Hydrogen Peroxide Bleaching Induces a Dual Enhancement of Liquid Permeability and Fungal Resistance in Bamboo Through Microstructural Engineering
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.2.1. Bleaching Treatment
2.2.2. Color Analysis
2.2.3. Scanning Electron Microscopy (SEM) Analysis
2.2.4. X-Ray Photoelectron Spectroscopy (XPS) Analysis
2.2.5. Fourier Transform Infrared Spectroscopy (FTIR)
2.2.6. Longitudinal Compressive Strength Testing
2.2.7. Mercury Intrusion Porosimetry (MIP) Analysis
2.2.8. Water Absorption Analysis
2.2.9. Anti-Mold Test
3. Results and Discussion
3.1. Color Analysis
3.2. Microscopic Morphology Analysis
3.3. XPS Analysis
3.4. FTIR Analysis
3.5. Mechanical Property Analysis
3.6. MIP Test and Liquid Permeability Analysis of Bamboo
3.7. Anti-Mold Results Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dixon, P.G.; Gibson, L.J. The structure and mechanics of Moso bamboo material. J. R. Soc. Interface 2014, 11, 20140321. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.X.; Ji, Y.H.; Yu, W.J. Development of bamboo scrimber: A literature review. J. Wood Sci. 2019, 65, 25. [Google Scholar] [CrossRef]
- Guan, M.; Li, Y.; Xu, X.; Fu, R. Anti-mold and hydrophobicity of cutinized bamboo prepared via different annealing processes. Ind. Crops. Prod. 2022, 187, 115399. [Google Scholar] [CrossRef]
- Peng, R.; Du, C.; Hu, A.; Li, Q.; Zhang, J.; Zhang, W.; Sun, F. Fabrication of core–shell type poly(NIPAm)-encapsulated citral and its application on bamboo as an anti-molding coating. RSC Adv. 2021, 11, 36884–36894. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Fan, Z.; Wang, J.; Wang, H.; Han, S.; Zhang, Y.; Sun, F.-L. Improving the anti-mould capacity of bamboo through sequential alkaline extraction and laccase-mediated thymol modification. Constr. Build. Mater. 2022, 354, 129104. [Google Scholar] [CrossRef]
- He, L.; Chen, L.; Xiang, L.; Liu, H.; Shao, H.; Qi, J.; Jiang, Y.; Xie, J. Improving the anti-mould property of Moso bamboo surface by using a bamboo green colour preservation approach. Wood Mater. Sci. Eng. 2023, 18, 161–171. [Google Scholar] [CrossRef]
- Spicka, N.; Tavcer, P.F. Low-temperature bleaching of knit fabric from regenerated bamboo fibers with different peracetic acid bleaching processes. Text. Res. J. 2015, 85, 1497–1505. [Google Scholar] [CrossRef]
- Fiserova, M.; Opalena, E.; Gigac, J.; Stankovska, M. Oxidative and Reductive Bleaching of Deinked Pulp. Wood Res. 2018, 63, 639–653. [Google Scholar]
- Liang, F.; Fang, G.; Jiao, J.; Deng, Y.; Han, S.; Li, H.; Tian, Q.; Pan, A.; Zhu, B. Modified Hydrogen Peroxide Bleaching of Bamboo Chemo-mechanical Pulp Using Aqueous Alcohol Media. BioResources 2019, 14, 870–881. [Google Scholar] [CrossRef]
- Xu, C.; Shamey, R.; Hinks, D. Activated peroxide bleaching of regenerated bamboo fiber using a butyrolactam-based cationic bleach activator. Cellulose 2010, 17, 339–347. [Google Scholar] [CrossRef]
- Wang, N.; Tang, P.; Zhao, C.; Zhang, Z.; Sun, G. An environmentally friendly bleaching process for cotton fabrics: Mechanism and application of UV/H2O2 system. Cellulose 2020, 27, 1071–1083. [Google Scholar] [CrossRef]
- Li, Z.; Dou, H.; Fu, Y.; Qin, M. Improving the hydrogen peroxide bleaching efficiency of aspen chemithermomechanical pulp by using chitosan. Carbohydr. Polym. 2015, 132, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.F. Oxidation of lignin-carbohydrate complex from bamboo with hydrogen peroxide catalyzed by Co(salen). Hem. Ind. 2014, 68, 541–546. [Google Scholar] [CrossRef]
- Wang, H.; Zuo, M.; Ding, N.; Yan, G.; Zeng, X.; Tang, X.; Sun, Y.; Lei, T.; Lin, L. Preparation of Nanocellulose with High-Pressure Homogenization from Pretreated Biomass with Cooking with Active Oxygen and Solid Alkali. ACS Sustain. Chem. Eng. 2019, 7, 9378–9386. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Yang, X.; Ji, H.; Zhong, T.; Wang, G. A comparative study of the microstructure and water permeability between flattened bamboo and bamboo culm. J. Wood Sci. 2019, 65, 64. [Google Scholar] [CrossRef]
- Zhang, T.; He, L.; Zhao, X.; Kang, J.; Wang, B.; Wang, Z.; He, Z.; Yi, S. A facile method for constructing non-carbonised puffed bamboo with hierarchical pore structure based on self-exploding mechanism. Constr. Build. Mater. 2024, 425, 136049. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, J.; Wang, K.; Wang, B.; Sun, S.; Lin, X.; Song, L.; Wu, A.; Li, H. Characterization of Lignin Structures in Phyllostachys edulis (Moso Bamboo) at Different Ages. Polymers 2020, 12, 187. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Q.; Qu, M.; Chen, Z.; Xu, B.; Lv, H.; Fei, B. Comprehensive spectroscopic analysis of the chemical properties of moso bamboo at different ages. Ind. Crops Prod. 2024, 219, 11853. [Google Scholar] [CrossRef]
- Dlamini, L.C.; Fakudze, S.; Makombe, G.G.; Muse, S.; Zhu, J. Bamboo as a Valuable Resource and its Utilization in Historical and Modern-day China. BioResources 2022, 17, 1926–1938. [Google Scholar] [CrossRef]
- ASTM D4442-20; Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials. ASTM International: West Conshohocken, PA, USA, 2020.
- Akkus, M.; Budakçi, M. Determination of color-changing effects of bleaching chemicals on some heat-treated woods. J. Wood Sci. 2020, 66, 68. [Google Scholar] [CrossRef]
- GB/T 15780-1995; Testing Methods for Physical and Mechanical Properties of Bamboos. State Bureau of Technical Supervision: Beijing, China, 1995.
- GB/T 18261-2013; Test Method for Anti-Mildew Agents in Controlling Wood Mould and Stain Fungi. General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ), Standardization Administration of China (SAC): Beijing, China, 2013.
- Horikawa, Y.; Tsushima, R.; Noguchi, K.; Nakaba, S.; Funada, R. Development of colorless wood via two-step delignification involving alcoholysis and bleaching with maintaining natural hierarchical structure. J. Wood Sci. 2020, 66, 37. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, J.; Yang, F.; Tang, C.; Huang, Q. Effect of H2O2 Bleaching Treatment on the Properties of Finished Transparent Wood. Polymers 2019, 11, 776. [Google Scholar] [CrossRef] [PubMed]
- Çakicier, N.; Ulay, G. Determination of Color Characteristics of Some Wood Species Treated with Bleaching Chemicals. BioResources 2023, 18, 7796–7804. [Google Scholar] [CrossRef]
- Lu, D.; Xiong, X.; Lu, G.; Gui, C.; Pang, X. Effects of NaOH/H2O2<Na2SiO3 Bleaching Pretreatment Method on Wood Dyeing Properties. Coatings 2023, 13, 233. [Google Scholar]
- Lovric, A.; Zdravkovic, V.; Furtula, M. Influence of Thermal Modification on Colour of Poplar (Populus × euramericana) Rotary Cut Veneer. Wood Res. 2014, 59, 661–670. [Google Scholar]
- Amaral, L.M.D.; Innocentini, M.D.d.M.; Kadivar, M.; Savastano, H. An exploratory study on bamboo permeability for evaluation of treatability with chemical solutions. Mater. Today Commun. 2024, 40, 109719. [Google Scholar] [CrossRef]
- Yang, X.; Pang, X.; Liu, X.; Yang, S.; Li, X. Determining the pore structure and radial variability of moso bamboo (Phyllostachys edulis). Wood Sci. Technol. 2023, 57, 345–357. [Google Scholar] [CrossRef]
- Ren, W.; Cao, M.; Zhou, Y.; Zhu, J.; Wang, H.; Yu, Y. Pore structure evolution of bamboo fiber and parenchyma cell wall during sequential chemical removal. Ind. Crops Prod. 2023, 193, 116165. [Google Scholar] [CrossRef]
- Xu, J.; He, S.; Li, J.; Yu, H.; Zhao, S.; Chen, Y.; Ma, L. Effect of Vacuum Freeze-drying on Enhancing Liquid Permeability of Moso Bamboo. BioResources 2018, 13, 4159–4174. [Google Scholar] [CrossRef]
- Qin, Y. Improvement of Eucalyptus urophylla Wood Permeability via Urea Treatment. BioResources 2023, 18, 4790–4804. [Google Scholar] [CrossRef]
- Lian, H.; Li, P.; Xu, Y.; Zhang, X. A simple and sustainable method for preparing high-strength, lightweight, dimensional stable, and mildew resistant multifunctional bamboo. Constr. Build. Mater. 2024, 415, 135027. [Google Scholar] [CrossRef]
- Chen, S.; Li, Q.; Liu, C.; Du, C.; Shan, Y.; Yin, W.; Yang, F.; Shao, Y.; Wang, Y. Process and Anti-Mildew Properties of Tea Polyphenol-Modified Citral-Treated Bamboo. Molecules 2022, 27, 7549. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Liu, X.; Liu, J.; Yan, Y.; Liu, X.; Wang, K.; Li, J. Evaluation of anti-mold, termite resistance and physical-mechanical properties of bamboo cross-linking modified by polycarboxylic acids. Constr. Build. Mater. 2021, 272, 121953. [Google Scholar] [CrossRef]
- Fan, Z.; Xu, S.; Huang, C.; Cao, Y.; Wu, X. Dual preservative strategy for facilitating bamboo durability using cinnamaldehyde and diethylenetriamine and its reaction characteristics on bamboo cell wall. Ind. Crops Prod. 2023, 206, 117600. [Google Scholar] [CrossRef]
- Sun, J.; Lin, X.; Qiu, Y.; Wang, R.; Zhang, Y.; Hu, C.; Zhang, W. In situ polymerization of N-methylol acrylamide (NMA) for bamboo anti-mold modification. Constr. Build. Mater. 2023, 363, 129887. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Wu, X.; Zhang, Y.; Jiang, J.; Han, S.; Sun, F. Anti-mold activity and reaction mechanism of bamboo modified with laccase-mediated thymol. Ind. Crops Prod. 2021, 172, 114067. [Google Scholar] [CrossRef]
- Zhao, H.; Lin, X.; Lu, S.; Wu, H.; Zhou, X.; Huang, L.; Li, J.; Shi, J.; Tong, W.; Yuan, H.; et al. Anti-mold, self-cleaning superhydrophobic bamboo fiber/polypropylene composites with mechanical durability. Front. Chem. 2023, 11, 1150635. [Google Scholar] [CrossRef]
Concentration (%) | Time (h) | L* | a* | b* | |
---|---|---|---|---|---|
0 | 0 | 77.56 (0.31) | 6.35 (0.43) | 22.73 (0.21) | -- |
5 | 4 | 86.25 (0.44) | 3.11 (0.56) | 19.49 (0.32) | 9.83 (0.64) |
5 | 8 | 86.52 (0.71) | 3.20 (0.37) | 19.03 (0.85) | 10.20 (0.23) |
5 | 12 | 87.99 (0.65) | 3.84 (0.26) | 19.62 (0.36) | 11.18 (0.28) |
5 | 16 | 88.34 (0.54) | 3.96 (0.67) | 19.51 (0.45) | 11.50 (0.65) |
5 | 20 | 88.92 (0.33) | 3.33 (0.61) | 18.93 (0.67) | 12.36 (0.54) |
5 | 24 | 87.81 (0.26) | 4.68 (0.35) | 19.03 (0.25) | 11.03 (0.61) |
10 | 4 | 87.66 (0.76) | 3.67 (0.23) | 17.75 (0.65) | 11.58 (0.63) |
10 | 8 | 89.06 (0.61) | 3.39 (0.28) | 17.41 (0.46) | 13.02 (0.57) |
10 | 12 | 88.54 (0.55) | 3.16 (0.54) | 19.23 (0.67) | 11.96 (0.55) |
10 | 16 | 88.68 (0.86) | 3.60 (0.76) | 19.54 (0.54) | 11.90 (0.64) |
10 | 20 | 87.51 (0.62) | 4.02 (0.36) | 19.14 (0.15) | 10.83 (0.25) |
10 | 24 | 87.60 (0.54) | 3.93 (0.45) | 21.17 (0.63) | 10.45 (0.67) |
15 | 4 | 88.48 (0.52) | 3.65 (0.21) | 19.80 (0.61) | 11.63 (0.28) |
15 | 8 | 88.45 (0.56) | 3.87 (0.35) | 17.34 (0.22) | 12.40 (0.31) |
15 | 12 | 89.37 (0.28) | 3.26 (0.47) | 19.86 (0.61) | 12.55 (0.29) |
15 | 16 | 89.90 (0.64) | 2.90 (0.43) | 18.01 (0.57) | 13.65 (0.82) |
15 | 20 | 86.86 (0.55) | 5.54 (0.34) | 21.09 (0.26) | 9.49 (0.32) |
15 | 24 | 86.35 (0.34) | 5.14 (0.44) | 21.61 (0.82) | 8.95 (0.34) |
20 | 4 | 87.09 (0.57) | 4.35 (0.52) | 19.79 (0.39) | 10.18 (0.28) |
20 | 8 | 88.65 (0.21) | 3.56 (0.37) | 20.38 (0.45) | 11.68 (0.54) |
20 | 12 | 87.83 (0.51) | 3.71 (0.41) | 20.93 (0.36) | 10.76 (0.48) |
20 | 16 | 86.08 (0.26) | 4.42 (0.19) | 21.20 (0.85) | 8.87 (0.56) |
20 | 20 | 85.71 (0.52) | 5.65 (0.36) | 21.34 (0.57) | 8.30 (0.49) |
20 | 24 | 84.28 (0.28) | 5.85 (0.63) | 21.22 (0.71) | 6.91 (0.57) |
25 | 4 | 83.22 (0.48) | 4.31 (0.61) | 20.37 (0.31) | 6.47 (0.42) |
25 | 8 | 83.79 (0.23) | 4.28 (0.66) | 21.41 (0.27) | 6.70 (0.15) |
25 | 12 | 82.13 (0.55) | 4.28 (0.71) | 21.64 (0.49) | 5.14 (0.37) |
25 | 16 | 82.02 (0.91) | 4.38 (0.56) | 21.74 (0.57) | 4.98 (0.38) |
25 | 20 | 81.46 (0.65) | 6.12 (0.62) | 21.40 (0.19) | 4.13 (0.27) |
25 | 24 | 81.13 (0.61) | 6.24 (0.34) | 21.40 (0.72) | 3.81 (0.51) |
Chemical State of C | Binding Energy/Ev | Combination Form |
---|---|---|
C1 | 284.8 | -C-H, -C-C |
C2 | 286.1 | -C-O- |
C3 | 288.1 | -O-C-O, -C=O |
Samples | Bulk Density at 0.53 psia/g/cm3 | Porosity/% | Median Pore Diameter (Volume)/nm | Total Intrusion Volume/mL/g |
---|---|---|---|---|
Untreated-1 | 0.653 (0.007) | 53.44 (1.87) | 28.50 (0.83) | 0.801 (0.017) |
Untreated-2 | 0.667 (0.005) | 54.02 (2.13) | 28.30 (0.76) | 0.827 (0.020) |
Bleached-1 | 0.438 (0.003) | 68.80 (2.45) | 57.60 (0.67) | 1.572 (0.032) |
Bleached-2 | 0.431 (0.003) | 69.46 (2.23) | 57.30 (0.43) | 1.610 (0.026) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; He, S.; Leng, W.; Chen, Y.; Quan, H. Hydrogen Peroxide Bleaching Induces a Dual Enhancement of Liquid Permeability and Fungal Resistance in Bamboo Through Microstructural Engineering. Forests 2025, 16, 964. https://doi.org/10.3390/f16060964
Xu D, He S, Leng W, Chen Y, Quan H. Hydrogen Peroxide Bleaching Induces a Dual Enhancement of Liquid Permeability and Fungal Resistance in Bamboo Through Microstructural Engineering. Forests. 2025; 16(6):964. https://doi.org/10.3390/f16060964
Chicago/Turabian StyleXu, Dandan, Sheng He, Weiqi Leng, Yuhe Chen, and Haiyang Quan. 2025. "Hydrogen Peroxide Bleaching Induces a Dual Enhancement of Liquid Permeability and Fungal Resistance in Bamboo Through Microstructural Engineering" Forests 16, no. 6: 964. https://doi.org/10.3390/f16060964
APA StyleXu, D., He, S., Leng, W., Chen, Y., & Quan, H. (2025). Hydrogen Peroxide Bleaching Induces a Dual Enhancement of Liquid Permeability and Fungal Resistance in Bamboo Through Microstructural Engineering. Forests, 16(6), 964. https://doi.org/10.3390/f16060964