Synthesis, Structure, Spectra, and Applications of Metal-Organic Frameworks: Basolite C-300
Abstract
1. Introduction
2. Synthesis of MOFs and Basolite C-300
2.1. Conventional Methods for MOF Synthesis
- Liquid solvent diffusion. In this procedure, two liquid layers with different densities are formed: one containing the product and the other a precipitating solvent. These layers are separated by a third solvent layer. The precipitating solvent slowly diffuses into the separated layer, and crystal growth occurs at the interface.
- Slow diffusion of reactants. This approach involves separating the reactants with physical barriers, such as two tubes of different sizes. In some cases, gels are also used as diffusion and crystallization media, particularly to slow down diffusion and prevent material precipitation.
Synthesis Method | Reaction Conditions | Yield | Particle Size | Crystallinity | Practical Challenges | References |
---|---|---|---|---|---|---|
Hydrothermal/solvothermal technique | 80–260 °C, long times (12–72 h), closed atmosphere (autoclave or Teflon-lined reactor); polar solvents such as DMF, DEF, MeOH, EtOH. | High (up to >90%), depending on precursors and time. | 100 nm at >10 μm, controlled by kinetics and nucleation. | High, favored by slow diffusion and thermal balance. | Widely used technique; limitations in industrial scalability; toxic solvents; highly adjustable parameters (concentration, temperature, time, pH). | [14,15] |
Microwave-assisted technique | 80–200 °C, short reaction times (5–30 min); use of polar solvents with high dielectric absorption; continuous or pulsed irradiation. | High (>85%). | Uniform and lower compared to solvothermal techniques (50–500 nm). | Good to excellent, depending on the time control. | Rapid nucleation and crystallization; possible preferential orientation; requires specialized equipment; allows for significant energy savings. | [16,17] |
Mechanochemical technique | Solid-phase reactions; mechanical activation by manual grinding (mortar) or automated grinding (vibrating mills or others); without the use of solvent or catalytic quantities (liquid-assisted grinding, LAG). | Variable (50–95%). | Nanometric (10–200 nm); lower dispersion. | Low to medium; can be improved by heat treatments. | Sustainable, solvent-free route; ideal for insoluble precursors; requires post-synthesis evaluation to ensure desired structure; may induce partial amorphism. | [18] |
Electrochemical technique | Electrochemical cell reaction (2 or 3 electrodes); cationic metal dissolution in anode and formation of MOF in cathode, room temperature or mild heating (<60 °C); polar solvents. | Variable (40–90%). | Controllable by voltage/current and reaction time. | Good, especially in self-assembled structures on electrodes. | Allows for direct synthesis on conductive surfaces; useful for applications in sensors or catalysis; requires fine control of electrical parameters; limited to electroactive materials. | [19] |
Sonochemical synthesis method | Ultrasonic irradiation in liquid medium; moderate ambient temperature (25–60 °C); intensities between 20 and 40 kHz; promotion of cavitation and nucleation. | Medium–high (60–90%). | Submicrometric, homogeneous (50–300 nm). | Good, especially in fast nucleation systems. | No severe thermal requirements; good morphological control; useful for quick synthesis. | [20] |
2.2. New and Non-Conventional Methods for MOF Synthesis
2.3. Basolite C-300 Synthesis and Structural Stability
3. Structural Characterization and Spectra of MOFs: Basolite C-300
3.1. Spectroscopic Techniques
3.2. Complementary Techniques
3.3. Analytical Multi-Technique Approaches
4. Applications of MOFs and Basolite C-300
4.1. Industry and Materials
4.2. Energy and Environment
4.3. Biomedical and Health
5. Summary Discussion and Final Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Janiak, C. Engineering coordination polymers towards applications. Dalton Trans. 2003, 14, 2781–2804. [Google Scholar] [CrossRef]
- Janiak, C.; Vieth, J.K. MOFs, MILs and more: Concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 2010, 34, 2366–2388. [Google Scholar] [CrossRef]
- Chui, S.S.Y.; Lo, S.M.F.; Charmant, J.P.; Orpen, A.G.; Williams, I.D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148–1150. [Google Scholar] [CrossRef]
- Bivián-Castro, E.Y.; Flores-Alamo, M.; Escudero, R.; Gómez-Vidal, V.; Segoviano-Garfias, J.J.; Castañeda-Contreras, J.; Saavedra-Arroyo, Q.E. Synthesis and characterization of a new Cu (II) Paddle-Wheel-like complex with 4-vinylbenzoate as an inorganic node for Metal-organic framework material design. Materials 2023, 16, 4866. [Google Scholar] [CrossRef]
- Nobar, S.N. Cu-BTC synthesis, characterization and preparation for adsorption studies. Mater. Chem. Phys. 2018, 213, 343–351. [Google Scholar] [CrossRef]
- Abid, H.R.; Azhar, M.R.; Iglauer, S.; Rada, Z.H.; Al-Yaseri, A.; Keshavarz, A. Physicochemical characterization of metal organic framework materials: A mini review. Heliyon 2024, 10, e23840. [Google Scholar] [CrossRef]
- Meek, S.T.; Perry, J.J., IV; Teich-McGoldrick, S.L.; Greathouse, J.A.; Allendorf, M.D. Complete series of monohalogenated isoreticular Metal-organic frameworks: Synthesis and the importance of activation method. Cryst. Growth Des. 2011, 11, 4309–4312. [Google Scholar] [CrossRef]
- Stock, N.; Biswas, S. Synthesis of Metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969. [Google Scholar] [CrossRef]
- Rossi, L.M.; Shi, L.; Quina, F.H.; Rosenzweig, Z. Stöber synthesis of monodispersed luminescent silica nanoparticles for bioanalytical assays. Langmuir 2005, 21, 4277–4280. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Zhu, G. Molecular engineering for synthesizing novel structures of Metal-organic frameworks with multifunctional properties. Coord. Chem. Rev. 2009, 253, 2891–2911. [Google Scholar] [CrossRef]
- Lee, Y.R.; Kim, J.; Ahn, W.S. Synthesis of Metal-organic frameworks: A mini review. Korean J. Chem. Eng. 2013, 30, 1667–1680. [Google Scholar] [CrossRef]
- Claudio-Rizo, J.A.; Cano Salazar, L.F.; Flores-Guía, T.E.; Cabrera-Munguía, D.A. Estructuras metal-orgánicas (MOFs) nanoestructuradas para la liberación controlada de fármacos. Mundo Nano 2021, 14, 1–20. [Google Scholar] [CrossRef]
- Suh, M.P.; Park, H.J.; Prasad, T.K.; Lim, D.W. Hydrogen storage in Metal-organic frameworks. Chem. Rev. 2012, 112, 782–835. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Du, L.; Wu, C. Chapter 7: Hydrothermal synthesis of MOFs. In Metal-Organic Frameworks for Biomedical Applications; Mozafari, M., Ed.; Woodhead Publishing: Sawston, UK, 2020; pp. 141–157. [Google Scholar] [CrossRef]
- Rosi, N.L.; Eddaoudi, M.; Kim, J.; O’Keeffe, M.; Yaghi, O.M. Advances in the chemistry of Metal-organic frameworks. CrystEngComm 2002, 4, 401–404. [Google Scholar] [CrossRef]
- Khan, N.A.; Jhung, S.H. Facile syntheses of Metal-organic framework Cu3(BTC)2(H2O)3 under ultrasound. Bull. Korean Chem. Soc. 2009, 30, 2921. [Google Scholar] [CrossRef]
- Mendes, R.F.; Rocha, J.; Paz, F.A.A. Chapter 8: Microwave synthesis of Metal-organic frameworks. In Metal-Organic Frameworks for Biomedical Applications; Mozafari, M., Ed.; Woodhead Publishing: Sawston, UK, 2020; pp. 159–176. [Google Scholar] [CrossRef]
- Tanaka, S. Mechanochemical synthesis of MOFs. In Metal-Organic Frameworks for Biomedical Applications; Mozafari, M., Ed.; Woodhead Publishing: Sawston, UK, 2020; pp. 197–222. [Google Scholar] [CrossRef]
- Ghoorchian, A.; Afkhami, A.; Madrakian, T.; Ahmadi, M. Chapter 9: Electrochemical synthesis of MOFs. In Metal-Organic Frameworks for Biomedical Applications; Mozafari, M., Ed.; Woodhead Publishing: Sawston, UK, 2020; pp. 177–195. [Google Scholar] [CrossRef]
- Vaitsis, C.; Sourkounis, G.; Argirusis, C. Chapter 11: Sonochemical synthesis of MOFs. In Metal-Organic Frameworks for Biomedical Applications; Mozafari, M., Ed.; Woodhead Publishing: Sawston, UK, 2020; pp. 223–244. [Google Scholar] [CrossRef]
- Carné-Sánchez, A.; Imaz, I.; Cano-Sarabia, M.; Maspoch, D. A spray-drying strategy for synthesis of nanoscale Metal-organic frameworks and their assembly into hollow superstructures. Nat. Chem. 2013, 5, 203–211. [Google Scholar] [CrossRef]
- Fidelli, A.M.; Kessler, V.G.; Escuer, A.; Papaefstathiou, G.S. Cu(ii) frameworks from a “mixed-ligand” approach. CrystEngComm 2017, 19, 4355–4367. [Google Scholar] [CrossRef]
- Chen, J.; Shen, K.; Li, Y. Greening the processes of Metal-organic framework synthesis and their use in sustainable catalysis. ChemSusChem 2017, 10, 3165–3187. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Noh, H.; Ayoub, G.; Peterson, G.W.; Buru, C.T.; Farha, O.K. Scalable, room temperature, and water-based synthesis of functionalized zirconium-based Metal-organic frameworks for toxic chemical removal. CrystEngComm 2019, 21, 2409–2415. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, M.; Getachew, N.; Díaz, K.; Díaz-García, M.; Chebude, Y.; Díaz, I. Synthesis of Metal-organic frameworks in water at room temperature: Salts as linker sources. Green Chem. 2015, 17, 1500–1509. [Google Scholar] [CrossRef]
- Anderson, S.L.; Stylianou, K.C. Biologically derived metal organic frameworks. Coord. Chem. Rev. 2017, 349, 102–128. [Google Scholar] [CrossRef]
- Vepsäläinen, M.; Macedo, D.S.; Gong, H.; Rubio-Martínez, M.; Bayatsarmadi, B.; He, B. Electrosynthesis of HKUST-1 with flow-reactor post-processing. Appl. Sci. 2021, 11, 3340. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L. Method for Rapidly Synthesizing HKUST-1 by Reflux Stirring. China Patent CN114349972A, 15 April 2022. Available online: https://patents.google.com/patent/CN114349972A/en (accessed on 29 May 2025).
- Ho, P.S.; Chong, K.C.; Lai, S.O.; Lee, S.S.; Lau, W.J.; Lu, S.Y.; Ooi, B.S. Synthesis of Cu-BTC Metal-organic framework for CO2 capture via solvent-free method: Effect of metal precursor and molar ratio. Aerosol Air Qual. Res. 2022, 22, 220235. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, Y.; Gao, F.; Ni, J.; Zhang, Y.; Lin, Z. Graphene oxide directed one-step synthesis of flowerlike graphene@HKUST-1 for enzyme-free detection of hydrogen peroxide in biological samples. ACS Appl. Mater. Interfaces 2016, 8, 32477–32487. [Google Scholar] [CrossRef] [PubMed]
- Sud, D.; Kaur, G. A comprehensive review on synthetic approaches for Metal-organic frameworks: From traditional solvothermal to greener protocols. Polyhedron 2020, 193, 114897. [Google Scholar] [CrossRef]
- Álvarez, J.R.; Sánchez-González, E.; Pérez, E.; Schneider-Revueltas, E.; Martínez, A.; Tejeda-Cruz, A.; Ibarra, I.A. Structure stability of HKUST-1 towards water and ethanol and their effect on its CO2 capture properties. Dalton Trans. 2017, 46, 9192–9200. [Google Scholar] [CrossRef]
- Schlichte, K.; Kratzke, T.; Kaskel, S. Improved synthesis, thermal stability and catalytic properties of the Metal-organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater. 2004, 73, 81–88. [Google Scholar] [CrossRef]
- Hadjiivanov, K.I.; Panayotov, D.A.; Mihaylov, M.Y.; Ivanova, E.Z.; Chakarova, K.K.; Andonova, S.M.; Drenchev, N.L. Power of infrared and Raman spectroscopies to characterize Metal-organic frameworks and investigate their interaction with guest molecules. Chem. Rev. 2020, 121, 1286–1424. [Google Scholar] [CrossRef]
- Gentile, F.S.; Pannico, M.; Causà, M.; Mensitieri, G.; Di Palma, G.; Scherillo, G.; Musto, P. Metal defects in HKUST-1 MOF revealed by vibrational spectroscopy: A combined quantum mechanical and experimental study. J. Mater. Chem. A 2020, 8, 10796–10812. [Google Scholar] [CrossRef]
- Borfecchia, E.; Maurelli, S.; Gianolio, D.; Groppo, E.; Chiesa, M.; Bonino, F.; Lamberti, C. Insights into adsorption of NH3 on HKUST-1 Metal-organic framework: A multitechnique approach. J. Phys. Chem. C 2012, 116, 19839–19850. [Google Scholar] [CrossRef]
- Abylgazina, L.; Senkovska, I.; Maliuta, M.; Bachetzky, C.; Rauche, M.; Pöschel, K.; Schmidt, J.; Isaacs, M.; Morgan, D.; Otyepka, M.; et al. The role of surface deformation on responsivity of the pillared layer metal–organic framework DUT-8 (Ni). Chem. Sci. 2025, 16, 6402–6417. [Google Scholar] [CrossRef] [PubMed]
- Woo, H.; Matzger, A.J. Competitive Guest Binding in a Metal-Organic Framework with Coordinatively Unsaturated Metals. ACS Mater. Lett. 2025, 7, 450–456. [Google Scholar] [CrossRef]
- Todaro, M.; Alessi, A.; Sciortino, L.; Agnello, S.; Cannas, M.; Gelardi, F.M.; Buscarino, G. Investigation by Raman spectroscopy of the decomposition process of HKUST-1 upon exposure to air. J. Spectrosc. 2016, 2016, 8074297. [Google Scholar] [CrossRef]
- Prestipino, C.; Regli, L.; Vitillo, J.G.; Bonino, F.; Damin, A.; Lamberti, C.; Zecchina, A.; Solari, P.L.; Kongshaug, K.O.; Bordiga, S. Local structure of framework Cu(II) in HKUST-1 Metal-organic framework: Spectroscopic characterization upon activation and interaction with adsorbates. Chem. Mater. 2006, 18, 1337–1346. [Google Scholar] [CrossRef]
- Zhang, J.; Su, C.; Xie, X.; Liu, P.; Huq, M.E. Enhanced visible light photocatalytic degradation of dyes in aqueous solution activated by HKUST-1: Performance and mechanism. RSC Adv. 2020, 10, 37028–37034. [Google Scholar] [CrossRef]
- Kultaeva, A.; Böhlmann, W.; Hartmann, M.; Biktagirov, T.; Pöppl, A. Adsorption of olefins at cupric ions in Metal-organic framework HKUST-1 explored by hyperfine spectroscopy. J. Phys. Chem. Lett. 2019, 10, 7657–7664. [Google Scholar] [CrossRef]
- Todaro, M.; Buscarino, G.; Sciortino, L.; Alessi, A.; Messina, F.; Taddei, M.; Ranocchiari, M.; Cannas, M.; Gelardi, F.M. Decomposition process of carboxylate MOF HKUST-1 unveiled at the atomic scale level. J. Phys. Chem. C 2016, 120, 12879–12889. [Google Scholar] [CrossRef]
- Dawson, D.M.; Jamieson, L.E.; Mohideen, M.I.H.; McKinlay, A.C.; Smellie, I.A.; Cadou, R.; Keddie, N.S.; Morris, R.E.; Ashbrook, S.E. High-resolution solid-state 13C NMR spectroscopy of the paramagnetic Metal-organic frameworks, STAM-1 and HKUST-1. Phys. Chem. Chem. Phys. 2013, 15, 919–929. [Google Scholar] [CrossRef]
- Feng, Y.; Jiang, H.; Li, S.; Wang, J.; Jing, X.; Wang, Y.; Chen, M. Metal-organic frameworks HKUST-1 for liquid-phase adsorption of uranium. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 431, 87–92. [Google Scholar] [CrossRef]
- Han, S.; Ciufo, R.A.; Meyerson, M.L.; Keitz, B.K.; Mullins, C.B. Solvent-free vacuum growth of oriented HKUST-1 thin films. J. Mater. Chem. A 2019, 7, 19396–19406. [Google Scholar] [CrossRef]
- Vrtovec, N.; Mazaj, M.; Buscarino, G.; Terracina, A.; Agnello, S.; Arčon, I.; Kovač, J.; Zabukovec Logar, N. Structural and CO2 capture properties of ethylenediamine-modified HKUST-1 Metal-organic framework. Cryst. Growth Des. 2020, 20, 5455–5465. [Google Scholar] [CrossRef]
- Todaro, M.; Sciortino, L.; Gelardi, F.M.; Buscarino, G. Determination of geometry arrangement of copper ions in HKUST-1 by XAFS during a prolonged exposure to air. J. Phys. Chem. C 2017, 121, 24853–24860. [Google Scholar] [CrossRef]
- Chen, Y.; Mu, X.; Lester, E.; Wu, T. High efficiency synthesis of HKUST-1 under mild conditions with high BET surface area and CO2 uptake capacity. Prog. Nat. Sci. Mater. Int. 2018, 28, 584–589. [Google Scholar] [CrossRef]
- Lin, K.-S.; Adhikari, A.K.; Ku, C.-N.; Chiang, C.-L.; Kuo, H. Synthesis and characterization of porous HKUST-1 Metal-organic frameworks for hydrogen storage. Int. J. Hydrog. Energy 2012, 37, 13865–13871. [Google Scholar] [CrossRef]
- Cai, X.; Xie, Z.; Pang, M.; Lin, J. Controllable synthesis of highly uniform nanosized HKUST-1 crystals by LSS method. Cryst. Growth Des. 2019, 19, 556–561. [Google Scholar] [CrossRef]
- Bhunia, M.K.; Hughes, J.T.; Fettinger, J.C.; Navrotsky, A. Thermochemistry of paddle wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1. Langmuir 2013, 29, 7579–7586. [Google Scholar] [CrossRef]
- Al-Janabi, N.; Hill, P.; Torrente-Murciano, L.; Garforth, A.; Gorgojo, P.; Siperstein, F.; Fan, X. Mapping the Cu-BTC Metal-organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chem. Eng. J. 2015, 281, 669–677. [Google Scholar] [CrossRef]
- Wiwasuku, T.; Suebphanpho, J.; Ittisanronnachai, S.; Promarak, V.; Boonmak, J.; Youngmea, S. Nanoscale carbon dot-embedded Metal-organic framework for turn-on fluorescence detection of water in organic solvents. RSC Adv. 2023, 13, 18138–18144. [Google Scholar] [CrossRef]
- Hendon, C.H.; Walsh, A. Chemical principles underpinning the performance of the Metal-organic framework HKUST-1. Chem. Sci. 2015, 6, 3674–3683. [Google Scholar] [CrossRef]
- Rezvani Jalal, N.; Madrakian, T.; Afkhami, A.; Ghoorchian, A. In situ growth of Metal-organic framework HKUST-1 on graphene oxide nanoribbons with high electrochemical sensing performance in imatinib determination. ACS Appl. Mater. Interfaces 2020, 12, 4859–4869. [Google Scholar] [CrossRef]
- Mohanadas, D.; Ravoof, B.S.A.; Sulaiman, Y. A fast switching electrochromic performance based on poly(3,4-ethylenedioxythiophene)-reduced graphene oxide/Metal-organic framework HKUST-1. Sol. Energy Mater. Sol. Cells 2020, 214, 110596. [Google Scholar] [CrossRef]
- Kang, Y.S.; Lu, Y.; Chen, K.; Zhao, Y.; Wang, P.; Sun, W.Y. Metal-organic frameworks with catalytic centers: From synthesis to catalytic application. Coord. Chem. Rev. 2019, 378, 262–280. [Google Scholar] [CrossRef]
- Ryu, U.; Jee, S.; Rao, P.C.; Shin, J.; Ko, C.; Yoon, M.; Park, K.S.; Choi, K.M. Recent advances in process engineering and upcoming applications of Metal-organic frameworks. Coord. Chem. Rev. 2021, 426, 213544. [Google Scholar] [CrossRef] [PubMed]
- Shahzaib, A.; Kamran, L.A.; Nishat, N. The Biomolecule-MOF Nexus: Recent advancements in bioMetal-organic frameworks (Bio-MOFs) and their multifaceted applications. Mater. Today Chem. 2023, 34, 101781. [Google Scholar] [CrossRef]
- Kajal, N.; Singh, V.; Gupta, R.; Gautam, S. Metal-organic frameworks for electrochemical sensor applications: A review. Environ. Res. 2022, 204, 112320. [Google Scholar] [CrossRef]
- Li, D.; Yadav, A.; Zhou, H.; Roy, K.; Thanasekaran, P.; Lee, C. Advances and applications of Metal-organic frameworks (MOFs) in emerging technologies: A comprehensive review. Glob. Chall. 2024, 8, 2300244. [Google Scholar] [CrossRef]
- Cao, Y.; Li, P.; Wu, T.; Liu, M.; Zhang, Y. Electrocatalysis of N2 to NH3 by HKUST-1 with high NH3 yield. Chem. Asian J. 2020, 15, 1272–1276. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, H.; Zeng, Q.; Liu, D. Strategies for overcoming defects of HKUST-1 and its relevant applications. Adv. Mater. Interfaces 2019, 6, 1900423. [Google Scholar] [CrossRef]
- Yang, L.; Wang, K.; Guo, L.; Hu, X.; Zhou, M. Unveiling the potential of HKUST-1: Synthesis, activation, advantages, and biomedical applications. J. Mater. Chem. B 2024, 12, 2670–2690. [Google Scholar] [CrossRef]
- Xia, C.; Wu, J.; Delbari, S.A.; Namini, A.S.; Yuan, Y.; Le, Q.V.; Kim, D.; Varma, R.S.; T-Raissi, A.; Jang, H.W.; et al. Metal-organic Framework-Based Nanostructured Catalysts: Applications in Efficient Organic Transformations. Mol. Catal. 2023, 546, 113217. [Google Scholar] [CrossRef]
- Alhumaimess, M.S. Metal-Organic Frameworks and Their Catalytic Applications. J. Saudi Chem. Soc. 2020, 24, 461–473. [Google Scholar] [CrossRef]
- Jiao, L.; Wang, Y.; Jiang, H.L.; Xu, Q. Metal-Organic Frameworks as Platforms for Catalytic Applications. Adv. Mater. 2018, 30, 1703663. [Google Scholar] [CrossRef] [PubMed]
- Le, H.V.; Nguyen, Q.T.T.; Co, T.T.; Nguyen, P.K.T.; Nguyen, H.T. A Composite Based on Pd Nanoparticles Incorporated into a Zirconium-Based Metal-Organic Framework Zr–AzoBDC and Its Electrocatalytic Activity for Hydrogen Evolution Reaction. J. Electron. Mater. 2018, 47, 6918–6922. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Nejad, F.G.; Kirlikovali, K.O.; Van Le, Q.; Jang, H.W.; Shokouhimehr, M. Recent Electrochemical Applications of Metal-Organic Framework-Based Materials. Cryst. Growth Des. 2020, 20, 7034–7064. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, Y.; Liu, S.; Xu, M. The Applications of Metal–Organic Frameworks in Electrochemical Sensors. ChemElectroChem 2018, 5, 6–19. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Concepcion, P.; Garcia, H. Dehydrogenative coupling of silanes with alcohols catalyzed by Cu3(BTC)2. Chem. Commun. 2016, 52, 2725–2728. [Google Scholar] [CrossRef]
- Thilakarajan, P. Synthesis and Evaluation of Nanocatalysts for CO2 Hydrogenation to Methanol: A Comprehensive Review. Int. J. High Sch. Res. 2024, 6, 118–126. [Google Scholar] [CrossRef]
- Zong, Z.; Tan, H.; Zhang, P.; Yuan, C.; Zhao, R.; Song, F.; Cui, H. Cu/SiO2 synthesized with HKUST-1 as precursor: High ratio of Cu⁺/(Cu2⁺ Cu0) and rich oxygen defects for efficient catalytic hydrogenation of furfural to 2-methyl furan. Phys. Chem. Chem. Phys. 2023, 25, 24377–24385. [Google Scholar] [CrossRef]
- Stawowy, M.; Jagódka, P.; Matus, K.; Samojeden, B.; Silvestre-Albero, J.; Trawczyński, J.; Łamacz, A. HKUST-1-supported cerium catalysts for CO oxidation. Catalysts 2020, 10, 108. [Google Scholar] [CrossRef]
- Jang, S.; Yoon, C.; Lee, J.M.; Park, S.; Park, K.H. Preparation of Cu@Cu2O nanocatalysts by reduction of HKUST-1 for oxidation reaction of catechol. Molecules 2016, 21, 1467. [Google Scholar] [CrossRef]
- Li, H.; Wang, K.; Sun, Y.; Lollar, C.T.; Li, J.; Zhou, H.C. Recent advances in gas storage and separation using Metal-organic frameworks. Mater. Today 2018, 21, 108–121. [Google Scholar] [CrossRef]
- Jia, T.; Gu, Y.; Li, F. Progress and potential of Metal-organic frameworks (MOFs) for gas storage and separation: A review. J. Environ. Chem. Eng. 2022, 10, 108300. [Google Scholar] [CrossRef]
- Kumar, S.; Muhammad, R.; Amhamed, A.; Oh, H. Unveiling the potential of ingenious copper-based Metal-organic frameworks in gas storage and separation. Coord. Chem. Rev. 2025, 522, 216230. [Google Scholar] [CrossRef]
- Chong, K.C.; Lai, S.O.; Mah, S.K.; San Thiam, H.; Chong, W.C.; Shuit, S.H.; Chong, W.E. A review of HKUST-1 Metal-organic frameworks in gas adsorption. IOP Conf. Ser. Earth Environ. Sci. 2023, 1135, 012030. [Google Scholar] [CrossRef]
- Kim, H.K.; Yun, W.S.; Kim, M.B.; Kim, J.Y.; Bae, Y.S.; Lee, J.; Jeong, N.C. A chemical route to activation of open metal sites in the copper-based Metal-organic framework materials HKUST-1 and Cu-MOF-2. J. Am. Chem. Soc. 2015, 137, 10009–10015. [Google Scholar] [CrossRef]
- Abhari, P.S.; Manteghi, F.; Tehrani, Z. Adsorption of lead ions by a green AC/HKUST-1 nanocomposite. Nanomaterials 2020, 10, 1647. [Google Scholar] [CrossRef]
- Zhao, L.; Azhar, M.R.; Li, X.; Duan, X.; Sun, H.; Wang, S.; Fang, X. Adsorption of cerium (III) by HKUST-1 Metal-organic framework from aqueous solution. J. Colloid Interface Sci. 2019, 542, 421–428. [Google Scholar] [CrossRef]
- Goyal, P.; Paruthi, A.; Menon, D.; Behara, R.; Jaiswal, A.; Kumar, A.; Misra, S.K. Fe-doped bimetallic HKUST-1 MOF with enhanced water stability for trapping Pb (II) with high adsorption capacity. Chem. Eng. J. 2022, 430, 133088. [Google Scholar] [CrossRef]
- Yang, S.; Ye, F.; Lv, Q.; Zhang, C.; Shen, S.; Zhao, S. Incorporation of Metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules. J. Chromatogr. A 2014, 1360, 143–149. [Google Scholar] [CrossRef]
- Park, J.; Lee, M.; Feng, D.; Huang, Z.; Hinckley, A.C.; Yakovenko, A.; Bao, Z. Stabilization of hexaaminobenzene in a 2D conductive Metal-organic framework for high power sodium storage. J. Am. Chem. Soc. 2018, 140, 10315–10323. [Google Scholar] [CrossRef]
- Hang, X.; Wang, X.; Chen, J.; Du, M.; Sun, Y.; Li, Y.; Pang, H. Enhancing the electrochemical energy storage of Metal-organic frameworks: Linker engineering and size optimization. Inorg. Chem. 2024, 64, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Azman, N.H.N.; Alias, M.M.; Sulaiman, Y. HKUST-1 as a positive electrode material for supercapacitor. Energies 2023, 16, 7072. [Google Scholar] [CrossRef]
- Naghdi, S.; Shahrestani, M.M.; Zendehbad, M.; Djahaniani, H.; Kazemian, H.; Eder, D. Recent advances in the application of Metal-organic frameworks (MOFs) as adsorbents and catalysts in the removal of persistent organic pollutants (POPs). J. Hazard. Mater. 2023, 442, 130127. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.Y.A.; Hsieh, Y.T. Copper-based Metal-organic framework (MOF), HKUST-1, as an efficient adsorbent to remove p-nitrophenol from water. J. Taiwan Inst. Chem. Eng. 2015, 50, 223–228. [Google Scholar] [CrossRef]
- Chai, F.; Zhao, X.; Gao, H.; Zhao, Y.; Huang, H.; Gao, Z. Effective removal of antibacterial drugs from aqueous solutions using porous Metal-organic frameworks. J. Inorg. Organomet. Polym. Mater. 2019, 29, 1305–1313. [Google Scholar] [CrossRef]
- Tchinsa, A.; Hossain, M.F.; Wang, T.; Zhou, Y. Removal of organic pollutants from aqueous solution using Metal-organic framework (MOF)-based adsorbents: A review. Chemosphere 2021, 284, 131393. [Google Scholar] [CrossRef]
- Zhang, G.; Wo, R.; Sun, Z.; Hao, G.; Liu, G.; Zhang, Y.; Jiang, W. Effective magnetic MOFs adsorbent for the removal of bisphenol A, tetracycline, Congo red, and methylene blue pollutants. Nanomaterials 2021, 11, 1917. [Google Scholar] [CrossRef]
- Zhong, J.; Zhou, J.; Xiao, M.; Liu, J.; Shen, J.; Liu, J.; Ren, S. Design and syntheses of functionalized copper-based MOFs and their adsorption behavior for Pb (II). Chin. Chem. Lett. 2022, 33, 973–978. [Google Scholar] [CrossRef]
- Loera-Serna, S.; Solis, H.; Ortiz, E.; Martínez-Hernández, A.L.; Noreña, L. Elimination of methylene blue and reactive black 5 from aqueous solution using HKUST-1. Int. J. Environ. Sci. Dev. 2017, 8, 241. [Google Scholar] [CrossRef]
- Ediati, R.; Zulfa, L.L.; Putrilia, R.D.; Hidayat, A.R.P.; Sulistiono, D.O.; Rosyidah, A.; Hartanto, D. Synthesis of UiO-66 with addition of HKUST-1 for enhanced adsorption of RBBR dye. Arab. J. Chem. 2023, 16, 104637. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, H.; Zeng, F.; Li, X.; Sun, J.; Li, C.; Su, Z. HKUST-1 modified ultrastability cellulose/chitosan composite aerogel for highly efficient removal of methylene blue. Carbohydr. Polym. 2021, 255, 117402. [Google Scholar] [CrossRef] [PubMed]
- Cun, J.E.; Fan, X.; Pan, Q.; Gao, W.; Luo, K.; He, B.; Pu, Y. Copper-based Metal-organic frameworks for biomedical applications. Adv. Colloid Interface Sci. 2022, 305, 102686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Bian, L.; Tian, H.; Liu, Y.; Bando, Y.; Yamauchi, Y.; Wang, Z.L. Tailoring the surface and interface structures of copper-based catalysts for electrochemical reduction of CO2 to ethylene and ethanol. Small 2022, 18, 2107450. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Darabdhara, J.; Ahmaruzzaman, M. Recent advances in Cu-BTC MOF-based engineered materials for the photocatalytic treatment of pharmaceutical wastewater towards environmental remediation. RSC Sustain. 2023, 1, 1952–1961. [Google Scholar] [CrossRef]
- Sosnik, A.; Menaker Raskin, M. Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation. Biotechnol. Adv. 2015, 33, 1380–1392. [Google Scholar] [CrossRef]
- Đorđević, S.M.; Cekić, N.D.; Savić, M.M.; Isailović, T.M.; Ranđelović, D.V.; Marković, B.D.; Savić, S.D. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization, and in vivo pharmacokinetic evaluation. Int. J. Pharm. 2015, 493, 40–54. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Mohammadinejad, R.; Kailasa, S.K.; Ahmadi, Z.; Afshar, E.G.; Pardakhty, A. Carbon dots as versatile nanoarchitectures for the treatment of neurological disorders and their theranostic applications: A review. Adv. Colloid Interface Sci. 2020, 278, 102123. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Wang, H.; Liu, X.; Zhou, X.; Wang, F. DNAzyme-loaded Metal-organic frameworks (MOFs) for self-sufficient gene therapy. Angew. Chem. Int. Ed. 2019, 131, 7458–7462. [Google Scholar] [CrossRef]
- Li, X.; Ma, W.; Li, H.; Zhang, Q.; Liu, H. Sulfur-functionalized Metal-organic frameworks: Synthesis and applications as advanced adsorbents. Coord. Chem. Rev. 2020, 408, 213191. [Google Scholar] [CrossRef]
- Shen, M.; Liu, D.; Ding, T. Cyclodextrin-Metal-organic frameworks (CD-MOFs): Main aspects and perspectives in food applications. Curr. Opin. Food Sci. 2021, 41, 8–15. [Google Scholar] [CrossRef]
- Guo, X.; Wang, L.; Wang, L.; Huang, Q.; Bu, L.; Wang, Q. Metal-organic frameworks for food contaminant adsorption and detection. Front. Chem. 2023, 11, 1116524. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Zhang, Y.; Li, X.; Ouyang, G.; Cui, J.; Zhang, L.; Cui, Y. Morphology-maintaining synthesis of copper hydroxy phosphate@ Metal-organic framework composite for extraction and determination of trace mercury in rice. Food Chem. 2021, 343, 128508. [Google Scholar] [CrossRef] [PubMed]
- Xuan, X.; Wang, M.; Manickam, S.; Boczkaj, G.; Yoon, J.Y.; Sun, X. Metal-organic frameworks-based sensors for the detection of toxins in food: A critical mini-review on the applications and mechanisms. Front. Bioeng. Biotechnol. 2022, 10, 906374. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Otake, K.I.; Chen, H.; Akpinar, I.; Buru, C.T.; Islamoglu, T.; Farha, O.K. Zirconium-based Metal-organic frameworks for the removal of protein-bound uremic toxin from human serum albumin. J. Am. Chem. Soc. 2019, 141, 2568–2576. [Google Scholar] [CrossRef]
- Hitabatuma, A.; Wang, P.; Su, X.; Ma, M. Metal-organic Frameworks-Based Sensors for Food Safety. Foods 2022, 11, 382. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, S.; Chen, X.; Chen, M.; Sun, B.; Kim, D.; Yam, K. Potential of Metal-organic frameworks to adsorb ethylene for fresh produce active packaging applications. Food Packag. Shelf Life 2023, 35, 101034. [Google Scholar] [CrossRef]
- Chopra, S.; Dhumal, S.; Abeli, P.; Beaudry, R.; Almenar, E. Metal-organic frameworks have utility in adsorption and release of ethylene and 1-methylcyclopropene in fresh produce packaging. Postharvest Biol. Technol. 2017, 130, 48–55. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Ma, W.; Ai, W.; Bai, Y.; Ding, L.; Liu, H. Fast analysis of glycosides based on HKUST-1-coated monolith solid-phase microextraction and direct analysis in real-time mass spectrometry. J. Sep. Sci. 2017, 40, 1589–1596. [Google Scholar] [CrossRef]
- Nian, L.; Wang, M.; Zeng, Y.; Jiang, J.; Cheng, S.; Cao, C. Modified HKUST-1-based packaging with ethylene adsorption property for food preservation. Food Hydrocoll. 2023, 135, 108204. [Google Scholar] [CrossRef]
- Abou-Elyazed, A.S.; Ftooh, A.I.; Sun, Y.; Ashry, A.G.; Shaban, A.K.; El-Nahas, A.M.; Yousif, A.M. Solvent-Free Synthesis of HKUST-1 with Abundant Defect Sites and Its Catalytic Performance in the Esterification Reaction of Oleic Acid. ACS Omega 2024, 9, 37662–37671. [Google Scholar] [CrossRef]
- Fu, Y.; Fan, Z.; Liu, Q.; Tong, Q.; Qiao, S.; Cai, L.; Zhang, X. A robust superhydrophobic and superoleophilic SA-HKUST-1 membrane for efficient oil/water mixture separation. New J. Chem. 2024, 48, 5372–5380. [Google Scholar] [CrossRef]
- Dharmaraj, K.; Kumar, M.S.; Palanisami, N.; Prakash, M.; Loganathan, P.; Shanmugan, S. Eco-friendly porous composite of octaphenyl polyhedral oligomeric silsesquioxane and HKUST-1 with hydrophobic–oleophilic properties towards sorption of oils and organic solvents. Dalton Trans. 2024, 53, 13602–13616. [Google Scholar] [CrossRef] [PubMed]
- Edlo, A.A.; Akhbari, K. Modulating the antibacterial activity of a CuO@HKUST-1 nanocomposite by optimizing its synthesis procedure. New J. Chem. 2023, 47, 20770–20776. [Google Scholar] [CrossRef]
- Wang, C.; Qian, X.; An, X. In situ green preparation and antibacterial activity of copper-based Metal-organic frameworks/cellulose fibers (HKUST-1/CF) composite. Cellulose 2015, 22, 3789–3797. [Google Scholar] [CrossRef]
Synthesis Method | Metallic Source | Solvent Used | Reaction Conditions | Comments |
---|---|---|---|---|
Hydrothermal/solvothermal technique | Cu(NO3)2·3H2O | Ethanol and water | 25–80 °C 12 h | Nanoporous material |
Hydrothermal/solvothermal technique | Cu(CH3COO)2·H2O | DMF | 120 °C 20 h | Octahedral-shaped morphology |
Hydrothermal/solvothermal technique | Cu(NO3)2·3H2O | Ethanol and DMF | 130 °C 24 h | Antibacterial agent |
Electrochemical technique | Cu plate | Water | - | First electrochemical synthesis of MOFs |
Electrochemical technique | Cu plate | Ethanol and water | MTBS electrolyte | |
Microwave-assisted technique | Cu(NO3)2·2H2O | Ethanol, DMF, and water | 80–100 °C | Comparison with conventional synthesis methods |
Mechanochemical technique | Cu(OAC)2·H2O | - | - | Yields and properties |
Sonochemical synthesis method | Cu(OAC)2·H2O | Ethanol, DMF, and water | - | Time-dependent synthesis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camarillo-Martínez, G.; Martínez-Cano, E.; Zepeda-Navarro, A.; Guzmán-Mar, J.L.; Bivián-Castro, E.Y. Synthesis, Structure, Spectra, and Applications of Metal-Organic Frameworks: Basolite C-300. Int. J. Mol. Sci. 2025, 26, 5777. https://doi.org/10.3390/ijms26125777
Camarillo-Martínez G, Martínez-Cano E, Zepeda-Navarro A, Guzmán-Mar JL, Bivián-Castro EY. Synthesis, Structure, Spectra, and Applications of Metal-Organic Frameworks: Basolite C-300. International Journal of Molecular Sciences. 2025; 26(12):5777. https://doi.org/10.3390/ijms26125777
Chicago/Turabian StyleCamarillo-Martínez, Gabriela, Evelia Martínez-Cano, Abraham Zepeda-Navarro, Jorge Luis Guzmán-Mar, and Egla Yareth Bivián-Castro. 2025. "Synthesis, Structure, Spectra, and Applications of Metal-Organic Frameworks: Basolite C-300" International Journal of Molecular Sciences 26, no. 12: 5777. https://doi.org/10.3390/ijms26125777
APA StyleCamarillo-Martínez, G., Martínez-Cano, E., Zepeda-Navarro, A., Guzmán-Mar, J. L., & Bivián-Castro, E. Y. (2025). Synthesis, Structure, Spectra, and Applications of Metal-Organic Frameworks: Basolite C-300. International Journal of Molecular Sciences, 26(12), 5777. https://doi.org/10.3390/ijms26125777