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Abstract: After a period of significant development, poplar cultivation in Italy has been in rapid
decline since the 1980s. Because of its marked ductility, poplar is valuable for both wood furniture
and energy production. Production could be increased through mechanization, because innovative
machinery and equipment can reduce the exposure of forest workers to common risk factors, ensure
greater and better productivity, increase the efficiency of operations, and reduce costs. There are
various systems for the mechanization of poplar production (from traditional to advanced and pushed
mechanization). We describe the range of possibilities (in terms of both the techniques adopted and
the machines used) for planting, harvesting, and chopping poplar. Based on our analysis of operating
costs, we conclude that mechanized poplar production could reduce the average cost per ton of wood
chips (EUR/t) by 23% and the average gross cost per hectare of wood chips produced (EUR/ha)

by 37%.
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Sustainability of Harvesting Poplar In Italy, the management of forest stands of natural origin is increasingly oriented
Plantations in Italy. Forests 2024, 15, towards the promotion of functions of a non-speculative nature and of public environmental
397. hitps://doi.org/10.3390/ interest. In this context, the sustainable production of wood from poplar trees plays a
£15030397 significant role in storing carbon dioxide from the atmosphere, sequestering it in long-term

works (such as furniture, building materials, etc.). This practice contributes to the pursuit
of collective well-being, promoting climate change mitigation and environmental and
landscape improvement in rural areas.

While, on the one hand, the environmental functions can be entrusted more with the
natural forest heritage, on the other hand, the economic productive function is increasingly
delegated to arboriculture plants. These plants provide a positive response to the needs

of accelerated production (with increases not reachable in the forest), the possibility of
better planning, and the search for consistency and homogeneity of the dimensions and
technological characteristics of the assortments obtainable [1], while carrying out in part
the environmental functions delegated to the natural forest patrimony. In this regard, the
This article is an open access article ~ COMMon agricultural policy (CAP) provides economic incentives for the cultivation of more

distributed under the terms and  €Nvironmentally sustainable poplar hybrids (MSA), at the suggestion of the “From Farm to
conditions of the Creative Commons ~ FOrk” strategy [2], with the aim of contributing to carbon neutrality by 2050 [3].
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The reasons for this evolution are many, and the most important is certainly the
ductility of poplar wood: soft, whitish and light, it lends itself well to being worked,
glued, and painted. It can be used in various economic and production sectors such as
carpentry (packaging, scaffolding elements, wood wool, plywood, chipboard, matches,
and occasionally furniture) and in the paper industry [4]. For outdoor use, poplar wood is
usually heat-treated. Moreover, poplar is a renewable energy source; it is among the most
efficient tree species, as—more than others—it optimizes the production yield of biomass
that is used to produce thermal and electrical energy.

However, a careful analysis of the state of poplar cultivation is difficult today due to
the progressive reduction in the information base, not only on the extent of cultivated areas,
production, and the number of operators, but also economic variables directly linked to
production (timber prices, costs of cultivation operations, concession fees, etc.). It is true,
however, that the growing increase in labor costs in recent years has not been fully offset by
an increase in the market value of the timber product, and for the entrepreneur to maintain
their business, they are necessarily forced to keep costs as low as possible. The costs derived
from crop production contribute significantly to the final cost of the biomass [5,6] and there
are many aspects of the agronomic process that could be optimized through applying
science and innovation. Therefore, it is necessary to identify these aspects correctly as a first
step to finding alternative solutions [7,8]. To increase the economic sustainability of poplar
weights, productivity, and therefore the competitiveness of the material on the market, it is
certainly necessary to strengthen and improve the level of mechanization by encouraging
the use of more innovative machines [9].

The benefits of mechanization development from the 1980s to the present are evi-
dent [10]: an increase in the level of mechanization offers advantages to wood workers not
only in reducing costs and increasing the productivity of the yard [10], but also in ensuring
greater worker safety [11-13]. In the present work, three possible levels of mechanization to
be used in the different phases of the forest worksite (felling/staging, harvesting, shredding,
and loading) are distinguished and analyzed: (i) traditional, (ii) advanced, and (iii) pushed.

While at the traditional level, the use of a chainsaw is mainly expected, at the advanced
one, the abatement occurs with a head of abatement (e.g., pliers with clamping arms and
cutting device at the base, mounted on a hydraulic articulated arm of a machine with
sufficient power, normally >80 kw), thus leaving the staging phase to the chainsaw. The
integration of mechanical means takes place in heavy mechanization in which a series of
combined saws called combined harvesters (both for felling and for setting up) are used.

For the harvesting phase, more traditional means, such as the use of a tractor with the
addition of a winch (traditional and advanced mechanization) [14], have been replaced by
more advanced means, such as by a forwarder or an articulated trolley and a skidder or an
articulated tractor equipped with pliers and/or winch.

The aim of this work is to analyze the main mechanization techniques present in
the field of poplar cultivation, deepening the multitude of machines used in forestry
processing and devoting ample space to the analysis of the operating costs of equipment
in a comparative perspective with respect to the most effective and sustainable level of
mechanization.

The following techniques were used for this review of the scientific literature: the
main search engine used was the Scopus and Science Direct database. Keywords such as
forestry mechanization, poplar cultivation, short rotation coppice, harvesting systems, and
operating costs were used for the research. There was also bibliographical research at the
library of the Council for Research in Agriculture and Economics (CREA) in Rome and
Casale Monferrato (AL). The selection criteria for the articles for this review focus on the
year of publication, preferring the most recent scientific publications except for the issue of
operating costs, as there is no recent literature on this subject, and on the consistency with
the main species under analysis, namely poplar. Articles with a similar type of cultivation
of forest species and category of use of final biomass were also considered.
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2. Poplar Cultivation in Italy

The poplar cultivation in Italy is a sector of excellence to produce wood for industrial
and energy use [4]. Wood arboriculture occupies about 100,000 ha [15] and the sector is
dominated by poplar cultivation that, compared to the total forest area, provides half of the
annual harvests of wood [16]. Covering less than 1% of the national forest area, 46,125 ha in
total, it supplies about 1 million m? of round wood per year, equal to 45% of the domestic
round wood [17]. The production area is located for 94% in the Po Valley with prevalence
in Lombardy and Piedmont (70%) for a total of over 32,000 ha of poplar. More than 50% of
the area falls in floodplain areas, just under 30% in Special Protection Areas (SPAs), while
the remaining 20% is in Sites of Community Interest (5CI) and in park areas [4].

It should be noted that since the period 1950-1970, there has been a phase of great de-
velopment of Italian poplar cultivation, the extension of which has reached over 170,000 ha
of plantations. However, since the 1980s, poplar plantations have experienced a period of
marked and constant decline until they reached less than half of the initial values, or about
83,000 ha [18].

According to the last National Forest Inventory [19], the Italian area of artificial poplar
in 2015 is equal to 51,592 hectares with a total surface loss of 14,678 ha compared to
2005. According to [4], other estimates made on a sample basis in 2018 with reference
to poplar weights of a surface equal to or greater than 5000 m?, excluding polycyclic
poplar plantations, reported that the total area of poplar trees in Italy is equal to 46,125 ha.
Considering the above, the estimates underline the already known phase of decline with a
loss of about 40,000 ha compared to the beginning of the year 2000. The following histogram
(Figure 1) shows the estimated regional area (ha) for poplar cultivation in Italy in 2015 and
2018.
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Figure 1. Regional estimated area (ha) for poplar cultivation in Italy in 2015 [19]-2018 [4]. The
histogram shows only those regions with poplar cultivation with an extension of more than 50 ha in
the years considered.

3. Mechanization in Plant Systems

The short rotation coppice (SRC) is a cultivation system that has been adopted for
about thirty years in Italy for fast-growing species [20] such as poplar. It is used, generally,
to produce biomass (wood chips for energy uses or as industrial material). This model
provides a high level of density (5000-10,000 plants per hectare) and yield shifts every
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2-3 years [21-25]. By applying longer shifts (5-7 years), the model is also referred to as
medium rotation coppice (MRC) [20,26]. In the latter case, the density is about 1600/ha
plants and the aim is the production of biofuel [27].

Finally, the traditional planting system provides for 8-12-year shifts and cultivation
densities of 280-300 plants per hectare, and the final product is good-quality wood for
industry and to produce products such as paper, sawn timber, and panels [28].

The economic viability of the plant depends mainly on minimizing the cost of produc-
tion of the final product, especially in the case of SRC and MRC, taking into account the low
commercial value of wood chips and the competition that this has on the market (there are
much cheaper materials such as sawmill waste). This reduction in the cost of production
can only be achieved through the complete and efficient mechanization of field operations;
among these, the most expensive are certainly harvesting and planting [14,29,30].

Starting from the plant phase, there are different models of machines that differ in the
type of transplant organs, the type of feed, or the type of plant material used. In the case
of the SRC, and therefore of a cultivation system characterized by a sixth of the “dense”
plant, the best propagation material is the cutting, while for a sixth of the “sparse” plant,
generally used in the MRC or in a traditional plant, the rod is used (pegs of about 2 m) [31].

For the planting of the cuttings, it is possible to mechanize the whole process using
machines capable of operating a mechanized burial. The machines to be used are: Rotor
planter and Spapperi discs transplanter (Figures 2 and 3).

Figure 3. Spapperi hydraulic cuttings transplanter.
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The first machine consists of a metal track with meshes fixed inside another cylinder,
through which a piston operates. Thanks to the traction of the engine, this piston slides
down, allowing for the insertion of the cutting into the cylinder. This system allows us
to progressively insert the cutting vertically into the ground, whereby the planting takes
place without the opening of a groove and without the air remaining around it. The Rotor
is brought with a three-point linkage of tractors of at least 40 kW of power (55 HP) and for
its operation, it requires three operators. The working speed is about 0.8-0.9 km/h with a
labor requirement of 11.5 h/ha. The working capacity is 0.25 ha/h, with a productivity of
about 1250/1500 cuttings/ha/employee.

The second is equipped with clamp injectors that carry out the transplantation, ar-
ranged radially and equidistant from each other on a large metal wheel that moves due to
the drag caused by the movement of the tractor [32]. With the rotation of the wheel, when
an injector element is found in a vertical position and perpendicular to the ground, a special
proximity switch, through a solenoid valve, controls the extension of a hydraulic jack that,
in turn, pushing the injector element down, inserts the cutting into the soil. The machine
must be coupled to a tractor of at least 90 kW and its operation requires two operators. The
working speed is about 1.4-1.6 km/h with a labor requirement of 3.5 h/ha. The working
capacity is 0.87 ha/h, with a productivity of about 1750-1800 cuttings/ha/employee.

The rotor transplanter inflicts the cuttings vertically, while the disc transplant performs
less accurate work, but is also able to mulch along the row with a plastic film with the
dedicated module.

In the case of bolts, the cutting of the ground is carried out by means of a drill; the
planting is performed manually by two operators; and the recoating is carried out by means
of inclined ridgers (spreader) and compacting rollers. Now, there are only prototypes that
are not yet on the market, such as the “R-Innova 500P”, a machine developed on behalf of
R-Innova by the agro-mechanical services company situated in Stagnati di Ostiano (Italy).
These vehicles are also equipped with a platform for the transport of the material and an
acoustic or light signal, electrically controlled by a device, indicating the transplantation
distance [33].

In light of the above, the use of a semi-automatic cuttings transplanter, compared to the
traditional manual or mechanization techniques of the first level, guarantees a significantly
reduced working time and a limited use of labor [32].

4. Mechanization in Harvesting Systems

Harvesting systems are an essential component of woody biomass supply chains [34]
and represent one of the most expensive processes along the entire production chain [35,36].
Poplar harvesting systems can be distinguished based on different parameters such as
the density of the plant, the size of the trees, the space for handling the machines, the
cultivation system, as well as the production purpose and the level of mechanization.

Generally, in the European Union’s poplar yard, mechanization follows the custom-
made harvesting model, in which the trees are taken in commercial lengths per log (cut-to-
length—CTL). This is a fast and productive cutting method [37,38] that involves the use of a
harvester that fells and prepares the logs in lengths generally of 2 m or 4 m, and then these
are transported to the forest landing, through a forwarder. The use of CTL technology offers
several advantages, in particular, an accurate evaluation and measurement of individual
trees directly on the felling field, which is reflected in a better quality of the timber in
terms of reducing the contamination of the logs, quality of uprooting, and recovered
value [27,39,40].

At the same time, however, the CTL is relatively expensive and designed for processing
single trees, which does not fit well with the limits imposed by plantations of small trees [40].
An alternative method is the harvesting system of the whole tree (whole-tree harvesting—
WTH) [41], which consists of: (i) felling of whole trees, (ii) dragged by a skidder grapple on
the landing, and (iii) transformed into trunks [27,39,42].
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As can be seen, the WTH method requires three steps instead of the two required
by the CTL method; however, the workflow is sustained at higher speeds, and the pro-
cessing of trees, once on the ground, minimizes the influence of trunk size on extraction
efficiency [27,43]. The WTH method, already particularly appreciated in the USA, is much
more effective in terms of productivity in the felling and extraction operation, especially in
the presence of constraints due to the reduced size of the trees, where the previous CTL
method is unfavorable.

From an economic point of view, the WTH system provides a 10% higher produc-
tivity than the CTL system and a cost reduction of around 15 EUR/t [39]. However, the
two methods shown are poorly specialized harvesting systems for medium-shift-coppice
crops [44-46].

Two other harvesting systems exist and are widely diffused in the poplar trees of North
America: system-to-peripheral accumulations and system-to-centralized accumulation.

The first involves felling and setting up by a dedicated machine characterized by a
shear head; then the material is transported with a wheel loader to the landing where
the woodchipper-root—debarker unit (CSS) is located. The centralized storage system,
instead, provides the transportation of the felled plants to the storage area through a disc
head mounted on a dedicated forestry tractor. Subsequently, they are transported with
a forwarder to the roadside and divided according to the type of retractable assortment,
sawn timber or discarded selvedges and/or small plants, whereby the latter are chipped
through the CSS. Both work systems can produce more than 400 tons of biomass per day,
with a total cost of EUR 12-24 per ton of biomass [46].

For the harvesting of young plantations, the only economically sustainable solution
is multi-shaft handling (MTH), where more than one tree is collected per work cycle,
compensating for small volumes of material [12,41]. In this case, the felling is made
with a mini-crawler blast chiller characterized by a head equipped with a disc saw and
accumulation arm, able to break down and accumulate two plants per work cycle, and
concentrating six rows of plants on a single swath. This system is efficient and economical,
having the advantage of using inexpensive and extremely mobile vehicles [46].

5. Mechanization in Chopping Systems

In recent years, the increasing use of alternative energy sources as opposed to fossil
fuels and the consequent creation of power plants or small plants for the production of
thermal energy has diversified the use of wood waste products. This is also in light of
the main European policies and legislative acts enacted by the European Union itself, the
European Green Deal and REPowerEU, which are also regarded as incentives for the use of
renewable energy sources for greater environmental and energy sustainability [22,31]. The
biomass produced by the chipping of short-rotation woody crops (SRWCs) is considered
one of the most interesting options to generate renewable energy [47]. The production of
wood chips also ensures the recovery of an average of 20-30% of biomass, which would
otherwise be a residue of utilization [46]. With the chipper, it is possible to reduce the size
of the original woody biomass up to a size of 2 x 2 cm; the larger the original product, the
harder the machine will work, and it will take longer to chip. The poplar, due to the small
size of its trunk and branches, is one of the forest species most suitable for chipping [48].

The lack of knowledge on harvesting [49] and the uncertainties regarding the expected
costs and profits [50,51] are the main reasons why farmers hesitate to establish SRWCs [52].

In general, two different chopping systems are used for SRWCs: cut-and-store and
cut-and-chip [36], as shown below (Figure 4).
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Single-step harvesting (cut-and-chip system)

A

Forage harvester

B
Mower-chipper

Two-step harvesting (cut-and-store system)

C
Forest harvester

D
Shoot harvester

E
Chain saw

Figure 4. Cut-and-chip system (A,B) and cut-and-store system (C-E) [53].

The first system is realized in two phases that take place physically and are temporarily
separated [26]: (i) harvesting and (ii) hauling and chipping the cut stems [54]. The harvest-
ing systems, discussed in the previous paragraph, can be performed in a manual [55] or
mechanical way. The manual harvesting is not interesting unless there are conditions for
which the mechanized system cannot be used (e.g., reduced size of the plant) [36]. Mecha-
nized harvesting operations are performed by using a specialized harvesting head attached
to an agricultural vehicle that allows for the harvesting and transport in the storage place
such as a dedicated site to intervene later [56] or within the plantation itself (swath) [26].

According to a study conducted in Belgium on the harvesting of a short-rotation
poplar plantation [36], it was found that in the cut-and-store system, the manual harvesting
is performed much more slowly than the mechanized one (0.01 vs. 0.37 ha h~1), resulting
in lower productivity (0.15 vs. 8.84 t h~!) and higher costs (8688 vs. 779 EUR ha~!).

In the cut-and-chip system, instead, felling and chipping occur simultaneously by
using mower-feeders that directly unload the wood chips in special trailers, thus facilitating
transport. According to [36], the cut-and-chip harvesting system is intermediate in terms
of performance and productivity compared to the cut-and-store system: the hourly cost is
lower for the manual cut-and-store system than that which is mechanized (440 vs. 674 EUR
h~1), and this does not compensate for the higher cost per hectare and ton (10.142 vs.
2232 EUR ha~! and EUR 426 vs. 94 EUR t~!). For clarity, it is specified that the values
considered for manual harvesting are 0.01 hah~! and 0.15 th~!, while for mechanized
harvesting, they are 0.37 hah~! and 8.84 th~!.

Upon evaluating the relevant Italian literature [30,57-60], some harvest parameters
calculated on short-rotation poplar plantations have been synthesized and are shown in
Table 1 under both the mechanized cut-and-store system and cut-and-chip harvesting
system. The mechanized cut-and-store chipping system (using a Jenz Hem 561) shows an
average productivity of 13.90 th™! and an average cost per hectare of 1594.5 (EUR ha~!);
the cut-and-chip system instead shows an average productivity of 15.98 (th~!) and an
average cost per hectare of 475.08 (EUR ha~!). For the latter case, the self-propelled forage
harvesters (SPFHs), commonly called self-propelled mulchers, that is, vehicles equipped
with a very specific cutting head, are Valmet 921 + 840 and Jenz HEM 561, GBE-1 e GBE-2,
Claas HS-2, and HTM 1500 e Biopoplar, among which the most important versions were
developed by Italian companies [26,52,57].
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Table 1. Literature survey of harvesting operations of poplar cultivations in short rotation. Relevant parameters of the mechanized cut-and-store and cut-and-chip

harvesting systems are presented. Data were collected from various studies reported in the literature [36].

. Above- . .. Cost per
Plant Density Stocking Performance Productivity Cost per Hour Cost per Ton .
System (ha-1) Ground Biomass (tha-1) (hah-1) (th-1) (EUR h-1) Hectar: (EUR t-1) Machine Reference
Age (y) (EUR ha—1)
Cutand 51.33 0.23 5.64 70 304 12 Valmet 840 [61]
Store—Hauling
25.49 0.22 13.63 340 1531 25 JENZ HEM 561
Cut and Store— 31.15 0.20 14.09 340 1681 24 JENZ HEM 561 [60]
Chippin, 25.85 0.20 12.37 340 1704 27 JENZ HEM 561
pping
30.01 0.23 15.54 340 1462 22 JENZ HEM 561
Valmet 921 + 840 and
1670 5 91.00 6.03 7.87 110 664 14 Jenz HEM 561
1670 5 81.50 551 9.22 110 606 12 Valmet 921 + 840 and
Jenz HEM 561 [60]
Valmet 921 + 840 and
1670 5 91.00 6.37 8.26 110 700 13 Jenz HEM 561
Valmet 921 + 840 and
1670 5 81.50 5.97 8.83 110 656 12 Jenz HEM 561
14,100 2 21.90 1.30 16.86 322 418 19 GBE-2 [57]
Cut and Chip 7100 2 16.70 0.60 27.86 552 330 20 GBE-2
10,000 1 8.58 0.90 7.68 203 227 26 Claas HS-2
6000 2 19.60 0.82 16.08 234 285 15 GBE-1
9000 3 24.30 0.46 11.14 270 589 24 HTM 1500
6000 3 30.20 0.66 19.96 210 318 11 Biopoplar [59]
6000 3 24.00 0.79 18.86 210 267 11 Biopoplar
6000 2 27.70 0.53 14.55 210 400 14 Biopoplar
6000 2 32.20 0.28 8.88 210 716 24 Biopoplar
5550 2 20.90 0.93 22.57 GBE-2
5550 2 33.70 1.20 27.97 GBE-2 [57]
9520 2 31.00 1.06 29.14 GBE-2
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The following cost analysis refers only to a chipper on forwarders and therefore to a
cut-and-chip harvesting system.

6. Economic Analysis of the Construction Forest Site

Below is a reworking of costs (EUR/h) made by the authors to estimate the operating
costs of the machines at present. Unfortunately, it has not been possible to calculate the
productivity of the machines (ton/ha), but for completeness, these data were taken from
references, as presented in the previous paragraphs.

The economic evaluation is aimed at quantifying the hourly costs of the equipment
and machines considered in a hypothetical traditional cultivation system and in an SRC
system.

The mechanization levels examined are as follows:

(1) Traditional mechanization;
(2) Advanced/pushed mechanization.

In the first case, the following equipment/machines are considered: GS 630 standard
2T chainsaw (felling and equipment), in the case of traditional mechanization, tractor
“Fendt 600 Vario” with drum winch (wood), and an 88 kW self-propelled loader (load).

In the second case, i.e., for the SRC and therefore with extensive mechanization, the
following equipment/machines are considered: the harvester “Timberjak 1270 C Advance”
(felling and preparation of the material), the forwarder “Komatsu 845” (logging), the
“Erjo” chipper mounted on the forwarder (shredding) and, finally, for stacking, an 88 kW
self-propelled loader.

The following table (Table 2) lists all the technical and economic elements used to
calculate the hourly cost of using the machines. The technical values (nominal power,
useful life, annual use) and the economic values (e.g., new value) were extrapolated from
the data sheets of each machine operator. For the other estimated elements, the calculation
equation used in the last column of the following table was inserted. In regard to average
fuel costs, 1.89 EUR/L was considered for petrol and 1.45 EUR/L for agricultural fuel.
Please note that the table below also shows the costs of using a Feller buncher with the
wheel loader “Komatsu WA80M-8” for advanced mechanization, but that this has not been
considered for the subsequent estimates of effectiveness and productivity of the system.

The elaboration of the operating cost of the machines (values in EUR/hour, Table 3)
was carried out by proposing some technical coefficients deemed more suitable [62] and by
applying an analytical methodology that distinguishes fixed and variable costs [62,63] as
well as by applying mathematical formulas found in the main calculation methodologies
proposed by different authors [64-67]. Relative to the cost of the labor, it has been consid-
ered that a single gross tariff correlates to 15 EUR/hour, inclusive of all the insurance and
provident and assistance burdens previewed by the Italian legislation [18].

For greater clarity in the assessment of the economic sustainability of the machines,
the productivity values given in reference [13] were considered. Based on the average
gross labor productivity (th~?) for individual operations, the authors have elaborated and
estimated the average cost per ton of wood chips produced (EUR/t). The values are shown
in the table below (Table 4).

However, having considered hypothetical cultivation systems, the present review
is limited to resume the productivity reported in the literature [13]. Considering the
application of traditional mechanization (chainsaw, winch, chipper pulled by tractor, and
loader), the average gross time range for the felling/staging phase varies from 145.9 h/ha
to 72.9 h/ha, for extraction from 19 h/ha to 12.7 h/ha, and for loading 12.9-9.6 h/ha for
a total amount of hours ranging from 177.8 h/ha to 95.2 h/ha. Instead, in the case of an
advanced mechanization level (harvester, forwarder, chipper on forwarder and loader), the
average gross utilization time is considerably reduced: during the felling/staging phase,
the hours per hectare per worker vary from 14.5 to 6.6 h/ha, for the extraction from 7.8 to
6.2 h/ha, and finally for the load from 6.7 to 4.9 h/ha for a total range from 29 to 17.7 h/ha.
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Table 2. Technical and economic elements adopted for the calculation of the hourly cost of machines according to the phases of use and the level of mechanization

adopted.
Felling/Staging Skidding Shredding Load
Level of Mechanization Trad(‘;‘)mal Advanced (A)  Pushed (P) T/A P T/A A/P T/A/P
Feller Tractor with Chipper Chipper on Equations or
Technical and Economic Elements Symbols Chainsaw Bunch Harvester Winch Forwarder Pulled by F d Charger Val
uncher inc Tractor orwarder alues
New value (EUR) Vo 946 100.000 380.000 50.000 220.000 100.000 520.000 80.000
Recovery value (EUR) Vh 601.71 22.130 84.094 11.065 48.686 22.130 115.076 17.704 V*0.86 ¥
Useful life (years) Y 3 10 10 10 10 10 10 10
Annual use (h) H 700 1000 1000 1000 1000 800 800 800
Nominal power (kW) P 3.5 75 173 113 140 360 404 88
Interest rate (%) i 4 4 4 4 4 4 4 4
Average fuel cost (EUR/L) Cfu 1.89 1.45 1.45 1.45 1.45 1.45 1.45 1.45
Fuel density (kg/L) Fd 0.7 0.86 0.86 0.86 0.86 0.86 0.86 0.86
Average lubricant cost (EUR/L) Clu 4.5 9 9 9 9 9 9 9
Hourly fuel consumption (L/h) Chf 0.68 9.59 2212 14.45 17.9 46.05 51.67 11.25
Hourly lubricant consumption (L/h) Chl 0.32 0.32 0.73 0.26 0.55 1.4 1.7 0.26
Storage space (m?) Ss 0.6 25.6 484 28.2 32.9 30 419 18.4 le*wi*1.5 *)
Shelter construction cost (EUR/m?) Ccs 500 500 500 500 500 500 500 500
Coeff. miscellaneous expenses C.me 0.001 0.005 0.01 0.003 0.005 0.005 0.01 0.001 0.001-0.01
Coeff. insurance Ci 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01-0.03
Coeff. overheads C.o 0.001 0.005 0.005 0.005 0.005 0.005 0.005 0.001 0.001-0.01
Coeff. storage costs C.cs 0.02 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.02-0.05

(*) le and wi indicate the length and width of the machine, respectively [62].

Table 3. Hourly operating costs of machines (including labor) at different stages of use of the poplar weight, considering different levels of mechanization.

Felling/Staging Skidding Shredding Load
Level of Traditional
Mechanization (T) Advanced (A) Pushed (P) T/A P T/A A/P T/A/P
Feller Tractor with Chipper Chipper on
Cost Items Symbols Chainsaw Harvester . Forwarder Pulled by Charger Equations Used
Buncher Winch Forwarder
Tractor
VARIABLE COSTS (VCh)
Maintenance MA 0.5 6.0 22.8 3.0 13.2 6.0 31.2 4.8 Vo x u®
Fuel cost FC 1.29 13.91 32.07 20.95 25.96 66.77 74.92 16.31 Cfu x Chf

Lubricant cost LC 0.26 2.78 6.41 4.19 5.19 12.6 14.98 3.26 Clu x Chl
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Table 3. Cont.

Felling/Staging Skidding Shredding Load
Level of Traditional 4 orced (A)  Pushed (P) T/A P T/A A/P T/A/P
Mechanization (T)
Feller Tractor with Chipper Chipper on
Cost Items Symbols Chainsaw Harvester . Forwarder Pulled by Charger Equations Used
Buncher Winch Forwarder
Tractor
Miscellaneous MIE 0.01 0.1 0.38 0.05 022 0.06 0.65 0.1 Vo/(Y x H) x C.me
expenses
Labor LA 15 15 15 15 15 15 15 15
Total VCh 17.1 37.8 76.7 43.2 59.6 100.43 136.8 39.5 MA + FC + LC + MIE + LA
FIXED COSTS (FCh)
Amortization AM 0.16 7.79 29.59 3.89 17.13 24.33 50.62 7.79 (Vo — Vn)/(A x H)
Insurance INS 0.03 2.0 7.6 1.0 44 2.5 13.0 2.0 (Vo x Ci)/H
Storage STO 0.01 0.64 1.21 0.71 0.82 0.09 1.31 0.57 (Ccs x Ss x C.me) /H
Interest IN 0.04 2.44 9.28 1.22 5.37 3.05 15.88 2.44 [((Vo + Va)/(2 x H)) x i]/100
Overhead OH 0.001 0.06 0.24 0.03 0.14 0.15 0.40 0.01 (AM + INS + STO + IN) x C.o
Total FCh 0.60 12.93 47.92 6.85 27.86 30.12 81.21 12.81 AM + INS + STO + IN + OH
TOTAL COSTS (EUR/h) 17.62 50.72 124.58 50.05 87.43 130.55 * 217.96 52.29

(*) Maintenance costs are estimated as a percentage of the new value. The maintenance coefficients (1) are between 0.00005 and 0.00006. * To the cost of chipper pulled by tractor must be
added the operating cost of the tractor, which has been estimated at 50 (EUR/h).

Table 4. Average cost per ton of wood chips (EUR/t) at different stages of use of the poplar weight, considering different levels of mechanization.

Felling/Staging Skidding Shredding Load
Level of Traditional (T) Pushed (P) T/A P T/A T/A/P
Mechanization
Chainsaw Harvester Tractor with Winch Forwarder Chipper Pulled by Chipper on Charger
Tractor Forwarder

TOTAL COSTS (EUR/h) 17.62 124.58 50.05 87.43 130.55 * 52.29
PRODUCTIVITY (t/h) 1225 12.4-27.1 9.8-14.2 23-29 10.4-14 10.4-20.1
TOTAL COSTS * (EUR/t) 9.52 6.30 4.17 3.36 14.80 5.03-2.60

* Average of productivity values given in reference [13].
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The cost analysis for the final product, in relation to the degree of mechanization,
reveals that the implementation of a higher level of mechanization entails a significant
reduction in the overall costs of the yard.

Based on the analyses carried out, the adoption of a high level of mechanization leads
to a reduction in operating costs per ton from 33.52 EUR/t to 25.88 EUR/t; similarly, the
costs per hectare increase from an amount of 4518.8 EUR/ha to 2850.8 EUR /ha.

In addition, it should be considered that the estimates are based on an annual use of the
machines at a maximum power of around 800-1000 h; less use would entail considerable
cost increases compared to those reported.

According to [4], a team that adopts a push mechanization can use up to 100 ha per
year against about 12-15 ha of those who work with traditional yard methods. Therefore,
a level of mechanization push is feasible and advantageous only if the technical, logistic,
and commercial organization of the enterprise allows us to optimize the potentiality of the
means available that must work with continuity over the whole day and the year.

A higher level of mechanization also shows great advantages in terms of productivity.
The high degree of mechanization allows for a high level of work organization and an
increase in the productivity of the site.

The use of the harvester gives the yard a daily productivity of up to 35 tons per
worker compared to 12 tons in the traditional system [4,68]. When compared with a
more traditional working methodology, there is a reduction in working time of 117 h per
worker, which in terms of productivity, corresponds to 6.86 t/ha per worker as opposed to
1.26 t/ha [69].

These economic and work organization advantages translate into greater company
efficiency, including at the budgetary level, as well as an improved psychophysical well-
being of workers—well-being which, in turn, results in an increased working capacity and
improved productivity [70,71].

Economic and production efficiency, as analyzed in paragraph 4, can be further in-
creased using new innovative machines and new technologies [72,73]. Precision forestry,
autonomous and assisted driving, as well as the latest generation of remote sensing, offer
significant benefits for forest production and operator safety [71].

It is fair to point out that, for a complete and comparative analysis of the two systems,
it would be appropriate to quantify the revenues from the final products (quality wood for
industry, in the case of the traditional and wood chip systems in the case of SRC) [74,75].

7. Conclusions

From the work carried out, it has been understood how mechanization in the forestry
sector and, in particular, in that of poplar cultivation can help to increase economic ef-
ficiency to improve productivity and reduce worker accidents, as well as increase the
psychophysical well-being of workers.

From the analysis of the data carried out, it can be noted that, given the high initial
investment, the implementation of a high level of mechanization entails a significant
reduction in the overall costs of the yard, as well as a higher plant productivity and
therefore higher profits.

In fact, based on the calculation of the operating costs of the machines implemented by
the authors, it seems that the use of a strong mechanization involves a percentage reduction
of the average cost per ton of wood chips produced (EUR/t) of 23%, from 33.52 EUR/t
to 25.88 EUR/t and a percentage reduction of the average gross cost per hectare of wood
chips produced (EUR/ha) of 37%, from an amount of 4518.8 EUR/ha to 2850.8 EUR/ha.

Economic and production efficiency, analyzed in Section 4, can be further enhanced
by using innovative new machines and new technologies such as autonomous and assisted
driving and latest-generation remote sensing, which offer significant benefits for forest
production and operator safety. By using these innovative machines, it is possible to have
higher-quality final products, thus guaranteeing broad protection for the consumer who
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will be less averse to purchasing and will contribute to increasing the turnover of the market
for new renewable energies deriving from woody biomass.

Of course, the European and national institutions must play a key role in encourag-
ing the generational replacement of obsolete agricultural and forestry machinery and in
encouraging the use of the latest technologies.
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