Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = pomegranate waste

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 18302 KiB  
Article
Harnessing the Therapeutic Potential of Pomegranate Peel-Derived Bioactive Compounds in Pancreatic Cancer: A Computational Approach
by Rita Majhi, Sagar Kurmi, Hilal Tayara and Kil To Chong
Pharmaceuticals 2025, 18(6), 896; https://doi.org/10.3390/ph18060896 - 15 Jun 2025
Viewed by 653
Abstract
Background/Objectives: Pomegranate (Punica granatum) peel, often discarded as waste, contains abundant bioactive compounds such as polyphenols, vitamins, flavonoids, tannins, anthocyanins, and many more. This contributes to remarkable bioactivities, including anticancer, anti-inflammatory, antioxidant, antibacterial, and antifungal properties. Pancreatic cancer is a deadly cancer [...] Read more.
Background/Objectives: Pomegranate (Punica granatum) peel, often discarded as waste, contains abundant bioactive compounds such as polyphenols, vitamins, flavonoids, tannins, anthocyanins, and many more. This contributes to remarkable bioactivities, including anticancer, anti-inflammatory, antioxidant, antibacterial, and antifungal properties. Pancreatic cancer is a deadly cancer with a 9% survival rate. Its aggressiveness, invasiveness, quick metastasis, and poor prognosis significantly decrease the survival rate. Thus, we aim to explore pomegranate peel as a possible alternative medication for treating pancreatic cancer through virtual methods. Methods: Firstly, bioactive compounds were collected from multiple databases and screened for oral bioavailability (OB) ≥ 0.3 and drug likeness (DL) ≥ 0.18 scores. Simultaneously, network pharmacology was employed to extract the most probable targets for pancreatic cancer. Further computational analyses were performed, including molecular docking, molecular dynamics simulation, and in silico pharmacokinetics evaluation. Results: Consequently, the top 10 key targets from network analysis were AKT1, IL6, TNF, SRC, STAT3, EGFR, BCL2, HSP90AA1, HIF1A, and PTGS2. However, only AKT1, EGFR, BCL2, HSP90AA1, and PTGS2 exhibited strong binding affinities with pomegranate compounds, which are significantly declared in affected cells to enhance cancer progression. Outcomes from molecular dynamics simulations, particularly RMSD, RMSF, hydrogen bonding, and radius of gyration (Rg), confirmed stable interactions between 1-O-Galloyl-beta-D-glucose, epicatechin, phloridzin, and epicatechin gallate with respective target proteins. Conclusions: This suggests that pomegranate peels hold anticancer bioactive compounds for treating pancreatic cancer. Surprisingly, most compounds adhere to Lipinski’s and Pfizer’s rules and display no toxicity. However, as this study relies entirely on computational methods, experimental validation is necessary to confirm these findings and assess real-world efficacy and potential side effects. Full article
(This article belongs to the Special Issue The Discovery and Development of Drug Ingredients from Food Sources)
Show Figures

Figure 1

14 pages, 1108 KiB  
Article
Kinetic Modeling, Comparative Investigations, and a New Approach to Quantifying the Global Extraction Yield of Algerian Pomegranate Peel Phenolic Compounds
by Dehbiya Gherdaoui, Fatma Bouazza, Samira Ihadadene, Madiha Melha Yahoum, Sonia Lefnaoui, Abdeltif Amrane and Lotfi Mouni
AppliedChem 2025, 5(2), 11; https://doi.org/10.3390/appliedchem5020011 - 28 May 2025
Viewed by 743
Abstract
The aim of this study was to quantify the total extraction yield (GEY) of polyphenols from pomegranate peels using a solid–liquid extraction process without evaporation but with UV-Vis spectrophotometry. Extraction kinetics models were tested to evaluate the extract yield (GEY), total phenolic compounds [...] Read more.
The aim of this study was to quantify the total extraction yield (GEY) of polyphenols from pomegranate peels using a solid–liquid extraction process without evaporation but with UV-Vis spectrophotometry. Extraction kinetics models were tested to evaluate the extract yield (GEY), total phenolic compounds (TPCs), total flavonoids (TFCs), and condensed tannins (CTCs). The results showed maximum values of 45% for GEY, 97.560 mg EAG/g db for TPC, 4.416 mg EQ/g db for TFC, and 0.412 mg EC/g db for CTC, obtained with a methanol/water mixture (75/25, v/v) for 24 h. Spectrophotometry proved to be a reliable method for quantifying the total extraction yield, with a correlation of 99.79% compared to the conventional method. The second-order kinetic model accurately described the mass transfer mechanisms of the bioactive compounds studied. This study provides important insights into the mass transfer mechanisms during the extraction of bioactive compounds, facilitating the design, optimization, and control of large-scale processes for the recovery of pomegranate waste. Full article
Show Figures

Figure 1

14 pages, 4179 KiB  
Article
Valorization of Pomegranate Peel: Mechanisms and Clinical Applications in Irritable Bowel Syndrome Management
by Yu Guo, Lu Wang, Jun-Qing Huang, Mu-Wen Lu and Song-Hong Yang
Int. J. Mol. Sci. 2025, 26(8), 3530; https://doi.org/10.3390/ijms26083530 - 9 Apr 2025
Viewed by 910
Abstract
Current disposal methods for pomegranate peel (PP) waste are inadequate, resulting in environmental pollution. Given PP’s therapeutic potential in alleviating irritable bowel syndrome (IBS), elucidating its bioactive mechanisms is critical to guide its development into dietary supplements and promote sustainable recycling. In this [...] Read more.
Current disposal methods for pomegranate peel (PP) waste are inadequate, resulting in environmental pollution. Given PP’s therapeutic potential in alleviating irritable bowel syndrome (IBS), elucidating its bioactive mechanisms is critical to guide its development into dietary supplements and promote sustainable recycling. In this study, bioinformatics and network analysis were employed to identify active compounds, key targets, and signaling pathways associated with PP’s therapeutic effects. We identified 39 bioactive compounds (primarily polyphenols) and 106 key targets linked to IBS. Network analyses revealed that PP polyphenols mitigate oxidative stress and inflammation, modulate estrogen receptors to enhance gastrointestinal motility, and regulate ferroptosis. These findings underscore PP’s potential as a therapeutic agent for IBS and provide a framework for repurposing food-processing byproducts. Full article
(This article belongs to the Special Issue Characterization and Biological Function of Plant Extracts)
Show Figures

Figure 1

19 pages, 2437 KiB  
Article
Anti-Inflammatory, Antioxidant and Antibacterial Properties of Tomato Skin and Pomegranate Peel Extracts: A Sustainable Approach for Oral Health Care
by Alessia Silla, Angela Punzo, Francesca Bonvicini, Matteo Perillo, Marco Malaguti, Antonello Lorenzini, Ismaela Foltran, Dario Mercatante, Mara Mandrioli, Maria Teresa Rodriguez-Estrada, Silvana Hrelia and Cristiana Caliceti
Antioxidants 2025, 14(1), 54; https://doi.org/10.3390/antiox14010054 - 5 Jan 2025
Cited by 1 | Viewed by 1666
Abstract
Agricultural food waste and by-products could provide high-value compounds that positively affect human and environmental health, thus representing promising ingredients for cosmeceutical products. This study explores the biological activities of tomato skin (HP) and pomegranate peel (PPE) extracts on oral mucosa to evaluate [...] Read more.
Agricultural food waste and by-products could provide high-value compounds that positively affect human and environmental health, thus representing promising ingredients for cosmeceutical products. This study explores the biological activities of tomato skin (HP) and pomegranate peel (PPE) extracts on oral mucosa to evaluate their possible use in mouthwashes. The biological activities of the extracts and the mouthwash (MW) containing them were evaluated in Human Primary Gingival Epithelial cells (HGECs). The antioxidant and anti-inflammatory activities were analyzed in HGECs injured with lipopolysaccharides. After 24 h of treatment with PPE, HP, and MW, significant antioxidant activity and an increased Superoxide Dismutase 1 expression (p < 0.01) were observed. Additionally, the extracts significantly reduced the expression of tumor necrosis factor α (p < 0.05) and Monocyte Chemoattractant Protein 1 (p < 0.001), suggesting an anti-inflammatory role. Lastly, the antibacterial activity was assessed against Streptococcus mutans and Streptococcus sanguinis by the broth microdilution method and agar cup diffusion test for the extracts and the mouthwash, respectively, demonstrating strong effectiveness against both oral streptococcus species. Results demonstrate the potential of HP and PPE in reducing oxidative stress, inflammation, and bacterial proliferation within oral mucosa, highlighting food waste up-cycling as a resource for human health. Full article
Show Figures

Figure 1

34 pages, 2864 KiB  
Review
Natural Compounds from Food By-Products in Preservation Processes: An Overview
by Lucia Maddaloni, Laura Gobbi, Giuliana Vinci and Sabrina Antonia Prencipe
Processes 2025, 13(1), 93; https://doi.org/10.3390/pr13010093 - 2 Jan 2025
Cited by 2 | Viewed by 3208
Abstract
Food spoilage is a natural process that influences the quality and safety of food products, negatively affecting their nutritional and organoleptic composition. In these regards, traditional industrial food preservation processes often rely on the use of traditional preservation techniques to extend food shelf [...] Read more.
Food spoilage is a natural process that influences the quality and safety of food products, negatively affecting their nutritional and organoleptic composition. In these regards, traditional industrial food preservation processes often rely on the use of traditional preservation techniques to extend food shelf life, while ensuring microbiological and chemical stability without compromising the product’s sensory characteristics. However, in recent years, consumers have become increasingly wary of chemical food additives; they often associate their use with potential health risks and negative impact on product appeal. In addition, this is compounded by an increasingly compellent European regulatory framework, as well as efforts in the search of natural and sustainable alternatives for food preservation. In this context, this review explores the potential of natural additives, such as polyphenols, flavonoids, and antioxidants, derived from agro-industrial waste, including fruit peels, vegetable by-products, and seeds. These compounds exhibit strong antioxidant and antimicrobial properties, which not only extend the shelf life of food products but also enhance their safety and quality. Considering vegetable wastes (i.e., pomegranate peels, olive leaves, olive mill wastewater, and grape pomace) as the main by-products from which natural additives can be extracted, this study provides an overview of their efficacy in preventing lipid oxidation and reducing microbial growth, while maintaining sensory properties. This could represent an opportunity both for maintaining food quality and prolonging food shelf life by valorizing by-products to be otherwise disposed of, and also contribute to mitigating the environmental impact associated with the food industry and to optimize food preservation processes. In addition, it highlights the possibility of employing sustainable alternatives to synthetic additives, capable of extending the shelf life of food products while ensuring their safety for human consumption. Full article
Show Figures

Figure 1

21 pages, 2191 KiB  
Article
Trichoderma viride: An Eco-Friendly Biocontrol Solution Against Soil-Borne Pathogens in Vegetables Under Different Soil Conditions
by Shomaila Iqbal, Muhammad Ashfaq, Muhammad Junaid Rao, Khalid Saifullah Khan, Amir Humayun Malik, Mirza Abid Mehmood, Muhammad Sarmad Fawaz, Aqleem Abbas, Muhammad Taimoor Shakeel, Syed Atif Hasan Naqvi, Abdulwahed Fahad Alrefaei and Mingzheng Duan
Horticulturae 2024, 10(12), 1277; https://doi.org/10.3390/horticulturae10121277 - 30 Nov 2024
Cited by 3 | Viewed by 3069
Abstract
The use of biological methods to control plant diseases has garnered attention due to their eco-friendly and economically viable nature. Trichoderma spp. are the most ubiquitous fungal saprophytes that can often grow as opportunistic symbionts, are eco-friendly, and are not reported to exert [...] Read more.
The use of biological methods to control plant diseases has garnered attention due to their eco-friendly and economically viable nature. Trichoderma spp. are the most ubiquitous fungal saprophytes that can often grow as opportunistic symbionts, are eco-friendly, and are not reported to exert any environmental hazard. Soil-borne pathogens can significantly impact the yield of chilli and tomato crops. The study was conducted to explore the impact of various salts (NaCl, MgCl2, CaCl2, and KCl) and their concentrations (1%, 5%, 10%, and 15%) on the mycelial growth and sporulation of Trichoderma viride followed by its mass multiplication on diverse organic substrates like wheat seeds, wheat husks, mungbean seeds, maize seeds, rice seeds, pea seeds, sorghum seeds, banana peel, apple peel, pomegranate peel, citrus peel, tomato waste, chilli waste, spinach waste, cabbage waste, potato peel, onion peel, cucumber peel, carrot peel, used black tea leaves, used green tea leaves, poultry waste, and cow and goat dung. The study assessed the biocontrol potential of Trichoderma viride against important soil-borne pathogens in chilli (Pythium aphanidermatum, Phytophthora capsici, and Fusarium oxysporum) and tomato (Pythium aphanidermatum, Phytophthora infestans, and F. oxysporum) cropping in the pot and field experiments using saline and alkaline soils. Seed treatment with T. viride significantly enhanced the germination rates of both chilli and tomato crops, with sorghum being the most conducive substrate for mass-multiplying T. viride. The results revealed that lower salt concentrations minimally affected T. viride growth, while higher concentrations hampered both growth and sporulation. Optimal disease control and plant height were observed at a 20 mg concentration of T. viride, consequently applied in vivo using various application methods, i.e., seed treatment, root dip, irrigation, and mixed treatments (all the methods like seed treatment, root dip method, and irrigation method applied together) to manage soil-borne pathogens. Particularly, T. viride application through irrigation and mixed treatments demonstrated strong efficacy. These findings underscore the potential of T. viride application in saline and alkaline soils to manage soil-borne pathogens like Pythium, Phytophthora spp., and Fusarium spp. This study lays the foundation for the practical application of biocontrol agents, like T. viride, in Pakistani agricultural conditions. Moreover, there is a need for further exploration into the genetic mechanisms involved in disease inhibition and plant growth promotion, along with understanding the impact of T. viride on the metabolic pathways of host plants. Full article
(This article belongs to the Special Issue New Insights into Stress Tolerance of Horticultural Crops)
Show Figures

Figure 1

18 pages, 10037 KiB  
Article
Extraction, Chemical Modification, and Assessment of Antioxidant Potential of Pectin from Pakistani Punica granatum Peels
by Asma Sabir, Shahzad Ali Shahid Chatha, Ghulam Mustafa Kamal, Shabana Bibi, Noman Sohail, Abdulrahman Alshammari, Norah A. Albekairi and Hitesh Chopra
Sustainability 2024, 16(23), 10454; https://doi.org/10.3390/su162310454 - 28 Nov 2024
Viewed by 1293
Abstract
The conversion of agro-industrial waste into value-added products has attracted the attention of the scientific community. Pectin is an extensively used by-product of agricultural waste and has many applications. The present research used pomegranate peel for the extraction of pectin and explored its [...] Read more.
The conversion of agro-industrial waste into value-added products has attracted the attention of the scientific community. Pectin is an extensively used by-product of agricultural waste and has many applications. The present research used pomegranate peel for the extraction of pectin and explored its antioxidant properties. Pectin from Punica granatum peel was extracted with the help of a feasible, low-cost, and ecofriendly acidified extraction method using ethanol as an extraction solvent. The yield of the pectin with ethanol was found to be 19.1%. The extracted pectin was chemically modified using the amidation method. The structural characterization of the extracted and modified pectin was carried out using the SEM (for morphology), FTIR (for chemical bond and functional groups), EDX (for an elemental analysis), and XRD (for crystallinity) techniques. After confirming the modification of pectin, both the native and modified pectin were assessed for their antioxidant potential. The antioxidant properties of natively extracted pectin and modified pectin were evaluated against different types of free radicals with the help of a hydroxyl radical antioxidant assay, a DPPH radical scavenging assay, ferric-reducing antioxidant power, and a phosphomolybdenum assay. All the performed antioxidant assays revealed that the antioxidant activity of pectin was increased after modification through amidation. The findings could be very useful in obtaining pectin from the peel waste of Punica granatum and obtaining pectin with more bioactive potential via its chemical modification through an optimized method. This is also a step forward in achieving the goal of a sustainable environment. This study contributes to sustainable development by making use of the wasted peels of pomegranate and extracting bioactive pectin at the same time. Full article
Show Figures

Figure 1

15 pages, 3082 KiB  
Article
Synthesis of Highly Intercalated Urea–Clay Nanocomposite via Pomegranate Peel Waste as Eco-Friendly Material
by Abolfazl Teimouri Yanehsari, Hossein Sabahi, Yousef Jahani, Mohammad Hossein Mahmoodi and Farzaneh Shalileh
Agriculture 2024, 14(12), 2097; https://doi.org/10.3390/agriculture14122097 - 21 Nov 2024
Viewed by 1702
Abstract
Until now, no slow-release urea (SRU) fertilizer has been made using the screw press method and the powder of plant residues rich in polyphenols, which are considered eco-friendly materials due to some health benefits for agricultural soil. Therefore, the goal of this experiment [...] Read more.
Until now, no slow-release urea (SRU) fertilizer has been made using the screw press method and the powder of plant residues rich in polyphenols, which are considered eco-friendly materials due to some health benefits for agricultural soil. Therefore, the goal of this experiment was to synthesize a novel SRU fertilizer using “eco-friendly materials” and the “screw press method”. In order to achieve this goal, urea (U) was innovatively and highly intercalated between interlayers of impure montmorillonite (Mt) (bentonite) with the help of polyphenol-rich pomegranate peel powder (PPP) by a single-screw oil press machine. The experiment had five treatments, including a fixed ratio of U/Mt (4:1) with variable ratios of U/Mt/PPP (w/w), including 4:1:0 (F1), 4:1:1 (F2), 4:1:1.5 (F3), and 4:1:2 (F4). Control (U) and F5 treatments (U/PPP at ratio of 4:1) were also included. These composites were fabricated using a single-screw oil press machine. The produced composites were characterized using FTIR, SEM, XRD, and TG analyses. The release pattern was studied using the White method. The XRD (low-angle) results revealed that the interlayer space of Mt increased from 12.3 Å in bentonite to 19.4 Å, 27.3 Å, 25.7 Å, and 0 Å in the F1, F2, F3, and F4 composites, respectively, which is an indicator of the high intercalation of U between the interlayers of Mt, especially in the F2 treatment. The XRD (low- and normal-angle) analyses indicated that the two main reasons for the high intercalation in the F2 treatment were, first, the complete conversion of urea from a crystalline to an amorphous state by PPP and, second, the increase in the interlayer space of Mt nano-sheets by PPP. It seems that PPP at a low concentration (F2) can have a positive effect on the placement of U in the interlayer space, but at high concentrations (F4), due to intensive pectin gelation, the space between the Mt layers grows until complete exfoliation. FTIR spectra and TG analysis also confirmed this hypothesis. SEM images revealed the formation of an intensive crosslink between U, Mt, and PPP. A release test in water revealed that only 10% of U in the F2 treatment was released after 10 h, and 87% after 120 h, which indicates the satisfactory slow-release pattern of this composite. By comparing the results of the present study with the other SRUs reported in the literature, it can be concluded that the composite F2, in addition to offering valuable polyphenol-rich plant materials, had an acceptable performance in the aspect of the U release pattern. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

15 pages, 1644 KiB  
Article
Combining the Powerful Antioxidant and Antimicrobial Activities of Pomegranate Waste Extracts with Whey Protein Coating-Forming Ability for Food Preservation Strategies
by Sara Viggiano, Rita Argenziano, Adriana Lordi, Amalia Conte, Matteo Alessandro Del Nobile, Lucia Panzella and Alessandra Napolitano
Antioxidants 2024, 13(11), 1394; https://doi.org/10.3390/antiox13111394 - 15 Nov 2024
Cited by 2 | Viewed by 1452
Abstract
Different solvents water, ethanol and ethanol/water (6:4 v/v), were compared in the extraction of pomegranate peels and seeds (PPS) in terms of recovery yields, antioxidant properties, and antimicrobial action against typical spoilage bacterial and fungal species. The best performing extract [...] Read more.
Different solvents water, ethanol and ethanol/water (6:4 v/v), were compared in the extraction of pomegranate peels and seeds (PPS) in terms of recovery yields, antioxidant properties, and antimicrobial action against typical spoilage bacterial and fungal species. The best performing extract (ethanol/water (6:4 v/v) was shown to contain mostly ellagic acid and punicalagin as phenolic compounds (5% overall) and hydrolysable tannins (16% as ellagic acid equivalents) and was able to inhibit the growth of the acidophilic Alicyclobacillus acidoterrestris at a concentration as low as 1%. The preservation of the organoleptic profile of A. acidoterrestris-inoculated apple juice with extract at 1% over 20 days was also observed thanks to the complete inhibition of bacterial growth, while the extract at 0.1% warranted a significant (40%) inhibition of the enzymatic browning of apple smoothies over the first 30 min. When incorporated in whey proteins’ isolate (WPI) at 5% w/w, the hydroalcoholic extract conferred well appreciable antioxidant properties to the resulting coating-forming hydrogel, comparable to those expected for the pure extract considering the amount present. The WPI coatings loaded with the hydroalcoholic extract at 5% were able to delay the browning of cut fruit by ca. 33% against a 22% inhibition observed with the sole WPI. In addition, the functionalized coating showed an inhibition of lipid peroxidation of Gouda cheese 2-fold higher with respect to that observed with WPI alone. These results open good perspectives toward sustainable food preservation strategies, highlighting the potential of PPS extract for the implementation of WPI-based active packaging. Full article
(This article belongs to the Special Issue Antioxidant Properties and Applications of Food By-Products)
Show Figures

Graphical abstract

8 pages, 979 KiB  
Communication
Evaluating the Efficacy of an Extract for UV Defense and Mitigation of Oxidative Stress, Transitioning from Biomass to Bioprotection
by Emanuel Vamanu, Milena Lakićević, Nebojša Dedović, Georgiana Dumitru, Ileana Georgiana Badea, Florentina Gatea and Laura Dorina Dinu
Agronomy 2024, 14(10), 2306; https://doi.org/10.3390/agronomy14102306 - 8 Oct 2024
Cited by 1 | Viewed by 1075
Abstract
This study evaluated natural extracts from plant biomass for UV protection and oxidative stress reduction. Conducted in Bucharest, Romania, it focused on medicinal mushrooms and pomegranate bark. The biotechnological process involved a two-phase extraction: hot water processing of Ganoderma lucidum, Hericium erinaceus [...] Read more.
This study evaluated natural extracts from plant biomass for UV protection and oxidative stress reduction. Conducted in Bucharest, Romania, it focused on medicinal mushrooms and pomegranate bark. The biotechnological process involved a two-phase extraction: hot water processing of Ganoderma lucidum, Hericium erinaceus, Inonotus obliquus, and Tremella mushrooms, followed by ethanol extraction with pomegranate bark and green tea. The spectrophotometric analysis identified phenolics and flavonoids. The ethanol extract showed higher phenolic content and antioxidant activity, particularly in DPPH radical scavenging. UVB exposure tests demonstrated its protective effect, comparable to vitamin B3, delaying oxidative stress onset by 30 min. This research underscores the potential of using natural biomass extracts in skincare, promoting environmental sustainability and economic viability by converting agricultural waste into valuable bioactive compounds. Full article
Show Figures

Figure 1

19 pages, 5716 KiB  
Article
The Application of MgO-Modified Biochars for the Immobilization of Ni, Cu, Pb, and Cr in Stone Crushing and Mining-Polluted Soil
by Irfan Saleem, Altaf Hussain Lahori, Monika Mierzwa-Hersztek, Ambreen Afzal, Maria Taj Muhammad, Muhammad Shoaib Ahmed, Viola Vambol and Sergij Vambol
Agronomy 2024, 14(7), 1423; https://doi.org/10.3390/agronomy14071423 - 30 Jun 2024
Cited by 1 | Viewed by 1714
Abstract
The objective of the present study was to investigate the impact of MgO 0.5 g/kg loaded in different organic waste materials on the properties of the modified biochars obtained. The waste materials included tea waste, wood waste, water chestnut peel, and pomegranate peel, [...] Read more.
The objective of the present study was to investigate the impact of MgO 0.5 g/kg loaded in different organic waste materials on the properties of the modified biochars obtained. The waste materials included tea waste, wood waste, water chestnut peel, and pomegranate peel, which were used to create tea waste MgO-modified biochar (TWMgO-MBC), wood waste MgO-modified biochar (WSMgO-MBC), water chestnut peel MgO-modified biochar (WCMgO-MBC), and pomegranate peel MgO-modified biochar (PPMgO-MBC). All the MgO-modified biochars were prepared at 600 °C for 2 h and applied at 0.5 and 1% doses for the immobilization of Ni, Cu, Pb, and Cr in stone crushing and mining-polluted soil and the reduction in their uptake by pearl millet (Pennisetum glaucum) plant. The greatest fresh and dry biomasses were observed at 45.04% and 31.29%, respectively, with the application of TWMgO-MBC 1% in stone-crushing-polluted soil. The highest degree of immobilization of Ni (76.67%) was observed for the WSMgO-MBC 1% treatment, Cu (73.45%) for WCMgO-MBC 1%, Pb (76.78%) for WSMgO-MBC 1%, and Cr (70.55%) for WCMgO-MBC 1%, in comparison with the control. The maximum uptake of Ni, Cu, Pb, and Cr in the shoot of pearl millet was reduced by 78.43% with WSMgO-MBC 1%, 75.06% with WSMgO-MBC 1%, 90.81% with WCMgO-MBC 1%, and 85.71% with WSMgO-MBC 1% as compared with the control. The greatest reduction in Ni, Cu, Pb, and Cr in the root of pearl millet was observed at 77.81% with WSMgO-MBC 1%, 68.09% with WCMgO-MBC 1%, 84.03% with WCMgO-MBC 1%, and 88.73% with WCMgO-MBC 1%, in comparison with the control. The present study demonstrated that the TWMgO-MBC 1% treatment was highly effective for improving plant growth, while the WSMgO-MBC 1%, and WCMgO-MBC 1% treatments were found to be highly effective for immobilizing heavy metals in polluted soils, thus facilitating safe crop cultivation. Future studies should concentrate on the long-term application of MgO-modified biochars for the remediation of multimetal-polluted soils. Full article
Show Figures

Figure 1

19 pages, 10682 KiB  
Article
Green Synthesis of Silver Nanoparticles Mediated by Punica granatum Peel Waste: An Effective Additive for Natural Rubber Latex Nanofibers Enhancement
by Talia S. Echegaray-Ugarte, Andrea L. Cespedes-Loayza, Jacqueline L. Cruz-Loayza, Luis A. Huayapa-Yucra, Isemar Cruz, Júlio Cesar de Carvalho and Luis Daniel Goyzueta-Mamani
Polymers 2024, 16(11), 1531; https://doi.org/10.3390/polym16111531 - 29 May 2024
Cited by 8 | Viewed by 2802
Abstract
Pomegranate waste poses an environmental challenge in Arequipa. Simultaneously, interest in sustainable materials like natural rubber latex (NRL) is growing, with Peruvian communities offering a promising source. This study explores the green synthesis of silver nanoparticles (AgNPs) using pomegranate peel extract and their [...] Read more.
Pomegranate waste poses an environmental challenge in Arequipa. Simultaneously, interest in sustainable materials like natural rubber latex (NRL) is growing, with Peruvian communities offering a promising source. This study explores the green synthesis of silver nanoparticles (AgNPs) using pomegranate peel extract and their incorporation into NRL nanofibers for enhanced functionalities. An eco-friendly process utilized silver nitrate and pomegranate peel extract as a reducing and capping agent to synthesize AgNPs. The resulting AgNPs and NRL/AgNPs nanofibers were characterized using imaging and spectroscopic techniques such as UV-vis, TGA, FTIR, XRD, Raman, SEM, and DLS. Green-synthesized AgNPs were spherical and crystalline, with an average diameter of 59 nm. They showed activity against K. pneumoniae, E. coli, B. cereus, and S. aureus (IC50: 51.32, 4.87, 27.72, and 69.72 µg/mL, respectively). NRL and NRL/AgNPs nanofibers (300–373 nm diameter) were successfully fabricated. The composite nanofibers exhibited antibacterial activity against K. pneumoniae and B. cereus. This study presents a sustainable approach by utilizing pomegranate waste for AgNP synthesis and NRL sourced from Peruvian communities. Integrating AgNPs into NRL nanofibers produced composites with antimicrobial properties. This work has potential applications in smart textiles, biomedical textiles, and filtration materials where sustainability and antimicrobial functionality are crucial. Full article
(This article belongs to the Special Issue Biodegradable Polymers: Synthesis, Characterization and Applications)
Show Figures

Figure 1

20 pages, 5130 KiB  
Review
Comparison of Modified Peels: Natural Peels or Peels-Based Activated Carbons for the Removal of Several Pollutants Found in Wastewaters
by Athanasia K. Tolkou, Konstantinos N. Maroulas, Dimitrios Theologis, Ioannis A. Katsoyiannis and George Z. Kyzas
C 2024, 10(1), 22; https://doi.org/10.3390/c10010022 - 3 Mar 2024
Cited by 11 | Viewed by 5291
Abstract
Wastewater treatment has attracted much attention in recent years as a potential source of water, and there are some concerns about its safety for human use. Eco-friendly and cost-effective adsorbent materials were successfully synthesized from several peels, such as orange, banana, pomegranate, avocado, [...] Read more.
Wastewater treatment has attracted much attention in recent years as a potential source of water, and there are some concerns about its safety for human use. Eco-friendly and cost-effective adsorbent materials were successfully synthesized from several peels, such as orange, banana, pomegranate, avocado, kiwi, etc., and were used as natural adsorbents or as activated carbons derived from these peels for water and wastewater treatment. In this review, the latest research focusing on the effective modification of these peels for the removal of several pollutants found in wastewaters are summarized and compared, such as pharmaceuticals, dyes, heavy metals, and anions that are released in waste and have a negative impact on human and animal health. In this review, focus is given to activated carbon produced from fruit peels. Moreover, fruit peels as adsorbent materials, without previously being converted to activated carbon, are of limited use in the recent literature. Full article
(This article belongs to the Special Issue Adsorption on Carbon-Based Materials)
Show Figures

Figure 1

27 pages, 6931 KiB  
Article
Multifunctional Pomegranate Peel Microparticles with Health-Promoting Effects for the Sustainable Development of Novel Nutraceuticals and Pharmaceuticals
by Milica Radan, Nada Ćujić Nikolić, Snežana Kuzmanović Nedeljković, Zorana Mutavski, Nemanja Krgović, Tatjana Stević, Smilja Marković, Aleksandra Jovanović, Jelena Živković and Katarina Šavikin
Plants 2024, 13(2), 281; https://doi.org/10.3390/plants13020281 - 18 Jan 2024
Cited by 10 | Viewed by 2271
Abstract
Recovering the bioactive components from pomegranate peel (PP) in the fruit-processing industry has attracted great attention in terms of minimizing the waste burden, as well as providing a new source of a multitude of functional compounds. The present study aimed to develop a [...] Read more.
Recovering the bioactive components from pomegranate peel (PP) in the fruit-processing industry has attracted great attention in terms of minimizing the waste burden, as well as providing a new source of a multitude of functional compounds. The present study aimed to develop a feasible microencapsulation process of PP extract by using pectin and a pectin/2-hydroxypropyl-β-cyclodextrin (HP-β-CD) blend as coating materials. Microsized powders obtained by a spray drying technique were examined in terms of technological characteristics, exhibiting high powder yield and desirable moisture content, flowability, and cohesive properties. Assuming that the interactions with the used biopolymers occur on the surface hydrophobic domain, their presence significantly improved the thermal stability of the microencapsulated powders up to 200 °C. The health-promoting effects of PP have been associated with its high content in ellagitannins, particularly punicalagin. The obtained PP powders exhibited strong antioxidant and hypoglycemic potential, while an antimicrobial assay revealed their potent activity against Gram-positive bacteria. Additionally, an in vitro release study suggested that the used biopolymers can modify the release of target bioactive compounds, thus establishing a basis for developing an oral-controlled release system. Altogether, biowaste valorization from PP by the production of effective multifunctional microsized powders represents a sustainable way to obtain novel nutraceuticals and/or pharmaceuticals. Full article
Show Figures

Figure 1

9 pages, 266 KiB  
Communication
Chemical Composition and In Vitro Nutritive Evaluation of Pomegranate and Artichoke Fractions as Ruminant Feed
by Trinidad de Evan, Carlos N. Marcos and María Dolores Carro
Ruminants 2024, 4(1), 1-9; https://doi.org/10.3390/ruminants4010001 - 2 Jan 2024
Cited by 2 | Viewed by 2581
Abstract
The aim of this work was to assess the chemical composition and in vitro ruminal fermentation of samples (n = 3) of pomegranate (peels (PPs) and seeds (PSs)) and artichoke (hearts (AHs) and stems (ASs)) wastes. Dried orange pulp (DOP) and tomato pomace [...] Read more.
The aim of this work was to assess the chemical composition and in vitro ruminal fermentation of samples (n = 3) of pomegranate (peels (PPs) and seeds (PSs)) and artichoke (hearts (AHs) and stems (ASs)) wastes. Dried orange pulp (DOP) and tomato pomace (TP) were used as reference feeds. All wastes had low dry matter (DM; lower than 33.0 and 12.0% for pomegranate and artichoke, respectively). The DM of pomegranate fractions was rich in sugars (>42.0%) and contained low protein (<8.0%) and neutral detergent fiber (NDF; <27.0%), whereas that of both artichoke fractions had high protein (>18.0%) and NDF (>36.0%) and low sugars content (<9.2%). Pomegranate seeds were more rapidly and extensively fermented in vitro than PPs, but both were less degradable and contained less metabolizable energy (ME) than DOP (7.43, 11.0 and 12.5 MJ ME/kg DM, respectively). Although AHs were more rapidly fermented and produced more volatile fatty acids (VFAs) than ASs, both had lower ME content than TP (9.50, 7.25 and 12.5 MJ ME/kg DM). The analyzed wastes had lower ME content than other by-products, but they were extensively fermented by ruminal microorganisms and could be used as ruminant feeds. Full article
Back to TopTop