness of cement to mitigate infrastructure failures stemming from cracking is imperative. To accomplish both early crack resistance and subsequent self-healing capabilities, a biomimetic microstructure composed of a sodium polyacrylate (CSPA) network interwoven with hydration products was developed. The calcium-enriched [...] Read more.
Addressing the inherent brittleness of cement to mitigate infrastructure failures stemming from cracking is imperative. To accomplish both early crack resistance and subsequent self-healing capabilities, a biomimetic microstructure composed of a sodium polyacrylate (CSPA) network interwoven with hydration products was developed. The calcium-enriched polymer network formed via in situ polymerization of sodium acrylate (ANa) can enhance the mechanical properties of cement and achieve efficient self-healing of cracks. The porous structure of sodium polyacrylate (PANa) formed in pore solution at room temperature to simulate cement hydration conditions was observed by scanning electron microscopy (SEM). Feature peaks found by Fourier transform infrared (FTIR) spectroscopy as well as confocal Raman microscopy (CRM) suggested that ANa was polymerized successfully. Notably, CSPA samples demonstrated a remarkable 104% increase in flexural strength, attributed to the efficient transmission and dissipation of external forces along the polymer network embedded within the cement matrix. Additionally, after a 28-day hydration, CSPA specimens exhibited enhanced compressive strength compared to blank cement samples. This enhancement stems from the formation of a uniform polymer network, which effectively decreased the porosity and densified the microstructure of cement. Moreover, this organic–inorganic hybrid structure contributes to efficient crack healing, as the calcium-rich polymer network binds calcium ions and promotes the generation of healing products. The healing products consist of calcium hydroxide (CH), CaCO3 (aragonite), C-S-H (calcium–silicate–hydrate), and PANa. Full article
Show Figures

Figure 1

17 pages, 3389 KiB  
Article
Enhanced OH Transport Properties of Bio-Based Anion-Exchange Membranes for Different Applications
by Suer Kurklu-Kocaoglu, Daniela Ramírez-Espinosa and Clara Casado-Coterillo
Membranes 2025, 15(8), 229; https://doi.org/10.3390/membranes15080229 - 31 Jul 2025
Viewed by 568
Abstract
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current [...] Read more.
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current AEMs still face challenges, such as insufficient permeability and stability in strongly acidic or alkaline media, which limit their durability and the sustainability of membrane fabrication. In this study, polyvinyl alcohol (PVA) and chitosan (CS) biopolymers are selected for membrane preparation. Zinc oxide (ZnO) and porous organic polymer (POP) nanoparticles are also introduced within the PVA-CS polymer blends to make mixed-matrix membranes (MMMs) with increased OH transport sites. The membranes are characterized based on typical properties for AEM applications, such as thickness, water uptake, KOH uptake, Cl and OH permeability and ion exchange capacity (IEC). The OH transport of the PVA-CS blend is increased by at least 94.2% compared with commercial membranes. The incorporation of non-porous ZnO and porous POP nanoparticles into the polymer blend does not compromise the OH transport properties. On the contrary, ZnO nanoparticles enhance the membrane’s water retention capacity, provide basic surface sites that facilitate hydroxide ion conduction and reinforce the mechanical and thermal stability. In parallel, POPs introduce a highly porous architecture that increases the internal surface area and promotes the formation of continuous hydrated pathways, essential to efficient OH mobility. Furthermore, the presence of POPs also contributes to reinforcing the mechanical integrity of the membrane. Thus, PVA-CS bio-based membranes are a promising alternative to conventional ion exchange membranes for various applications. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

29 pages, 42729 KiB  
Article
Sustainable and Functional Polymeric Coating for Wood Preservation
by Ramona Marina Grigorescu, Rodica-Mariana Ion, Lorena Iancu, Sofia Slamnoiu-Teodorescu, Anca Irina Gheboianu, Elvira Alexandrescu, Madalina Elena David, Mariana Constantin, Iuliana Raut, Celina Maria Damian, Cristian-Andi Nicolae and Bogdan Trica
Coatings 2025, 15(8), 875; https://doi.org/10.3390/coatings15080875 - 25 Jul 2025
Viewed by 421
Abstract
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, [...] Read more.
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, the aim of the study was to obtain soda lignin particles, to graft ZnO nanoparticles onto their surface and to apply these hybrids, embedded into a biodegradable polymer matrix, as protection/preservation coating for oak wood. The organic–inorganic hybrids were characterized in terms of compositional, structural, thermal, and morphological properties that confirm the efficacy of soda lignin extraction and ZnO grafting by physical adsorption onto the decorating support and by weak interactions and coordination bonding between the components. The developed solution based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and lignin-ZnO was applied to oak wood specimens by brushing, and the improvement in hydrophobicity (evaluated by water absorption that decreased by 48.8% more than wood, humidity tests where the treated sample had a humidity of 4.734% in comparison with 34.911% for control, and contact angle of 97.8° vs. 80.5° for untreated wood) and UV and fungal attack protection, while maintaining the color and aspect of specimens, was sustained. L.ZnO are well dispersed into the polymer matrix, ensuring a smooth and less porous wood surface. According to the results, the obtained wood coating using both a biodegradable polymeric matrix and a waste-based preservative can be applied for protection against weathering degradation factors, with limited water uptake and swelling of the wood, UV shielding, reduced wood discoloration and photo-degradation, effective protection against fungi, and esthetic quality. Full article
Show Figures

Figure 1

15 pages, 2190 KiB  
Article
Synthesis and Characterization of Covalent Triazine Frameworks Based on 4,4′-(Phenazine-5,10-diyl)dibenzonitrile and Its Application in CO2/CH4 Separation
by Hanibal Othman, Robert Oestreich, Vivian Küll, Marcus N. A. Fetzer and Christoph Janiak
Molecules 2025, 30(15), 3110; https://doi.org/10.3390/molecules30153110 - 24 Jul 2025
Viewed by 316
Abstract
Covalent triazine frameworks (CTFs) have gained recognition as stable porous organic polymers, for example, for CO2 separation. From the monomer 4,4′-(phenazine-5,10-diyl)dibenzonitrile (pBN), new pBN-CTFs were synthesized using the ionothermal method with a variation in temperature (400 and 550 °C) and the ZnCl [...] Read more.
Covalent triazine frameworks (CTFs) have gained recognition as stable porous organic polymers, for example, for CO2 separation. From the monomer 4,4′-(phenazine-5,10-diyl)dibenzonitrile (pBN), new pBN-CTFs were synthesized using the ionothermal method with a variation in temperature (400 and 550 °C) and the ZnCl2-to-monomer ratio (10 and 20). N2 adsorption yielded BET surface areas up to 1460 m2g −1. The pBN-CTFs are promising CO2 adsorbents and are comparable to other benchmark CTFs such as CTF-1 with a CO2 uptake of pBN-CTF-10-550 at 293 K of up to 54 cm3 g−1 or 96 mg g−1, with a CO2/CH4 IAST selectivity of 22 for a 50% mixture of CO2/CH4. pBN-CTF-10-400 has a very high heat of adsorption of 79 kJ mol−1 for CO2 near zero coverage in comparison to other CTFs, and it also stays well above the liquefaction heat of CO2 due to its high microporosity of 50% of the total pore volume. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

40 pages, 1777 KiB  
Review
Nanomaterials for Direct Air Capture of CO2: Current State of the Art, Challenges and Future Perspectives
by Cataldo Simari
Molecules 2025, 30(14), 3048; https://doi.org/10.3390/molecules30143048 - 21 Jul 2025
Viewed by 626
Abstract
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent [...] Read more.
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent materials. The work critically evaluates the characteristics, performance, and limitations of key nanomaterial classes, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, amine-functionalized polymers, porous carbons, and layered double hydroxides (LDHs), alongside solid-supported ionic liquids, highlighting their varied CO2 uptake capacities, regeneration energy requirements, and crucial water sensitivities. Beyond traditional temperature/pressure swing adsorption, the review delves into innovative DAC methodologies such as Moisture Swing Adsorption (MSA), Electro Swing Adsorption (ESA), Passive DAC, and CO2-Binding Organic Liquids (CO2 BOLs), detailing their unique mechanisms and potential for reduced energy footprints. Despite significant progress, the widespread deployment of DAC faces formidable challenges, notably high capital and operational costs (currently USD 300–USD 1000/tCO2), substantial energy demands (1500–2400 kWh/tCO2), water interference, scalability hurdles, and sorbent degradation. Furthermore, this review comprehensively examines the burgeoning global DAC market, its diverse applications, and the critical socio-economic barriers to adoption, particularly in developing countries. A comparative analysis of DAC within the broader carbon removal landscape (e.g., CCS, BECCS, afforestation) is also provided, alongside an address to the essential, often overlooked, environmental considerations for the sustainable production, regeneration, and disposal of spent nanomaterials, including insights from Life Cycle Assessments. The nuanced techno-economic landscape has been thoroughly summarized, highlighting that commercial viability is a multi-faceted challenge involving material performance, synthesis cost, regeneration energy, scalability, and long-term stability. It has been reiterated that no single ‘best’ material exists, but rather a portfolio of technologies will be necessary, with the ultimate success dependent on system-level integration and the availability of low-carbon energy. The review paper contributes to a holistic understanding of cutting-edge DAC technologies, bridging material science innovations with real-world implementation challenges and opportunities, thereby identifying critical knowledge gaps and pathways toward a net-zero carbon future. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Graphical abstract

34 pages, 3610 KiB  
Review
Metal–Organic Frameworks as Fillers in Porous Organic Polymer-Based Hybrid Materials: Innovations in Composition, Processing, and Applications
by Victor Durán-Egido, Daniel García-Giménez, Juan Carlos Martínez-López, Laura Pérez-Vidal and Javier Carretero-González
Polymers 2025, 17(14), 1941; https://doi.org/10.3390/polym17141941 - 15 Jul 2025
Viewed by 889
Abstract
Hybrid materials based on porous organic polymers (POPs) and metal–organic frameworks (MOFs) are increasing attention for advanced separation processes due to the possibility to combine their properties. POPs provide high surface areas, chemical stability, and tunable porosity, while MOFs contribute a high variety [...] Read more.
Hybrid materials based on porous organic polymers (POPs) and metal–organic frameworks (MOFs) are increasing attention for advanced separation processes due to the possibility to combine their properties. POPs provide high surface areas, chemical stability, and tunable porosity, while MOFs contribute a high variety of defined crystalline structures and enhanced separation characteristics. The combination (or hybridization) with PIMs gives rise to mixed-matrix membranes (MMMs) with improved permeability, selectivity, and long-term stability. However, interfacial compatibility remains a key limitation, often addressed through polymer functionalization or controlled dispersion of the MOF phase. MOF/COF hybrids are more used as biochemical sensors with elevated sensitivity, catalytic applications, and wastewater remediation. They are also very well known in the gas sorption and separation field, due to their tunable porosity and high electrical conductivity, which also makes them feasible for energy storage applications. Last but not less important, hybrids with other POPs, such as hyper-crosslinked polymers (HCPs), covalent triazine frameworks (CTFs), or conjugated microporous polymers (CMPs), offer enhanced functionality. MOF/HCP hybrids combine ease of synthesis and chemical robustness with tunable porosity. MOF/CTF hybrids provide superior thermal and chemical stability under harsh conditions, while MOF/CMP hybrids introduce π-conjugation for enhanced conductivity and photocatalytic activity. These and other findings confirm the potential of MOF-POP hybrids as next-generation materials for gas separation and carbon capture applications. Full article
(This article belongs to the Special Issue Organic-Inorganic Hybrid Materials, 4th Edition)
Show Figures

Figure 1

18 pages, 9768 KiB  
Article
Impact of Mixed-In Polyacrylic- and Phosphonate-Based Additives on Lime Mortar Microstructure
by Dulce Elizabeth Valdez Madrid, Encarnación Ruiz-Agudo, Sarah Bonilla-Correa, Nele De Belie and Veerle Cnudde
Materials 2025, 18(14), 3322; https://doi.org/10.3390/ma18143322 - 15 Jul 2025
Viewed by 365
Abstract
Aminotris(methylene phosphonic acid) (ATMP) and poly(acrylic acid) sodium salt (PAA) have shown favorable results in the treatment of porous building materials against weathering damage, showing promising potential as mixed-in additives during the production of lime-based mortars. This study investigates the impact of these [...] Read more.
Aminotris(methylene phosphonic acid) (ATMP) and poly(acrylic acid) sodium salt (PAA) have shown favorable results in the treatment of porous building materials against weathering damage, showing promising potential as mixed-in additives during the production of lime-based mortars. This study investigates the impact of these additives on microstructure and mechanical properties. Additives were introduced in various concentrations to assess their influence on CaCO3 crystallization, porosity, strength, and carbonation behavior. Results revealed significant modifications in the morphology of CaCO3 precipitates, showing evidence of nanostructured CaCO3 aggregates and vaterite stabilization, thus indicating a non-classical crystallization pathway through the formation of amorphous CaCO3 phase(s), facilitated by organic occlusions. These nanostructural changes, resembling biomimetic calcitic precipitates enhanced mechanical performance by enabling plastic deformation and intergranular bridging. Increased porosity and pore connectivity facilitated CO2 diffusion towards the mortar matrix, contributing to strength development over time. However, high additive concentrations resulted in poor mechanical performance due to the excessive air entrainment capabilities of short-length polymers. Overall, this study demonstrates that the optimized dosages of ATMP and PAA can significantly enhance the durability and mechanical performance of lime-based mortars and suggests a promising alternative for the tailored manufacturing of highly compatible and durable materials for both the restoration of cultural heritage and modern sustainable construction. Full article
Show Figures

Figure 1

24 pages, 7899 KiB  
Review
Catalyst-Driven Improvements in Conventional Methods for Imine-Linked Covalent Organic Frameworks
by Maziar Jafari, Zhiyuan Peng, Ali Samie, Faezeh Taghavi, Amir Khojastehnezhad and Mohamed Siaj
Molecules 2025, 30(14), 2969; https://doi.org/10.3390/molecules30142969 - 15 Jul 2025
Viewed by 508
Abstract
Imine-linked covalent organic frameworks (COFs) have attracted considerable interest in recent years because they can form strong and reversible covalent bonds, enabling the development of highly ordered crystalline structures. This reversibility is crucial in correcting structural defects during the crystallization process, which requires [...] Read more.
Imine-linked covalent organic frameworks (COFs) have attracted considerable interest in recent years because they can form strong and reversible covalent bonds, enabling the development of highly ordered crystalline structures. This reversibility is crucial in correcting structural defects during the crystallization process, which requires sufficient time to proceed. This review critically examines the advancements in synthetic strategies for these valuable materials, focusing on catalytic versus conventional approaches. Traditional methods for synthesizing imine-linked COFs often involve harsh reaction conditions and prolonged reaction times, which can limit the scalability and environmental sustainability of these frameworks. In contrast, catalytic approaches offer more efficient pathways, enabling shorter reaction times, milder reaction conditions, and higher yields. This article elucidates the key differences between these methodologies and examines the impact of reduced reaction times and milder conditions on the crystallinity and porosity of COFs. By comparing the catalytic and conventional synthesis routes, this review aims to provide a comprehensive understanding of the advantages and limitations of each approach, offering insights into the optimal strategies for the development of high-performance COFs. Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry: 4th Edition)
Show Figures

Graphical abstract

13 pages, 3561 KiB  
Article
Preparing Surface-Functionalized Polymer Films with Hierarchically Ordered Structure by a Combination of Nanoimprinting and Controlled Graft Polymerization
by Masahiko Minoda, Daichi Shimizu, Tatsuya Nohara and Jin Motoyanagi
Surfaces 2025, 8(3), 48; https://doi.org/10.3390/surfaces8030048 - 11 Jul 2025
Viewed by 366
Abstract
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared [...] Read more.
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared by combining both nanoimprinting using anodically oxidized porous alumina (AAO) as a template and surface-initiated atom transfer radical polymerization (SI-ATRP). To prepare such polymer films, we designed a new copolymer (poly{[2-(4-methyl-2-oxo-2H-chromen-7-yloxy)ethyl methacrylate]-co-[2-(2-bromo-2-methylpropionyloxy)ethyl methacrylate]}; poly(MCMA-co-HEMABr)) with coumarin moieties and α-haloester moieties in the pendants. The MCMA repeating units function to fix the pillar structure by photodimerization, and the HEMABr ones act as the polymerization initiation sites for SI-ATRP on the pillar surfaces. Surface structures consisting of vertically oriented multiple pillars were fabricated on the spin-coated poly(MCMA-co-HEMABr) thin films by nanoimprinting using an AAO template. Then, the coumarin moieties inside each pillar were crosslinked by UV light irradiation to fix the pillar structure. SEM observation confirmed that the internally crosslinked pillar structures were maintained even when immersed in organic solvents such as 1,2-dichloroethane and anisole, which are employed as solvents under SI-ATRP conditions. Finally, poly(2,2,2-trifluoroethyl methacrylate) and poly(N-isopropylacrylamide) chains were grafted onto the thin film by SI-ATRP, respectively, to prepare the hierarchically ordered surface structure. Furthermore, in this study, the surface properties as well as the thermoresponsive hydrophilic/hydrophobic switching of the obtained polymer films were investigated. The surface morphology and chemistry of the films with and without pillar structures were compared, especially the interfacial properties expressed as wettability. Grafting poly(TFEMA) increased the static contact angle for both flat and pillar films, and the con-tact angle of the pillar film surface increased from 104° for the flat film sample to 112°, suggesting the contribution of the pillar structure. Meanwhile, the pillar film surface grafted with poly(NIPAM) brought about a significant change in wettability when changing the temperature between 22 °C and 38 °C. Full article
(This article belongs to the Special Issue Surface Science: Polymer Thin Films, Coatings and Adhesives)
Show Figures

Graphical abstract

15 pages, 1834 KiB  
Article
Metal-Free Graphene/Conjugated Microporous Polymer Mott–Schottky Heterojunctions: A Design Strategy for High-Efficiency, Durable Photocatalysts
by Selsabil Chikhi, Sander Dekyvere, Shuai Li, Chih-Ming Kao and Francis Verpoort
Catalysts 2025, 15(7), 609; https://doi.org/10.3390/catal15070609 - 20 Jun 2025
Viewed by 481
Abstract
Conjugated microporous polymers (CMP) are advanced photocatalytic systems for degrading organic dyes. However, their potential and efficiency are often limited by rapid electron–hole pair (e/h+) recombination. To overcome this limitation, this study proposes a strategy that involves designing a [...] Read more.
Conjugated microporous polymers (CMP) are advanced photocatalytic systems for degrading organic dyes. However, their potential and efficiency are often limited by rapid electron–hole pair (e/h+) recombination. To overcome this limitation, this study proposes a strategy that involves designing a Mott–Schottky heterojunction and integrating graphene sheets with a near-zero bandgap into the CMP-1 framework, resulting in a non-covalent graphene/CMP (GCMP) heterojunction composite. GCMP serves two main functions: physical adsorption and photocatalytic absorption that uses visible light energy to trigger and degrade the organic dye. GCMP effectively degraded four dyes with both anionic and cationic properties (Rhodamine B; Nile Blue; Congo Red; and Orange II), demonstrating stable recyclability without losing its effectiveness. When exposed to visible light, GCMP generates reactive oxygen species (ROS), primarily singlet oxygen (1O2), and superoxide radicals (O2), degrading the dye molecules. These findings highlight GCMP’s potential for real-world applications, offering a metal-free, cost-effective, and environmentally friendly solution for wastewater treatment. Full article
(This article belongs to the Special Issue Catalytic Materials for Hazardous Wastewater Treatment)
Show Figures

Graphical abstract

27 pages, 2448 KiB  
Review
Synthesis, Structure, Spectra, and Applications of Metal-Organic Frameworks: Basolite C-300
by Gabriela Camarillo-Martínez, Evelia Martínez-Cano, Abraham Zepeda-Navarro, Jorge Luis Guzmán-Mar and Egla Yareth Bivián-Castro
Int. J. Mol. Sci. 2025, 26(12), 5777; https://doi.org/10.3390/ijms26125777 - 16 Jun 2025
Viewed by 693
Abstract
Metal-organic frameworks or MOFs are coordination polymers consisting of cationic metal centers liked by ligands. These coordination polymers have repeating entities that extend in one, two, or three dimensions through various Metal-ligand covalent bonds. The structural diversity of MOFs allows for the fine-tuning [...] Read more.
Metal-organic frameworks or MOFs are coordination polymers consisting of cationic metal centers liked by ligands. These coordination polymers have repeating entities that extend in one, two, or three dimensions through various Metal-ligand covalent bonds. The structural diversity of MOFs allows for the fine-tuning of properties like pore size, stability, and functionality, making them ideal for a wide range of industrial, environmental, and biomedical applications. Basolite C-300, HKUST-1 or [Cu3(btc)2(H2O)3], is one of the most studied three-dimensional porous frameworks. It is a commercially available MOF, easily produced under laboratory conditions. Its unique cubic structure, with multiple pore and adsorption sites, enhances its properties. This article reviews the conventional, new, and non-conventional methods of MOF and Basolite C-300 synthesis. In addition, the structural and spectral characterization of Basolite C-300 and its analogues is described, using spectroscopic and complementary multi-techniques to obtain fundamental knowledge about their structure. Finally, the applications of Basolite C-300 and similar MOFs are discussed, emphasizing their importance in industry and materials, technologies aimed at addressing global environmental and energy-related challenges, and biomedical applications. Full article
Show Figures

Graphical abstract

24 pages, 1714 KiB  
Review
Engineering and Exploiting Immobilized Peptide Organocatalysts for Modern Synthesis
by Marco Francescato, Hang Liao and Luca Gentilucci
Molecules 2025, 30(12), 2517; https://doi.org/10.3390/molecules30122517 - 9 Jun 2025
Viewed by 798
Abstract
Short- and medium-sized peptides have long been used as effective and versatile organocatalysts. In the early 80s, Inoue used diketopiperazines in the Strecker reaction, while Juliá and Colonna reported the epoxidation of chalcone catalyzed by poly-L-Ala. Since then, a variety of peptide-catalyzed reactions [...] Read more.
Short- and medium-sized peptides have long been used as effective and versatile organocatalysts. In the early 80s, Inoue used diketopiperazines in the Strecker reaction, while Juliá and Colonna reported the epoxidation of chalcone catalyzed by poly-L-Ala. Since then, a variety of peptide-catalyzed reactions have been described. However, peptide synthesis typically implicates the use of toxic reagents and generates wastes; therefore, peptide recycling is expected to significantly improve the overall sustainability of the process. Easy recovery and recycling of peptide catalysts can be expediently attained by covalent binding, inclusion, or adsorption. In addition, immobilization can significantly accelerate the screening of new peptide catalysts. For these reasons, diverse supports have been tested, including natural or synthetic polymers, porous polymeric networks, inorganic porous materials, organic-inorganic hybrid materials, and finally metal–organic frame-works. Full article
(This article belongs to the Special Issue Organocatalysis: Past, Present, and Future Perspectives)
Show Figures

Figure 1

27 pages, 1354 KiB  
Review
Biomedical Applications of Functionalized Composites Based on Metal–Organic Frameworks in Bone Diseases
by Chenxi Yun, Zhe Yuan, Rim El Haddaoui-Drissi, Ruitong Ni, Yunyun Xiao, Zhenhui Qi, Jie Shang and Xiao Lin
Pharmaceutics 2025, 17(6), 757; https://doi.org/10.3390/pharmaceutics17060757 - 8 Jun 2025
Viewed by 1133
Abstract
Every year, millions of people worldwide suffer from bone tissue damage caused by bone trauma and surgical operations, as well as diseases such as osteoporosis, osteoarthritis, osteomyelitis, and periodontitis. Bone defect repair is one of the major challenges in the field of regenerative [...] Read more.
Every year, millions of people worldwide suffer from bone tissue damage caused by bone trauma and surgical operations, as well as diseases such as osteoporosis, osteoarthritis, osteomyelitis, and periodontitis. Bone defect repair is one of the major challenges in the field of regenerative medicine. Although bone grafts are the gold standard for treating bone defects, factors such as donor sources and immune responses limit their application. Functionalized nanomaterials have become an effective means of treating bone diseases due to their good biocompatibility and osteoinductivity, anti-inflammatory, and antibacterial properties. Metal–organic frameworks (MOFs) are porous coordination polymers composed of metal ions and organic ligands, featuring unique physical properties, including a high surface area–volume ratio and porosity. In regenerative medicine, MOFs function as the functions of drug carriers, metal ion donors, nanozymes, and photosensitizers. When combined with other functional materials, they regulate cellular reactive oxygen species, macrophage phenotypic transformation, bone resorption, osteogenesis, and mineralization, providing a new paradigm for bone tissue engineering. This study reviews the classification of functionalized MOF composites in biomedicine and the application of their synthesis techniques in bone diseases. The unique in vivo and in vitro applications of MOFs in bone diseases, including osteoarthritis, osteoporosis, bone tumors, osteomyelitis, and periodontitis, are explored. Their properties include excellent drug loading and sustained release abilities, high antibacterial activity, and bone induction abilities. This review enables readers to better understand the cutting-edge progress of MOFs in bone regeneration applications, which is crucial for the design of and functional research on MOF-related nanomaterials. Full article
Show Figures

Graphical abstract

16 pages, 2258 KiB  
Review
Adsorption and Absorption Techniques for the Separation of Gaseous C2–C5 Olefins
by Fengxiang Guo, Chao Sun, Mo Xian and Huibin Zou
Separations 2025, 12(6), 144; https://doi.org/10.3390/separations12060144 - 1 Jun 2025
Viewed by 761
Abstract
Volatile C2–C5 olefins are important bulk chemicals in the polymer industry. Traditionally, C2–C5 olefins are produced from cracked petroleum resources using an energy-consuming and hazardous distillation method. Currently, volatile olefins can be produced from renewable biomass. To obtain polymer-grade volatile olefins from diversified [...] Read more.
Volatile C2–C5 olefins are important bulk chemicals in the polymer industry. Traditionally, C2–C5 olefins are produced from cracked petroleum resources using an energy-consuming and hazardous distillation method. Currently, volatile olefins can be produced from renewable biomass. To obtain polymer-grade volatile olefins from diversified resources, more sustainable and feasible separation techniques need to be developed. This review focuses on two updated separation techniques for C2–C5 olefins: (a) adsorption separation, which separates olefins through porous affinity, the pi complexation effect, and size-exclusion and gate-opening sieving, and (b) liquid absorption separation, which utilizes either organic solvents or ionic liquids for olefin separation. In this review, different separation techniques are compared in terms of their mechanisms and operation conditions in the separation of different types of C2–C5 olefins from variable resources, such as cracked ethylene/propylene/butylene/isoprene and bio-isoprene. Full article
(This article belongs to the Topic Advances in Separation Engineering)
Show Figures

Figure 1

25 pages, 1807 KiB  
Review
Porphyrin-Based Sorbents for the Enrichment and Removal of Metal Ions
by Krystyna Pyrzynska and Krzysztof Kilian
Molecules 2025, 30(10), 2238; https://doi.org/10.3390/molecules30102238 - 21 May 2025
Viewed by 744
Abstract
Porphyrins and their derivatives are excellent materials with specific physical and photochemical properties in medical, chemical, and technological applications. In chemistry, their properties are applied to create new functional materials with specific characteristics, such as porphyrin-based sorbents combined with porous organic polymers, silica, [...] Read more.
Porphyrins and their derivatives are excellent materials with specific physical and photochemical properties in medical, chemical, and technological applications. In chemistry, their properties are applied to create new functional materials with specific characteristics, such as porphyrin-based sorbents combined with porous organic polymers, silica, carbon nanostructures, or metal–organic frameworks. This review covers the applications of porphyrins and metalloporphyrins in preparing and using sorbents for metal ion enrichment and their separation. Uncommon applications that utilize specific properties of porphyrins, such as light-enhanced processes and redox properties for selective sorption and photocatalytic conversion of metal ions, are also discussed. These applications suggest new fields of use, such as the removal or recycling of metals from electronic waste or the selective elimination of heavy metals from the environment. Full article
(This article belongs to the Special Issue Porphyrin-Based Compounds: Synthesis and Application, 2nd Edition)
Show Figures

Figure 1

Back to TopTop