Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (182)

Search Parameters:
Keywords = porosity MIP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4225 KiB  
Article
Performance Optimization and Synergistic Mechanism of Ternary Blended Cementitious System Composed of Fly Ash, Slag, and Recycled Micro-Powder
by Rongfang Song, Qingnian Yang and Hang Song
Buildings 2025, 15(15), 2780; https://doi.org/10.3390/buildings15152780 - 6 Aug 2025
Abstract
The blended system of solid waste micro-powders is of great significance for the efficient utilization of recycled micro-powder. In this study, a ternary blended cementitious system composed of fly ash, slag, and recycled micro-powder was constructed, and its effects on the workability, mechanical [...] Read more.
The blended system of solid waste micro-powders is of great significance for the efficient utilization of recycled micro-powder. In this study, a ternary blended cementitious system composed of fly ash, slag, and recycled micro-powder was constructed, and its effects on the workability, mechanical properties, shrinkage performance, and microstructure of recycled mortar were systematically investigated. The experimental results show that with the increasing dosage of slag and recycled micro-powder (partially replacing cement and fly ash), the standard consistency water demand of the cementitious system decreases and the setting time is prolonged. When the replacement levels of recycled micro-powder and slag are both 10%, the 3-day, 7-day, and 28-day mechanical strengths of the mortar specimens are comparable to those of the reference group, with an increased flexural-to-compressive strength ratio and improved brittleness. SEM and mercury intrusion porosimetry (MIP) analyses revealed that systems incorporating low addition levels of recycled micro powder and slag powder exhibit calcium silicate hydrate (C-S-H) gel, acicular ettringite crystals, and a denser pore structure. However, at higher dosages (>10%), the porosity increases significantly and the pore structure deteriorates, resulting in reduced shrinkage performance. Overall, when the replacement rate of cement–fly ash by recycled micro-powder and slag is 10%, the ternary blended system exhibits optimal macroscopic performance and microstructure, providing a scientific basis for the resource utilization of solid waste. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 1562 KiB  
Review
Electrospun Molecularly Imprinted Polymers for Environmental Remediation: A Mini Review
by Sisonke Sigonya, Bakang Mo Mothudi, Olayemi J. Fakayode, Teboho C. Mokhena, Paul Mayer, Thabang H. Mokhothu, Talent R. Makhanya and Katekani Shingange
Polymers 2025, 17(15), 2082; https://doi.org/10.3390/polym17152082 - 30 Jul 2025
Viewed by 269
Abstract
This review critically examines the recent advancements in the development and application of electrospun molecularly imprinted polymer (MIP) nanofiber membranes for environmental remediation. Emphasizing the significance of these materials, the discussion highlights the mechanisms by which electrospun MIPs achieve high selectivity and efficiency [...] Read more.
This review critically examines the recent advancements in the development and application of electrospun molecularly imprinted polymer (MIP) nanofiber membranes for environmental remediation. Emphasizing the significance of these materials, the discussion highlights the mechanisms by which electrospun MIPs achieve high selectivity and efficiency in removing various pollutants, including dyes, heavy metals, and pharmaceutical residues such as NSAIDs and antiretroviral drugs. The synthesis methodologies are explored in detail, focusing on the choice of monomers, templates, and polymerization conditions that influence the structural and functional properties of the membranes. Characterization techniques used to assess morphology, surface area, porosity, and imprinting efficacy are also examined, providing insights into how these parameters affect adsorption performance. Furthermore, the review evaluates the performance metrics of electrospun MIPs, including adsorption capacities, selectivity, reusability, and stability in complex environmental matrices. Practical considerations, such as scalability, regeneration, and long-term operational stability, are discussed to assess their potential for real-world applications. The article concludes with an outline of future research directions, emphasizing the need for multi-template imprinting, integration with existing treatment technologies, and field-scale validation to address current limitations. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

20 pages, 8022 KiB  
Article
Corrosion Response of Steel to Penetration of Chlorides in DC-Treated Hardened Portland Cement Mortar
by Milan Kouřil, Jan Saksa, Vojtěch Hybášek, Ivona Sedlářová, Jiří Němeček, Martina Kohoutková and Jiří Němeček
Materials 2025, 18(14), 3365; https://doi.org/10.3390/ma18143365 - 17 Jul 2025
Viewed by 241
Abstract
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete [...] Read more.
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete or mortar, coupled with the migration of ions, concentration changes, and resulting phase changes, may alter its chloride penetration resistance and, subsequently, the time until rebar corrosion activation. Porosity changes in hardened Portland cement mortar were studied by means of mercury intrusion porosimetry (MIP) and electrochemical impedance spectroscopy (EIS), and alterations in the mortar surface phase composition were observed by means of X-ray diffraction (XRD). In order to innovatively investigate the impact of DC treatment on the properties of the mortar–electrolyte interface, the cathode-facing mortar surface and the anode-facing mortar surface were analyzed separately. The corrosion of steel coupons embedded in DC-treated hardened mortar was monitored by means of the free corrosion potential (Eoc) and polarization resistance (Rp). The results showed that the DC treatment affected the surface porosity of the hardened Portland cement mortar at the nanoscale. Up to two-thirds of the small pores (0.001–0.01 µm) were replaced by medium-sized pores (0.01–0.06 µm), which may be significant for chloride ingress. Although the porosity and phase composition alterations were confirmed using other techniques (EIS and XRD), corrosion tests revealed that they did not significantly affect the time until the corrosion activation of the steel coupons in the mortar. Full article
Show Figures

Figure 1

28 pages, 5469 KiB  
Article
Mechanical Properties and Performance of CNT–Reinforced Mortars (CEM II/B–L and CEM I) for Crack Bridging and Protective Coating Applications
by Nikolaos Chousidis
Buildings 2025, 15(13), 2296; https://doi.org/10.3390/buildings15132296 - 30 Jun 2025
Viewed by 351
Abstract
Cement–based mortars are essential in both modern construction and heritage conservation, where balancing mechanical strength with material compatibility is crucial. Mortars containing ––binders with low hydraulic activity, such as CEM II/B–L, often exhibit increased porosity and diminished strength, limiting their suitability for structurally [...] Read more.
Cement–based mortars are essential in both modern construction and heritage conservation, where balancing mechanical strength with material compatibility is crucial. Mortars containing ––binders with low hydraulic activity, such as CEM II/B–L, often exhibit increased porosity and diminished strength, limiting their suitability for structurally demanding applications. This study investigates the potential of multiwalled carbon nanotubes (MWCNTs) to enhance the mechanical and microstructural properties of mortars formulated with both CEM II/B–L and CEM I binders. The influence of CNT incorporation was systematically assessed through compressive and flexural strength tests, vacuum saturation tests, mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), and differential thermal analysis (DTA). The results demonstrate significant mechanical improvements attributable to nanoscale mechanisms including crack bridging, pore–filling, and stress redistribution. Microstructural characterization revealed a refined pore network, increased densification of the matrix, and morphological modifications of hydration products. These findings underscore the effectiveness of CNT reinforcement in cementitious matrices and highlight the critical role of binder composition in influencing these effects. This work advances the development of high–performance mortar systems, optimized for enhanced structural integrity and long–term durability. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 2249 KiB  
Article
Multifractal Characterization of Full-Scale Pore Structure in Middle-High-Rank Coal Reservoirs: Implications for Permeability Modeling in Western Guizhou–Eastern Yunnan Basin
by Fangkai Quan, Yanhui Zhang, Wei Lu, Chongtao Wei, Xuguang Dai and Zhengyuan Qin
Processes 2025, 13(6), 1927; https://doi.org/10.3390/pr13061927 - 18 Jun 2025
Viewed by 443
Abstract
This study presents a comprehensive multifractal characterization of full-scale pore structures in middle- to high-rank coal reservoirs from the Western Guizhou–Eastern Yunnan Basin and establishes a permeability prediction model integrating fractal heterogeneity and pore throat parameters. Eight coal samples were analyzed using mercury [...] Read more.
This study presents a comprehensive multifractal characterization of full-scale pore structures in middle- to high-rank coal reservoirs from the Western Guizhou–Eastern Yunnan Basin and establishes a permeability prediction model integrating fractal heterogeneity and pore throat parameters. Eight coal samples were analyzed using mercury intrusion porosimetry (MIP), low-pressure gas adsorption (N2/CO2), and multifractal theory to quantify multiscale pore heterogeneity and its implications for fluid transport. Results reveal weak correlations (R2 < 0.39) between conventional petrophysical parameters (ash yield, volatile matter, porosity) and permeability, underscoring the inadequacy of bulk properties in predicting flow behavior. Full-scale pore characterization identified distinct pore architecture regimes: Laochang block coals exhibit microporous dominance (0.45–0.55 nm) with CO2 adsorption capacities 78% higher than Tucheng samples, while Tucheng coals display enhanced seepage pore development (100–5000 nm), yielding 2.5× greater stage pore volumes. Multifractal analysis demonstrated significant heterogeneity (Δα = 0.98–1.82), with Laochang samples showing superior pore uniformity (D1 = 0.86 vs. 0.82) but inferior connectivity (D2 = 0.69 vs. 0.71). A novel permeability model was developed through multivariate regression, integrating the heterogeneity index (Δα) and effective pore throat diameter (D10), achieving exceptional predictive accuracy. The strong negative correlation between Δα and permeability (R = −0.93) highlights how pore complexity governs flow resistance, while D10’s positive influence (R = 0.72) emphasizes throat size control on fluid migration. This work provides a paradigm shift in coal reservoir evaluation, demonstrating that multiscale fractal heterogeneity, rather than conventional bulk properties, dictates permeability in anisotropic coal systems. The model offers critical insights for optimizing hydraulic fracturing and enhanced coalbed methane recovery in structurally heterogeneous basins. Full article
Show Figures

Figure 1

19 pages, 6228 KiB  
Article
Alkali-Activated Slag–Fly Ash–Desert Sand Mortar for Building Applications: Flowability, Mechanical Properties, Sulfate Resistance, and Microstructural Analysis
by Wenlong Yan, Haoran Cheng, Meng Zhang, Yongjun Qin, Jianqing Cao and Xuyang Cao
Buildings 2025, 15(12), 2069; https://doi.org/10.3390/buildings15122069 - 16 Jun 2025
Viewed by 378
Abstract
This study investigates the performance of alkali-activated mortar incorporating slag, fly ash, and desert sand, with a focus on flowability, mechanical properties, sulfate resistance, and microstructural characteristics. A four-factor, three-level orthogonal experimental design was used to analyze the effects of the fly ash [...] Read more.
This study investigates the performance of alkali-activated mortar incorporating slag, fly ash, and desert sand, with a focus on flowability, mechanical properties, sulfate resistance, and microstructural characteristics. A four-factor, three-level orthogonal experimental design was used to analyze the effects of the fly ash substitution rate, alkali content (Na2O/b), activator modulus, and desert sand replacement rate for natural sand. The results indicate that increased slag and desert sand contents reduce mortar flowability. Despite this, the mortar exhibits excellent mechanical strength, with compressive strength reaching 77.7 MPa at 28 days and increasing to 89.34 MPa under sulfate exposure. However, after 120 days of sulfate erosion, a decline in strength is observed due to the formation of expansive products such as gypsum and caliche, leading to cracking. Microstructural analyses (XRD, SEM/EDS, MIP) reveal partial dissolution of desert sand under alkali activation, enhancing gel formation and reducing cumulative porosity. The pore structure predominantly consists of harmless pores. These findings demonstrate the potential of slag–fly ash–desert sand alkali-activated mortar as a durable and sustainable material for structural and construction engineering applications, especially in sulfate-rich environments or arid regions where desert sand is abundant. Full article
(This article belongs to the Topic Resilient Civil Infrastructure, 2nd Edition)
Show Figures

Figure 1

16 pages, 3429 KiB  
Article
The Effects of Sand Incorporation on the Pore Structure, Strength, and Fractal Characteristics of Alkali-Activated Slag Cementitious Materials
by Yuchen Ye, Zhenyuan Gu, Yi Wang, Ying Sun, Chenhui Zhu and Jie Yang
Materials 2025, 18(12), 2797; https://doi.org/10.3390/ma18122797 - 13 Jun 2025
Viewed by 347
Abstract
Sand content plays a critical role in regulating the structural compactness and strength development of alkali-activated slag cementitious materials. In this study, three types of specimens—pure slag paste, standard sand mortar, and fine sand mortar—were prepared to investigate the effects of sand incorporation [...] Read more.
Sand content plays a critical role in regulating the structural compactness and strength development of alkali-activated slag cementitious materials. In this study, three types of specimens—pure slag paste, standard sand mortar, and fine sand mortar—were prepared to investigate the effects of sand incorporation on pore structure and fractal characteristics. Mechanical properties, pore structure, and micro-morphology were systematically evaluated at different curing ages. Mercury intrusion porosimetry (MIP) was employed to measure porosity, pore size distribution, and the threshold pore diameter, while fractal dimensions were calculated to quantify pore complexity and compactness. The results showed that the pure slag paste achieved the highest compressive strength at all ages but posed environmental concerns due to high resource consumption. In contrast, sand-incorporated mortars exhibited stable strength development and continuous pore structure refinement. Notably, the use of fine sand in Group C reduced slag content by approximately 5.6% compared to Group A, contributing to lower CO2 emissions and enhanced sustainability. Fractal analysis revealed a strong correlation between fractal dimension, pore compactness, and compressive strength. A higher fractal dimension indicated a more complex and interconnected pore network, promoting matrix densification. At 90 days, Group C achieved the highest fractal dimension and lowest porosity, attributed to the micro-filling effect of fine sand, which facilitated the formation of a denser and more continuous gel network. These findings provide a theoretical foundation for the multiscale characterization of alkali-activated cementitious systems and support the design of more sustainable mix formulations. Full article
Show Figures

Figure 1

12 pages, 6886 KiB  
Article
Hydrogen Peroxide Bleaching Induces a Dual Enhancement of Liquid Permeability and Fungal Resistance in Bamboo Through Microstructural Engineering
by Dandan Xu, Sheng He, Weiqi Leng, Yuhe Chen and Haiyang Quan
Forests 2025, 16(6), 964; https://doi.org/10.3390/f16060964 - 6 Jun 2025
Viewed by 433
Abstract
Bamboo, as a sustainable and renewable biomass resource, possesses significant application prospects along with underutilized potential. However, challenges such as mildew infestation, insect damage, and discoloration during processing and utilization negatively impact its service life and economic value. This study proposes a simplified [...] Read more.
Bamboo, as a sustainable and renewable biomass resource, possesses significant application prospects along with underutilized potential. However, challenges such as mildew infestation, insect damage, and discoloration during processing and utilization negatively impact its service life and economic value. This study proposes a simplified hydrogen peroxide bleaching method for bamboo processing, resulting in bleached materials with uniform coloration and improved mildew resistance. The scanning electron microscopy (SEM) analysis of bleached bamboo showed significantly reduced starch and protein inclusions, expanded intercellular spacing, partial fiber detachment, and localized structural deformation in treated bamboo. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analyses revealed substantial lignin degradation in hydrogen peroxide-treated samples. The color difference (ΔE) was measured at 13.65 between treated and untreated samples, confirming effective bleaching efficacy. The mercury intrusion porosimetry (MIP) analysis revealed enhanced porosity accompanied by diameter enlargement in treated bamboo. Antifungal assessments indicated that hydrogen peroxide bleaching delayed the onset of mold colonization and significantly enhanced the mildew resistance of bamboo substrates. Full article
(This article belongs to the Special Issue Ecological Research in Bamboo Forests: 2nd Edition)
Show Figures

Figure 1

23 pages, 7171 KiB  
Article
Modification Mechanism of Low-Dosage Vinyl Acetate-Ethylene on Ordinary Portland Cement–Sulfoaluminate Cement Binary Blended Rapid Repair Mortar
by Hecong Wang, Yuxue Zhu, Ting Li, Xiaoning Li, Shuai Peng, Jinzhu Guo, Xuqiang Pei, Congchun Zhong, Yihang Yang, Qiang Ma, Zhonglun Zhang, Minghui Wu, Qunchao Zhang, De’an Shi and Zuobao Song
Polymers 2025, 17(11), 1501; https://doi.org/10.3390/polym17111501 - 28 May 2025
Viewed by 401
Abstract
This study developed a vinyl acetate-ethylene rapid repair mortar (VAE-RRM) by using a binary blended cementitious system (ordinary Portland cement and sulfoaluminate cement) and vinyl acetate-ethylene (VAE) redispersible polymer powder. The effects of the polymer-to-cement ratio (P/C: 0~2.0%) on setting time, mechanical properties, [...] Read more.
This study developed a vinyl acetate-ethylene rapid repair mortar (VAE-RRM) by using a binary blended cementitious system (ordinary Portland cement and sulfoaluminate cement) and vinyl acetate-ethylene (VAE) redispersible polymer powder. The effects of the polymer-to-cement ratio (P/C: 0~2.0%) on setting time, mechanical properties, interfacial bonding, and microstructure were systematically investigated. The results reveal that VAE delayed cement hydration via physical encapsulation and chemical chelation, extending the initial setting time to 182 min at P/C = 2.0%. At the optimal P/C = 0.9%, a synergistic organic–inorganic network enhanced flexural strength (14.62 MPa at 28 d, 34.0% increase) and interfacial bonding (2.74 MPa after interface treatment), though compressive strength decreased to 65.7 MPa due to hydration inhibition. Excessive VAE (P/C ≥ 1.5%) suppressed AFt/C-S-H growth, increasing harmful pores (>1 μm) and degrading performance. Microstructural analysis via scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) demonstrates that VAE films bridged hydration products, filled interfacial transition zones (ITZ), and refined pore structures, reducing the most probable pore size from 62.8 nm (reference) to 23.5 nm. VAE-RRM 3 (P/C = 0.9%) exhibited rapid hardening (initial setting time: 75 min), high substrate recovery (83.3%), and low porosity (<10%), offering an efficient solution for urban infrastructure repair. This work elucidates the dual mechanisms of pore refinement and interface reinforcement driven by VAE, providing theoretical guidance for designing high-performance repair materials. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 3455 KiB  
Article
Pore Structure Characterization of Jurassic Sandstones in the Northeastern Ordos Basin: An Integrated Experimental and Inversion Approach
by Haiyang Yin, Tongjun Chen, Yueyue Li, Haicheng Xu and Wan Li
Minerals 2025, 15(5), 547; https://doi.org/10.3390/min15050547 - 20 May 2025
Viewed by 333
Abstract
Although Mercury Intrusion Porosimetry (MIP) and Nuclear Magnetic Resonance (NMR) are widely used for pore characterization, their effectiveness is fundamentally constrained by theoretical limitations. This study investigated the pore structure characteristics of coal-bearing sandstones from the northeastern Ordos Basin using an integrated approach [...] Read more.
Although Mercury Intrusion Porosimetry (MIP) and Nuclear Magnetic Resonance (NMR) are widely used for pore characterization, their effectiveness is fundamentally constrained by theoretical limitations. This study investigated the pore structure characteristics of coal-bearing sandstones from the northeastern Ordos Basin using an integrated approach combining experimental measurements and model-based inversion. The experimental measurements comprised a stress-dependent acoustic velocity test (P- and S-wave velocities), X-ray diffraction (XRD) mineralogical analysis, and NMR relaxation T2 spectra characterization. For model-based inversion, we developed an improved Mori-Tanaka (M-T) theoretical framework incorporating stress-sensitive pore geometry parameters and dual-porosity (stiff/soft) microstructure representation. Systematic analysis revealed four key findings: (1) excellent agreement between model-inverted and NMR-derived total porosity, with a maximum absolute error of 1.09%; (2) strong correlation between soft porosity and the third peak of T2 relaxation spectra; (3) stiff porosity governed by brittle mineral content (quartz and calcite), while soft porosity showing significant correlation with clay mineral abundance and Poisson’s ratio; and (4) markedly lower elastic moduli (28.78%–51.85%) in Zhiluo Formation sandstone compared to Yan’an Formation equivalents, resulting from differential diagenetic alteration despite comparable depositional settings. The proposed methodology advances conventional NMR analysis by simultaneously quantifying both pore geometry parameters (e.g., aspect ratios) and the stiff-to-soft pore distribution spectra. This established framework provides a robust characterization of the pore architecture in Jurassic sandstones, yielding deeper insights into sandstone pore evolution within the Ordos Basin. These findings provide actionable insights for water hazard mitigation and geological CO2 storage practices. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

20 pages, 3539 KiB  
Article
Soil Physical–Hydraulic Properties in Different Rotational Silvopastoral Systems: A Short-Term Study
by Osvaldo Viu Serrano Junior, Zigomar Menezes de Souza, Diego Alexander Aguilera Esteban, Leila Pires Bezerra, Euriana Maria Guimarães, Renato Paiva de Lima, Cácio Luiz Boechat and Reginaldo Barboza da Silva
Water 2025, 17(10), 1486; https://doi.org/10.3390/w17101486 - 15 May 2025
Viewed by 546
Abstract
Livestock production systems can negatively affect soil structure, resulting in negative changes in physical–hydraulic properties, compromising soil functioning and productivity. This research aimed to evaluate the effects of rotational silvopastoral systems on soil physical–hydraulic functioning in their second year of implementation. The study [...] Read more.
Livestock production systems can negatively affect soil structure, resulting in negative changes in physical–hydraulic properties, compromising soil functioning and productivity. This research aimed to evaluate the effects of rotational silvopastoral systems on soil physical–hydraulic functioning in their second year of implementation. The study was performed under Oxisol soil with a loamy sand texture in Southeast Brazil. We considered four grazing systems: an intensive silvopastoral system with Panicum maximum in consortium with Leucaena leucocephala (ISPS + L), an intensive silvopastoral system with Panicum maximum in consortium with Tithonia diversifolia (ISPS + T), an silvopastoral system with Panicum maximum (SPS) with tree row (TRs), and open pasture under a rotational grazing system with Panicum maximum (OP). The treatments ISPS + L, ISPS + T, and SPS had tree rows (TRs) every 20 m composed of Khaya ivorenses, Leucaena leucocephala, Eucalyptus urograndis, Acacia mangium, and Gliricidia sepium. Nine physical–hydraulic indicators were evaluated in the first 0.40 m of depth: bulk density (Bd), total porosity (TP), macroporosity (MaP), microporosity (MiP), field capacity (FC), permanent wilting point (PWP), available water content (AWC), total soil aeration capacity (ACt), and S-index. The soil physical–hydraulic properties were sensitive to the effects of the livestock systems. The use of silvopastoral systems in consortium with grass (ISPS + L and ISPS + T) allowed for better soil water retention, resulting in higher FC and AWC than the OP, SPS, and TR. The indicators Bd, ACt, MaP, FC, MiP, and S-index presented the greatest variance; however, FC, ACt, MaP, and MiP enabled the greatest differentiation among systems. Therefore, these properties are important in studies on soil physical quality since they provide information about the soil porous status and its ability to retain water and exchange soil air and gases. Therefore, enhancing the physical–hydraulic attributes of the soil in silvopastoral systems with shrub species is crucial for ensuring long-term productive sustainability and strengthening environmental resilience against future climate challenges. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

20 pages, 26592 KiB  
Article
Reassessment of Porosimetry Determinations Using Water Vapor Sorption Measurements for Pastes and Concretes Containing Basaltic Aggregates Compared to the Mercury Intrusion Method
by Natalia Rodríguez-Brito, Concepción Blanco-Peñalver, Ricardo M. Souto, Carmen Andrade and Juan J. Santana
Materials 2025, 18(10), 2257; https://doi.org/10.3390/ma18102257 - 13 May 2025
Cited by 1 | Viewed by 368
Abstract
Concrete porosity is one of the fundamental properties for the structural characterization of cementitious materials. This study compares porosity data obtained with dynamic water vapor sorption (DWVS) with the more commonly used mercury intrusion porosimetry (MIP) method for a wide range of concrete [...] Read more.
Concrete porosity is one of the fundamental properties for the structural characterization of cementitious materials. This study compares porosity data obtained with dynamic water vapor sorption (DWVS) with the more commonly used mercury intrusion porosimetry (MIP) method for a wide range of concrete samples made with basaltic aggregates, typical of the Canary Islands, which are porous. The objective was to propose an alternative method for routine concrete monitoring that avoids the use of a hazardous substance such as mercury. The results reveal fundamental differences between the MIP and water-accessible porosimetry (WAP) data, although a correlation between the methods was revealed where MIP = 1.18 × WAP. The study was completed by an analysis of the relationships between the porosity and the characteristics and properties of concrete (water/cement ratio and strength), as well as the calculation of the tortuosity factor and a frost durability factor. Full article
Show Figures

Figure 1

31 pages, 18126 KiB  
Article
Eco-Friendly Conversion of Waste Zeolite Dust into Dual Oil/Water Affinity Sorbents via HPGR-Based Agglomeration–Deagglomeration
by Ewelina Pabiś-Mazgaj, Agata Stempkowska and Tomasz Gawenda
Sustainability 2025, 17(10), 4359; https://doi.org/10.3390/su17104359 - 12 May 2025
Viewed by 531
Abstract
This study presents an innovative, eco-friendly approach for converting waste zeolite dust into efficient petroleum sorbents through an integrated agglomeration–deagglomeration process using high-pressure grinding rolls (HPGRs). This method generates secondary porosity without calcination, enhancing sorption while reducing greenhouse gas emissions and supporting sustainable [...] Read more.
This study presents an innovative, eco-friendly approach for converting waste zeolite dust into efficient petroleum sorbents through an integrated agglomeration–deagglomeration process using high-pressure grinding rolls (HPGRs). This method generates secondary porosity without calcination, enhancing sorption while reducing greenhouse gas emissions and supporting sustainable development by valorizing industrial by-products for environmental remediation. The study aimed to assess the influence of binder and water content on petroleum sorption performance, textural properties, and mechanical strength of the produced sorbents, and to identify correlations between these parameters. Sorbents were characterized using mercury porosimetry (MIP), sorption measurements, mechanical resistance tests, scanning electron microscopy (SEM), and digital microscopy. Produced zeolite sorbents (0.5–1 mm) exceeded the 50 wt.% sorption threshold required for oil spill cleanup in Poland, outperforming diatomite sorbents by 15–50% for diesel and 40% for used engine oil. The most effective sample, 3/w/22.5, reached capacities of 0.4 g/g for petrol, 0.8 g/g for diesel, and 0.3 g/g for used oil. The sorption mechanism was governed by physical processes, mainly diffusion of nonpolar molecules into meso- and macropores via van der Waals forces. Sorbents with dominant pores (~4.8 µm) showed ~15% higher efficiency than those with smaller pores (~0.035 µm). The sorbents demonstrated amphiphilic behavior, enabling simultaneous uptake of polar (water) and nonpolar (petrochemical) substances. Full article
Show Figures

Figure 1

22 pages, 9222 KiB  
Article
The Development of Porosity-Enhanced Synthetic Coal Plugs for Simulating Deep Coalbed Methane Reservoirs: A Novel Laboratory Approach
by Changqing Liu, Zhaobiao Yang, Heqing Chen, Guoxiao Zhou, Yuhui Liang, Junyu Gu, Yuqiang Wang, Cunlei Li, Benju Lu, Shuailong Feng and Jianan Wang
Energies 2025, 18(10), 2407; https://doi.org/10.3390/en18102407 - 8 May 2025
Viewed by 413
Abstract
Deep coal seams in the Junggar Basin, China, have demonstrated high gas yields due to enhanced pore structures resulting from hydraulic fracturing. However, raw coal samples inadequately represent these stimulated reservoirs, and acquiring fractured core samples post-stimulation is impractical. To address this, a [...] Read more.
Deep coal seams in the Junggar Basin, China, have demonstrated high gas yields due to enhanced pore structures resulting from hydraulic fracturing. However, raw coal samples inadequately represent these stimulated reservoirs, and acquiring fractured core samples post-stimulation is impractical. To address this, a novel and operable laboratory method has been developed to fabricate porosity-enhanced synthetic coal plugs that better simulate deep coalbed methane reservoirs. The fabrication process involves crushing lignite and separating it into three particle size fractions (<0.25 mm, 0.25–1 mm, and 1–2 mm), followed by mixing with a resin-based binder system (F51 phenolic epoxy resin, 650 polyamide, and tetrahydrofuran). These mixtures are molded into cylindrical plugs (⌀50 mm × 100 mm) and cured. This approach enables tailored control over pore development during briquette formation. Porosity and pore structure were comprehensively assessed using helium porosimetry, mercury intrusion porosimetry (MIP), and micro-computed tomography (micro-CT). MIP and micro-CT confirmed that the synthetic plugs exhibit significantly enhanced porosity compared to raw lignite, with pore sizes and volumes falling within the macropore range. Specifically, porosity reached up to 27.84%, averaging 20.73% and surpassing the typical range for conventional coal briquettes (1.89–18.96%). Additionally, the resin content was found to strongly influence porosity, with optimal levels between 6% and 10% by weight. Visualization improvements in micro-CT imaging were achieved through iodine addition, allowing for more accurate porosity estimations. This method offers a cost-effective and repeatable strategy for creating coal analogs with tunable porosity, providing valuable physical models for investigating flow behaviors in stimulated coal reservoirs. Full article
Show Figures

Figure 1

18 pages, 4617 KiB  
Article
Exploring the Mechanism of Microstructural Changes in Ultra-High-Performance Concrete Under Microwave Influence: Experiments and Molecular Dynamics Simulation
by Jingyuan Chen, Kunyang Yu, Shuangxin Li and Dengao Liu
Materials 2025, 18(9), 1892; https://doi.org/10.3390/ma18091892 - 22 Apr 2025
Cited by 1 | Viewed by 648
Abstract
To elucidate the mechanisms of microstructural changes in ultra-high-performance concrete (UHPC) under microwave exposure, this study characterizes the microstructure at multiple scales using a combination of microscopic experiments and molecular dynamics simulations. The hydration products, pore structure, morphology, and interface transition zone (ITZ) [...] Read more.
To elucidate the mechanisms of microstructural changes in ultra-high-performance concrete (UHPC) under microwave exposure, this study characterizes the microstructure at multiple scales using a combination of microscopic experiments and molecular dynamics simulations. The hydration products, pore structure, morphology, and interface transition zone (ITZ) of UHPC specimens were analyzed using mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Molecular dynamics simulations were employed to investigate the uniaxial tensile behavior, free volume, and radial distribution of calcium silicate hydrate (C-S-H) gel, the primary hydration product. The results indicate that microwave curing significantly reduces the pore volume of specimens, with a daily average reduction of 0.15% in the early stages. This accelerated reduction in porosity effectively diminishes the number of high-risk pores. The hydration products formed under microwave curing exhibit higher density and enhanced internal pore optimization. Simulation findings suggest that the non-thermal effects of microwaves play a more significant role in the structural evolution. The molecular orientation of C-S-H changes after oscillation, leading to more ordered molecular arrangements. Mechanical oscillation also expels free volume from the crystal cells, promoting a more compact overall structure and increasing the tensile strength by up to 1 GPa. Full article
Show Figures

Figure 1

Back to TopTop