Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = poplar cultivation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3974 KiB  
Article
Selection for Low-Nitrogen Tolerance Using Multi-Trait Genotype Ideotype Distance Index (MGIDI) in Poplar Varieties
by Jinhong Niu, Dongxu Jia, Zhenyuan Zhou, Mingrong Cao, Chenggong Liu, Qinjun Huang and Jinhua Li
Agronomy 2025, 15(7), 1754; https://doi.org/10.3390/agronomy15071754 - 21 Jul 2025
Viewed by 277
Abstract
The screening of poplar varieties that demonstrate tolerance to low nitrogen (N) represents a promising strategy for improving nitrogen-use efficiency in trees. Such an approach could reduce reliance on N fertilizers while mitigating environmental pollution associated with their cultivation. In this study, a [...] Read more.
The screening of poplar varieties that demonstrate tolerance to low nitrogen (N) represents a promising strategy for improving nitrogen-use efficiency in trees. Such an approach could reduce reliance on N fertilizers while mitigating environmental pollution associated with their cultivation. In this study, a total of 87 poplar varieties were evaluated in a controlled greenhouse pot experiment. Under both low-nitrogen (LN) and normal-nitrogen (NN) conditions, 18 traits spanning four categories—growth performance, leaf morphology, chlorophyll fluorescence, and N isotope parameters were measured. For 13 of these traits (growth, leaf morphology, chlorophyll fluorescence), genetic variation and parameters, including genotypic values, were analyzed using best linear unbiased prediction (BLUP) within a linear mixed model (LMM). LN tolerance of tested poplar varieties was comprehensively assessed with three MGIDI strategies by integrating means, BLUPs, and low-nitrogen tolerance coefficient (LNindex) to rank poplar varieties. The results exhibited highly significant differences across all traits between LN and NN experiments, as well as among varieties. LN stress markedly inhibited growth, altered leaf morphology, and reduced chlorophyll fluorescence parameters in young poplar plants. Among the selection strategies, the MGIDI_LNindex approach demonstrated the highest selection differential percent (SD% = 10.5–35.23%). Using a selection intensity (SI) of 20%, we systematically identified 17 superior genotypes across all three strategies. In a thorough, comprehensive MGIDI-based evaluation, these varieties exhibited exceptional adaptability and stability under LN stress. The selected genotypes represent valuable genetic resources for developing improved poplar cultivars with enhanced low-nitrogen tolerance. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

15 pages, 624 KiB  
Article
Physiological Performance of Poplar and Willow Clones Growing on Metal-Contaminated Landfills
by Lazar Kesić, Branislav Kovačević, Marina Milović, Dragica Stanković, Marko Ilić, Leopold Poljaković-Pajnik, Saša Pekeč and Saša Orlović
Plants 2025, 14(11), 1705; https://doi.org/10.3390/plants14111705 - 3 Jun 2025
Viewed by 592
Abstract
This study evaluated the physiological responses and biomass production of selected poplar and willow clones cultivated in form of phytoremediation buffer plantations on landfills in Vinča (near Belgrade) and Novi Sad, Serbia. Key parameters assessed included net photosynthesis (A), transpiration (E), stomatal conductance [...] Read more.
This study evaluated the physiological responses and biomass production of selected poplar and willow clones cultivated in form of phytoremediation buffer plantations on landfills in Vinča (near Belgrade) and Novi Sad, Serbia. Key parameters assessed included net photosynthesis (A), transpiration (E), stomatal conductance (gs), and water use efficiency (WUE). Results indicated a significant Clone × Site interaction for net photosynthesis, suggesting environmental-specific clone responses. Transpiration and stomatal conductance exhibited site-stable expression between sites, implying conservative traits or similar hydrological conditions during measurements. Particularly, total site values for physiological parameters were higher at the Novi Sad site, likely due to continuous access of plants to groundwater. The weak correlation between WUE and biomass production suggests that favorable water conditions at both sites diminished the importance of water use efficiency for biomass accumulation. Poplar clone S1-8 exhibited the highest biomass production and leaf-level gas exchange traits (A, E, gs, WUE), reflecting a fast-growth strategy through increased gas exchange. This clone’s consistent productivity across sites classifies it as a generalist, while willow clone 378 and poplar clone 135/81, with significantly higher biomasses at the Novi Sad site than at the Vinča site, can be considered as specialists. Use of both generalist and specialist clones in multiclonal plantations may enhance phytoremediation and biomass production stability across variable sites. These findings underscore the importance of selecting appropriate clones for phytoremediation on landfills and on contaminated lands in general. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

14 pages, 1705 KiB  
Article
The Influence of Pruning on the Growth and Wood Properties of Populus deltoides “Nanlin 3804”
by Weiqi Leng, Pei Cao, Chao Chen and Luozhong Tang
Forests 2025, 16(5), 848; https://doi.org/10.3390/f16050848 - 19 May 2025
Viewed by 354
Abstract
During the natural growth of trees, a large number of branches are formed, with a negative impact on timber quality. Therefore, pruning is an essential measure in forest cultivation. In this work, the effect of pruning on poplar timber quality was evaluated. This [...] Read more.
During the natural growth of trees, a large number of branches are formed, with a negative impact on timber quality. Therefore, pruning is an essential measure in forest cultivation. In this work, the effect of pruning on poplar timber quality was evaluated. This study used an artificial forest of Populus deltoides “Nanlin 3804”, established in 2014, as the research object. Pruning was carried out in March 2018 and March 2020 with a pruning intensity of one-third, and a control group was also set up. In December 2023, the growth of 11-year-old poplars under different treatments was investigated and analyzed, and sample trees were cut down for a wood property analysis. The results showed that pruning did not have a significant effect on the growth of the diameter at breast height, the tree height, or the volume. However, pruning could significantly facilitate the forming of higher-quality timber with smaller knots. Compared to unpruned wood, the ring width decreased 1–2 years after pruning, while it turned out to be greater than that of the control 3 years after pruning. Moreover, pruning can reduce the degree of trunk tapering. The fiber aspect ratio two years after pruning was greater than that of the control. The distribution frequency of fiber lengths of between 1500 μm and 1900 μm and that of fiber widths of between 32 μm and 38 μm were higher than that of the control. However, pruning had little effect on their density and oven-dried shrinkage. In addition, compared to the control, the bending strength and the modulus of elasticity increased by approximately 11%–14%, the impact toughness decreased by approximately 5%, and the compressive strength increased by approximately 6%. Pruning proved to be a successful method to improve the timber quality. Full article
(This article belongs to the Special Issue Uses, Structure and Properties of Wood and Wood Products)
Show Figures

Figure 1

15 pages, 5955 KiB  
Article
Comparative Multi-Omics Analysis Reveals Key Pathways in Chlorophyll Metabolism and Stress Adaptation in Poplar Under Dual Stress
by Linxuan Zhang, Yunxi Zhu, Jiri Stribny, Xinyu Pan, Chengming Tian and Roger Schneiter
Forests 2025, 16(3), 537; https://doi.org/10.3390/f16030537 - 19 Mar 2025
Viewed by 465
Abstract
Poplar anthracnose, caused by Colletotrichum gloeosporioides, significantly threatens global poplar cultivation, with rising temperatures further intensifying environmental stress on trees. As autotrophic organisms, plants rely on photosynthesis for growth and stress responses, making this process particularly vulnerable under combined stressors, such as [...] Read more.
Poplar anthracnose, caused by Colletotrichum gloeosporioides, significantly threatens global poplar cultivation, with rising temperatures further intensifying environmental stress on trees. As autotrophic organisms, plants rely on photosynthesis for growth and stress responses, making this process particularly vulnerable under combined stressors, such as heat and pathogen infection. This study investigates the dual-stress response mechanisms of the resistant poplar species Populus × canadensis through integrated transcriptomic and metabolomic analyses. Results show that C. gloeosporioides inoculation at ambient temperature conditions activates multiple defense-related pathways, including MAPK signaling and ferroptosis. High temperatures amplify these responses, leading to extensive alterations in gene expression, particularly in pathways related to the cell cycle, photosynthesis, and phytohormone signaling. The chlorophyll content, a key marker of photosynthetic efficiency, is significantly reduced under high temperatures, with dual stress causing the most pronounced declines in chlorophyll a and b and total chlorophyll levels. These findings provide valuable insights into the molecular mechanisms underlying poplar resilience to anthracnose and heat stress, offering a foundation for breeding climate-resilient and pathogen-resistant tree cultivars. Full article
Show Figures

Figure 1

19 pages, 2093 KiB  
Article
Comparative Study on Growth Characteristics and Early Selection Efficiency of Hybrid Offspring of Populus deltoides ‘DD-109’ and P. maximowiczii in Liaoning, China
by Wei Liu, Chenggong Liu, Yan Zhang, Jinhua Li, Jiabao Ji, Xiaorui Qin, Fenfen Liu, Chengcheng Gao, Nairui Wang, Xueli Zhang, Ning Liu, Rusheng Peng and Qinjun Huang
Plants 2025, 14(1), 111; https://doi.org/10.3390/plants14010111 - 2 Jan 2025
Viewed by 867
Abstract
Poplar is an important tree species for timber supply and ecological protection in northern China. Cultivating and selecting high-quality varieties and germplasm resources suitable for cultivation are key factors in enhancing the quality and productivity of poplar plantations in the arid and semi-arid [...] Read more.
Poplar is an important tree species for timber supply and ecological protection in northern China. Cultivating and selecting high-quality varieties and germplasm resources suitable for cultivation are key factors in enhancing the quality and productivity of poplar plantations in the arid and semi-arid northern regions with shorter growing seasons. This study conducted a field cultivation experiment on 10 progeny clones from the direct cross (D × M) of imported Populus deltoides ‘DD-109’ with Populus maximowiczii and 7 progeny clones from the reciprocal cross (M × D) using one-year-old rooted cuttings planted at a 4 m × 8 m spacing. Based on 17 years of annual growth observations, the study systematically compared growth characteristics, age of quantitative maturity, path relationships between traits, and early selection efficiency in the hybrid offspring. The results indicated that the D × M population had superior diameter at breast height (DBH), tree height (H), and volume (V) compared to the M × D population, while the height-to-diameter ratio (HDR) was lower. The growth rate of the 17 clones peaked from 10 to 14 years, with annual volume growth increments (PAIs) higher than mean annual volume increments (MAIs) during the early growth stages; the quantitative maturity age ranged between 12 and 16 years. The D × M population generally reached quantitative maturity earlier than the M × D population, with the fastest clone maturing in 12 years. Four clones (DM-9-17, DM-9-18, DM-9-14, and MD-61) showed values for V, DBH, H, and HDR above the hybrid group average. Path analysis demonstrated that DBH had the most significant direct and indirect effects on V, suggesting it as the best predictor for V. Using DBH as a reference, correlation and early selection efficiency analysis showed a strong relationship between growth characteristics at planting years 4–5 and later-stage performance, indicating this as the optimal period for early selection. These findings contribute to evaluating the production potential of P. deltoides ‘DD-109’ and P. maximowiczii germplasm in northern China and provide valuable guidance for selecting poplar clones suitable for local cultivation, accelerating breeding processes, and informing management planning for poplar plantations. Full article
(This article belongs to the Special Issue Genetic Breeding of Trees)
Show Figures

Figure 1

19 pages, 1458 KiB  
Article
Early Response of the Populus nigra L. × P. maximowiczii Hybrid to Soil Enrichment with Metals
by Monika Gąsecka, Kinga Drzewiecka, Zuzanna Magdziak, Włodzimierz Krzesiński, Jędrzej Proch and Przemysław Niedzielski
Int. J. Mol. Sci. 2024, 25(23), 12520; https://doi.org/10.3390/ijms252312520 - 21 Nov 2024
Viewed by 936
Abstract
This study aimed to investigate the response of Populus nigra L. × Populus maximowiczii to the addition of selected metals in soil. Rooted cuttings were planted in pots containing soil enriched with equimolar concentrations of Pb, Zn, Al, Ni, and Cu (500 mL [...] Read more.
This study aimed to investigate the response of Populus nigra L. × Populus maximowiczii to the addition of selected metals in soil. Rooted cuttings were planted in pots containing soil enriched with equimolar concentrations of Pb, Zn, Al, Ni, and Cu (500 mL of 4 mM solutions of single metal salts: (Pb(NO3)2; Zn(NO3)2 × 6H2O; Al(NO3)3 × 9H2O; Ni(NO3)2 × 6H2O; or Cu(NO3)2 × 3H2O). Growth parameters, metal accumulation, and physiological and biochemical parameters were assessed after four weeks of cultivation, simulating early response conditions. The results showed diverse metal accumulation in poplar organs, along with an increase in biomass and minor changes in gas exchange parameters or chlorophyll fluorescence. Among low-molecular-weight organic acids, citric and succinic acids were dominant in the rhizosphere, and roots with malonic acid were also present in the shoots. Only p-coumaric acid was found in the phenolic profile of the roots. The shoots contained both phenolic acids and flavonoids, and their profile was diversely modified by particular metals. Sucrose and fructose content increased in shoots that underwent metal treatments, with glucose increasing only in Cu and Al treatments. Principal component analysis (PCA) revealed variations induced by metal treatments across all parameters. Responses to Pb and Zn were partially similar, while Cu, Ni, or Al triggered distinct reactions. The results indicate the adaptation of P. nigra L. × P. maximowiczii to soil containing elevated levels of metals, along with potential for soil remediation and metal removal. However, further studies are needed to evaluate the effect of differences in early responses to particular metals on plant conditions from a long-term perspective. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 1925 KiB  
Article
Effects of Fertilization and Drip Irrigation on the Growth of Populus × canadensis ‘Zhongliao 1’ Plantation and on Soil Physicochemical Properties and Enzyme Activities
by Yan Zhang, Nairui Wang, Lingyu Yang, Ning Liu, Rusheng Peng, Lei Yu, Fenfen Liu, Shiqi Wang, Chengcheng Gao, Jiabao Ji, Chenggong Liu and Dejun Liang
Forests 2024, 15(9), 1651; https://doi.org/10.3390/f15091651 - 19 Sep 2024
Cited by 1 | Viewed by 1265
Abstract
Poplars are crucial for timber supply and ecological protection in China. Enhancing the growth of poplar plantations and improving soil fertility in arid, and semi-arid poor soil regions are key aspects of sustainable forest management. Fertilization (FTL) and drip irrigation (DI) are among [...] Read more.
Poplars are crucial for timber supply and ecological protection in China. Enhancing the growth of poplar plantations and improving soil fertility in arid, and semi-arid poor soil regions are key aspects of sustainable forest management. Fertilization (FTL) and drip irrigation (DI) are among the most widely used methods globally for increasing yield and soil productivity. This study conducted field experiments on FTL and DI in a 10-year-old Populus × canadensis ‘Zhongliao 1’ (cultivation varieties of P. canadensis in northern China) plantation. DI limits were set according to soil moisture at 60% (S1), 70% (S2), and 80% (S3) of field capacity; nitrogen FTL rates were set at 100% of the baseline fertilization amount (100% BFA, N 643.20 g·year−1, P 473.37 g·year−1, and K 492.29 g·year−1) (F1), 70% BFA (F2), 130% BFA (F3), and 160% BFA (F4). The treatments of drip irrigation and fertigation (DIF) were H1 (100% BFA, 60% FC), H2 (100% BFA, 80% FC), H3 (160% BFA, 60% FC), and H4 (160% BFA, 80% FC), along with a control group (CK) without any management, totaling 12 experimental combinations. The results showed that the H4 had the most significant promoting effect on the height, DBH, and volume increments. All treatments had little effect on the soil bulk density of the plantation but significantly impacted soil capillary porosity and pH. Compared to DI, soil nutrient and organic matter content were more sensitive to FTL. Appropriate FTL and DI can increase soil sucrase activity. Soil urease activity tended to increase with higher FTL rates, and higher DI levels also positively influenced urease activity. Excessive or insufficient soil moisture and nutrients negatively impacted soil cellulase and catalase activities. Correlation analysis revealed no significant correlation between the growth of P. × canadensis ‘Zhongliao 1’ and soil nutrient content, but significant or highly significant correlations existed between growth and soil porosity and related enzyme activities. Comprehensive evaluation using a membership function indicated that high FTL levels (F4) were more conducive to the simultaneous improvement of the growth and soil fertility of the plantation, followed by H4 and F1, suggesting that high FTL is the key factor affecting the growth of 10-year-old P. × canadensis ‘Zhongliao 1’ plantations and the restoration of stand productivity, with moisture being secondary. Full article
(This article belongs to the Special Issue Impacts of Extreme Climate Events on Forests)
Show Figures

Figure 1

13 pages, 2373 KiB  
Article
Evaluation of Shoot Collection Timing and Hormonal Treatment on Seedling Rooting and Growth in Four Poplar Genomic Groups
by Iveta Varnagirytė-Kabašinskienė, Vytautas Suchockas, Gintautas Urbaitis, Povilas Žemaitis, Milda Muraškienė, Dovilė Čiuldienė, Valentinas Černiauskas, Emilis Armoška and Egidijus Vigricas
Forests 2024, 15(9), 1530; https://doi.org/10.3390/f15091530 - 30 Aug 2024
Cited by 1 | Viewed by 1162
Abstract
Populus spp. is an economically valuable tree worldwide, known for its adaptability, fast growth, and versatile wood, often cultivated in short-rotation plantations. Effective propagation is crucial for rapid genetic improvement and global demand for forest products and biomass energy. This study focused on [...] Read more.
Populus spp. is an economically valuable tree worldwide, known for its adaptability, fast growth, and versatile wood, often cultivated in short-rotation plantations. Effective propagation is crucial for rapid genetic improvement and global demand for forest products and biomass energy. This study focused on the rooting and growth of poplar cuttings, examining shoot collection timing and growth stimulant treatments across four hybrids: Populus deltoides × P. nigra (Agathe F), P. maximowiczii × P. trichocarpa (Arges), P. deltoides × P. trichocarpa (Donk), and an interspecific hybrid Populus × canadensis (F-448). The experiment used hybrid poplar cuttings collected in spring 2022 and 2023, planted in controlled climates with a randomized block design. Cuttings were soaked for 24 h in growth stimulants, namely indole-3-butyric acid, cinnamic acid, and indole-3-acetic acid. After 12 weeks, rooting percentage and seedling height were assessed. The study found that the optimal time for collecting poplar cuttings for best rooting is late winter to early spring, specifically from March to early April, with shoots collected after early April showing the lowest rooting potential. The growth stimulants significantly influenced the growth of poplar seedlings. There was a tendency for lower concentrations to increase root formation and seedling height, while higher concentrations had adverse effects. Despite variations in growth rates, a consistent growth pattern was observed across different shoot collection dates for all genomic groups. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

18 pages, 1695 KiB  
Article
Genetic Evaluation of Water Use Efficiency and Nutrient Use Efficiency in Populus deltoides Bartr. ex Marsh. Seedlings in China
by Chengcheng Gao, Chenggong Liu, Cun Chen, Ning Liu, Fenfen Liu, Xiaohua Su and Qinjun Huang
Plants 2024, 13(16), 2228; https://doi.org/10.3390/plants13162228 - 11 Aug 2024
Cited by 4 | Viewed by 1617
Abstract
Populus deltoides Bartr. ex Marsh. represents a valuable genetic resource for fast-growing plantations in temperate regions. It holds significant cultivation and breeding potential in northern China. To establish an efficient breeding population of poplar, we studied the genetic variation of P. deltoides from [...] Read more.
Populus deltoides Bartr. ex Marsh. represents a valuable genetic resource for fast-growing plantations in temperate regions. It holds significant cultivation and breeding potential in northern China. To establish an efficient breeding population of poplar, we studied the genetic variation of P. deltoides from different provenances. Our focus was on genotypes exhibiting high growth rates and efficient water and nutrient use efficiency (WUE and NUE). We evaluated 256 one-year-old seedlings from six provenances, measuring height, ground diameter, total biomass, and leaf carbon and nitrogen isotope abundance (δ13C and δ15N). Our analytical methods included variance analysis, multiple comparisons, mixed linear models, correlation analysis, and principal component analysis. The results showed that the coefficient of variation was highest for δ15N and lowest for δ13C among all traits. Except for δ15N, the effects of intra- and inter-provenance were highly significant (p < 0.01). The rates of variation for all traits ranged from 78.36% to 99.49% for intra-provenance and from 0.51% to 21.64% for inter-provenance. The heritability of all traits in AQ provenance was over 0.65, and all exhibited the highest level except for seedling height. All traits were significantly positively correlated with each other (p < 0.05), while ground diameter, total biomass, and WUE were highly significantly negatively correlated with latitude (p < 0.01). After a comprehensive evaluation, two provenances and eight genotypes were selected. The genetic gains for seedling height, ground diameter, total biomass, WUE, and NUE were 27.46 cm (178-2-106), 3.85 mm (178-2-141), 16.40 g (178-2-141), 0.852‰ (LA05-N15), and 3.145‰ (174-1-2), respectively. Overall, we revealed that the abundant genetic variation in P. deltoides populations mainly comes from intra-provenance differences and evaluated provenances and genotypes. The results of this study will contribute to optimizing and enhancing the breeding process of Chinese poplar and improving the productivity of fast-growing plantations. Full article
(This article belongs to the Special Issue Strategies for Nutrient Use Efficiency Improvement in Plants)
Show Figures

Figure 1

23 pages, 3802 KiB  
Article
Eco-Efficiency of Pellet Production from Dedicated Poplar Plantations
by Giulio Sperandio, Alessandro Suardi, Andrea Acampora and Vincenzo Civitarese
Energies 2024, 17(13), 3137; https://doi.org/10.3390/en17133137 - 26 Jun 2024
Cited by 1 | Viewed by 1380
Abstract
Biomass, due to its neutrality in terms of greenhouse gas emissions into the atmosphere during its life cycle, is considered an interesting renewable source for energy production as an alternative to the use of more polluting fossil fuels. Among the different wood fuels, [...] Read more.
Biomass, due to its neutrality in terms of greenhouse gas emissions into the atmosphere during its life cycle, is considered an interesting renewable source for energy production as an alternative to the use of more polluting fossil fuels. Among the different wood fuels, pellets are convenient for use in dedicated stoves, and pellet heating systems have a high energy efficiency. The aim of this work was to estimate the economic and global warming potential (GWP100a) generated along the thermal energy supply chain of wood pellets, starting from the production of raw biomass from dedicated poplar cultivations and ending with the use of pellets in stoves by the end-user to produce thermal energy and ash. The Eco-Efficiency Indicator (EEI) was used to link the economic and environmental performance for eight proposed scenarios, obtained by combining different levels of mechanisation for poplar harvesting and wood biomass management before arrival at the pellet plant. For the thermal energy produced by the poplar wood pellet, the GWP100a ranged from 1.5 × 10−2 to 2.1 × 10−2 kg CO2−eq MJ−1 for three-year-old plantations and from 1.9 × 10−2 to 2.4 × 10−2 kg CO2−eq MJ−1, for six-year-old plantations. In terms of eco-efficiency of the baseline scenario (EEIb), the most favourable scenarios remain those linked to the use of biomass from three-year-old poplar plantations, with EEIb values ranging from 0.31 to 0.60 € kgCO2−eq−1, compared to from 0.29 to 0.36 € kgCO2−eq−1 for pellets obtained from biomass produced from six-year-old poplar plantations. In terms of the Global Eco-Efficiency Indicator (EEIg), which also takes into account the positive effect on the reduction of greenhouse gases due to the storage of carbon in the soil by the plantations and the reduction of emissions from avoided fossil fuels, the most favourable scenarios remain those linked to the use of biomass from three-year-old poplar plantations, with EEIg values that vary in the range of 0.60 ÷ 1.04 € kgCO2−eq−1, compared to 0.55 ÷ 0.62 € kg CO2−eq−1 for thermal energy obtained using biomass from six-year-old poplar plantations. Full article
Show Figures

Figure 1

16 pages, 2020 KiB  
Review
Comparison between Different Mechanization Systems: Economic Sustainability of Harvesting Poplar Plantations in Italy
by Valerio Di Stefano, Giorgia Di Domenico, Michele Menta, Elisa Pontuale, Leonardo Bianchini and Andrea Colantoni
Forests 2024, 15(3), 397; https://doi.org/10.3390/f15030397 - 20 Feb 2024
Cited by 3 | Viewed by 2330
Abstract
After a period of significant development, poplar cultivation in Italy has been in rapid decline since the 1980s. Because of its marked ductility, poplar is valuable for both wood furniture and energy production. Production could be increased through mechanization, because innovative machinery and [...] Read more.
After a period of significant development, poplar cultivation in Italy has been in rapid decline since the 1980s. Because of its marked ductility, poplar is valuable for both wood furniture and energy production. Production could be increased through mechanization, because innovative machinery and equipment can reduce the exposure of forest workers to common risk factors, ensure greater and better productivity, increase the efficiency of operations, and reduce costs. There are various systems for the mechanization of poplar production (from traditional to advanced and pushed mechanization). We describe the range of possibilities (in terms of both the techniques adopted and the machines used) for planting, harvesting, and chopping poplar. Based on our analysis of operating costs, we conclude that mechanized poplar production could reduce the average cost per ton of wood chips (EUR/t) by 23% and the average gross cost per hectare of wood chips produced (EUR/ha) by 37%. Full article
(This article belongs to the Special Issue Research Advances in Management and Design of Forest Operations)
Show Figures

Figure 1

13 pages, 4228 KiB  
Article
Simplified Method for Agrobacterium-Mediated Genetic Transformation of Populus x berolinensis K. Koch
by Vasiliy V. Pavlichenko and Marina V. Protopopova
Methods Protoc. 2024, 7(1), 12; https://doi.org/10.3390/mps7010012 - 26 Jan 2024
Cited by 3 | Viewed by 3007
Abstract
The rapid advancement of genetic technologies has made it possible to modify various plants through both genetic transformation and gene editing techniques. Poplar, with its rapid in vitro growth and regeneration enabling high rates of micropropagation, has emerged as a model system for [...] Read more.
The rapid advancement of genetic technologies has made it possible to modify various plants through both genetic transformation and gene editing techniques. Poplar, with its rapid in vitro growth and regeneration enabling high rates of micropropagation, has emerged as a model system for the genetic transformation of woody plants. In this study, Populus × berolinensis K. Koch. (Berlin poplar) was chosen as the model organism due to its narrow leaves and spindle-shaped crown, which make it highly suitable for in vitro manipulations. Various protocols for the Agrobacterium-mediated transformation of poplar species have been developed to date. However, the genetic transformation procedures are often constrained by the complexity of the nutrient media used for plant regeneration and growth, which could potentially be simplified. Our study presents a cheaper, simplified, and relatively fast protocol for the Agrobacterium-mediated transformation of Berlin poplar. The protocol involved using internode sections without axillary buds as explants, which were co-cultivated in 10 µL droplets of bacterial suspension directly on the surface of a solid agar-based medium without rinsing and sterile paper drying after inoculation. We used only one regeneration Murashige and Skoogbased medium supplemented with BA (0.2 mg·L−1), TDZ (0.02 mg·L−1), and NAA (0.01 mg·L−1). Acetosyringone was not used as an induction agent for vir genes during the genetic transformation. Applying our protocol and using the binary plasmid pBI121 carrying the nptII selective and uidA reporter genes, we obtained the six transgenic lines of poplar. Transgenesis was confirmed through a PCR-based screening of kanamycin-selected regenerants for the presence of both mentioned genes, Sanger sequencing, and tests for detecting the maintained activity of both genes. The transformation efficiency, considering the 100 explants taken originally, was 6%. Full article
(This article belongs to the Collection Current Advances and Methodologies in Gene Editing)
Show Figures

Figure 1

12 pages, 5567 KiB  
Article
Genome-Wide Identification of the ABC Gene Family and Its Expression in Response to the Wood Degradation of Poplar in Trametes gibbosa
by Jia Zhao, Achuan Wang and Qian Wang
J. Fungi 2024, 10(2), 96; https://doi.org/10.3390/jof10020096 - 24 Jan 2024
Viewed by 1946
Abstract
Wood-rotting fungi’s degradation of wood not only facilitates the eco-friendly treatment of organic materials, decreasing environmental pollution, but also supplies crucial components for producing biomass energy, thereby reducing dependence on fossil fuels. The ABC gene family, widely distributed in wood-rotting fungi, plays a [...] Read more.
Wood-rotting fungi’s degradation of wood not only facilitates the eco-friendly treatment of organic materials, decreasing environmental pollution, but also supplies crucial components for producing biomass energy, thereby reducing dependence on fossil fuels. The ABC gene family, widely distributed in wood-rotting fungi, plays a crucial role in the metabolism of lignin, cellulose, and hemicellulose. Trametes gibbosa, as a representative species of wood-rotting fungi, exhibits robust capabilities in wood degradation. To investigate the function of the ABC gene family in wood degradation by T. gibbosa, we conducted a genome-wide analysis of T. gibbosa’s ABC gene family. We identified a total of 12 Tg-ABCs classified into four subfamilies (ABCA, ABCB, ABCC, and ABCG). These subfamilies likely play significant roles in wood degradation. Scaffold localization and collinearity analysis results show that Tg-ABCs are dispersed on scaffolds and there is no duplication of gene sequences in the Tg-ABCs in the genome sequence of T. gibbosa. Phylogenetic and collinearity analyses of T. gibbosa along with four other wood-rotting fungi show that T. gibbosa shares a closer phylogenetic relationship with its same-genus fungus (Trametes versicolor), followed by Ganoderma leucocontextum, Laetiporus sulphureus, and Phlebia centrifuga in descending order of phylogenetic proximity. In addition, we conducted quantitative analyses of Tg-ABCs from T. gibbosa cultivated in both woody and non-woody environments for 10, 15, 20, 25, 30, and 35 days using an RT-qPCR analysis. The results reveal a significant difference in the expression levels of Tg-ABCs between woody and non-woody environments, suggesting an active involvement of the ABC gene family in wood degradation. During the wood degradation period of T. gibbosa, spanning from 10 to 35 days, the relative expression levels of most Tg-ABCs exhibited a trend of increasing, decreasing, and then increasing again. Additionally, at 20 and 35 days of wood degradation by T. gibbosa, the relative expression levels of Tg-ABCs peak, suggesting that at these time points, Tg-ABCs exert the most significant impact on the degradation of poplar wood by T. gibbosa. This study systematically reveals the biological characteristics of the ABC gene family in T. gibbosa and their response to woody environments. It establishes the foundation for a more profound comprehension of the wood-degradation mechanism of the ABC gene family and provides strong support for the development of more efficient wood-degradation strategies. Full article
Show Figures

Figure 1

16 pages, 4947 KiB  
Article
Effects of Ozone Stress on Rhizosphere Soil of Poplar Seedlings
by Qin Wang, Qingqing Yang, Meng Zhang, Jianwei Ma and Laiye Qu
Forests 2024, 15(1), 205; https://doi.org/10.3390/f15010205 - 19 Jan 2024
Cited by 3 | Viewed by 1659
Abstract
Near-surface O3 has negative effects on plant productivity; however there were few studies on the effects of O3 pollution on the belowground part of the ecosystem. The effect of O3 stress on the belowground parts of poplar is unclear. We [...] Read more.
Near-surface O3 has negative effects on plant productivity; however there were few studies on the effects of O3 pollution on the belowground part of the ecosystem. The effect of O3 stress on the belowground parts of poplar is unclear. We investigated the effects of O3 pollution on poplar rhizosphere soil in open-top chambers (OTC). Two kinds of plants with different O3 sensitivity were selected, i.e., high-sensitive poplar clone 546 and low-sensitive poplar clone 107. The control group and high-concentration O3 group were set up: charcoal-filtered air, CF; unfiltered air + 60 ppb O3, NF. Poplar rhizosphere soil was taken after 96 days (15 June to 17 September 2020) of cultivation in OTCs. O3 stress decreased the amplicon sequence variations (ASVs) of microorganisms in poplar 107 and poplar 546 rhizosphere soil, with no significant interspecific difference. The effect of O3 fumigation on the fungal community was greater than that on the bacterial community. The correlation between the bacterial community and rhizosphere soil physicochemical indices was closer than that of the fungal community. Some fungi, such as Clitopilus hobsonii, Mortierella sp., and Minimedusa, might help poplar resist the O3 stress. O3 stress had direct impacts on the pH, nutrients, and enzyme activities of rhizosphere soil, while it had indirect negative impacts on microbial community composition by nutrients. There was no difference in sensitivity between rhizosphere soil response to O3 stress of poplar clone 107 and clone 546, which might take a longer accumulation time to show the effect. This study provides a certain basis for accurately evaluating the ecological effects of O3 pollution. Full article
Show Figures

Figure 1

15 pages, 3687 KiB  
Article
Microecological Shifts in the Rhizosphere of Perennial Large Trees and Seedlings in Continuous Cropping of Poplar
by Junkang Sui, Chenyu Li, Yinping Wang, Xiangyu Li, Rui Liu, Xuewen Hua, Xunli Liu and Hui Qi
Microorganisms 2024, 12(1), 58; https://doi.org/10.3390/microorganisms12010058 - 28 Dec 2023
Cited by 5 | Viewed by 1414
Abstract
The cultivation of poplar trees is hindered by persistent cropping challenges, resulting in reduced wood productivity and increased susceptibility to soil-borne diseases. These issues primarily arise from alterations in microbial structure and the infiltration of pathogenic fungi. To investigate the impact on soil [...] Read more.
The cultivation of poplar trees is hindered by persistent cropping challenges, resulting in reduced wood productivity and increased susceptibility to soil-borne diseases. These issues primarily arise from alterations in microbial structure and the infiltration of pathogenic fungi. To investigate the impact on soil fertility, we conducted an analysis using soil samples from both perennial poplar trees and three successive generations of continuously cropped poplar trees. The quantity and community composition of bacteria and fungi in the rhizosphere were assessed using the Illumina MiSeq platform. The objective of this study is to elucidate the impact of continuous cropping challenges on soil fertility and rhizosphere microorganisms in poplar trees, thereby establishing a theoretical foundation for investigating the mechanisms underlying these challenges. The study found that the total bacteria in the BT group is 0.42 times higher than the CK group, and the total fungi is 0.33 times lower than the CK group. The BT and CK groups presented relatively similar bacterial richness and diversity, while the indices showed a significant (p < 0.05) higher fungal richness and diversity in the CK group. The fractions of Bacillus were 2.22% and 2.41% in the BT and CK groups, respectively. There was a 35.29% fraction of Inocybe in the BT group, whereas this was barely observed in the CK group. The fractions of Geopora were 26.25% and 5.99%, respectively in the BT and CK groups. Modifying the microbial community structure in soil subjected to continuous cropping is deemed as the most effective approach to mitigate the challenges associated with this agricultural practice. Full article
(This article belongs to the Special Issue Rhizosphere Microbial Community 2.0)
Show Figures

Figure 1

Back to TopTop