Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (329)

Search Parameters:
Keywords = polymeric biomass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2118 KB  
Article
Enhancing CO2 Fixation and Wastewater Treatment Performance by Assembling MgFe-LDH on Chlorella pyrenoidosa
by Huanan Xu, Hao Zhou, Yinfeng Hua, Weihua Chen, Jian Wu, Zhenwu Long, Liang Zhao, Lumei Wang, Guoqing Shen and Qincheng Chen
Sustainability 2025, 17(20), 8970; https://doi.org/10.3390/su17208970 - 10 Oct 2025
Viewed by 41
Abstract
Microalgae are considered to be a dual solution for CO2 fixation and biogas slurry purification due to their high photosynthetic efficiency and strong environmental adaptability. However, their application is constrained by the low solubility of CO2 in the solution environment, which [...] Read more.
Microalgae are considered to be a dual solution for CO2 fixation and biogas slurry purification due to their high photosynthetic efficiency and strong environmental adaptability. However, their application is constrained by the low solubility of CO2 in the solution environment, which restricts microalgal growth, resulting in low biomass production and poor slurry purification efficiency. In this study, we developed MgFe layered double hydroxide (LDH) that spontaneously combined with Chlorella pyrenoidosa to help it concentrate CO2, thereby increasing biomass yield and purification capacity for food waste biogas slurry. The prepared MgFe-LDH exhibited a typical layered structure with a CO2 adsorption capacity of 4.44 mmol/g. MgFe-LDH and C. pyrenoidosa carried opposite charges, enabling successful self-assembly via electrostatic interaction. Compared with the control, the addition of 200 ppm MgFe-LDH increased C. pyrenoidosa biomass and pigment content by 36.82% and 63.05%, respectively. The removal efficiencies of total nitrogen, total phosphorus, and ammonia nitrogen in the slurry were enhanced by 20.04%, 31.54% and 14.57%, respectively. The addition of LDH effectively alleviated oxidative stress in C. pyrenoidosa and stimulated the secretion of extracellular polymeric substances, thereby enhancing the stress resistance and pollutant adsorption capabilities. These findings provided a new strategy for the industrial application of microalgal technology in CO2 fixation and wastewater treatment. Full article
Show Figures

Figure 1

22 pages, 3323 KB  
Review
Development and Application Prospects of Biomass-Based Organic Binders for Pellets Compared with Bentonite
by Yu Liu, Wenguo Liu, Zile Peng, Jingsong Wang, Qingguo Xue and Haibin Zuo
Materials 2025, 18(19), 4553; https://doi.org/10.3390/ma18194553 - 30 Sep 2025
Viewed by 293
Abstract
With the low-carbon transformation of the steel industry, using low-carbon raw materials is one of the important ways to achieve the “dual carbon” goals. Pellets have great physical and chemical properties as low-carbon furnace materials, which can significantly reduce blast furnace carbon emissions, [...] Read more.
With the low-carbon transformation of the steel industry, using low-carbon raw materials is one of the important ways to achieve the “dual carbon” goals. Pellets have great physical and chemical properties as low-carbon furnace materials, which can significantly reduce blast furnace carbon emissions, exhibiting favorable overall environmental benefits. Increasing their proportion in the furnace is one of the important measures the steel industry can take to reduce carbon emissions. Binders play a critical role in the pelletizing process, and their properties directly influence pellet quality, thereby affecting the subsequent blast furnace smelting process. Compared with traditional bentonite, organic binders have become a potential alternative material due to their environmental friendliness, renewability, and ability to significantly reduce silica and alumina impurities in pellets while improving the iron grade. This work systematically elucidates the mechanism of organic binders, which primarily rely on the chemical adsorption of carboxyl groups and the hydrogen bonding of hydroxyl groups to enhance pellet strength, and then provides three typical examples of organic binders: lignosulfonate, carboxymethyl cellulose (CMC), and carboxymethyl starch (CMS). The common characteristic of these organic binders is that they are derived from renewable biomass through chemical modification, which is a derivative of biomass with renewable and abundant resources. However, the main problem with organic binders is that they burn and decompose at high temperatures. Current research has achieved technological breakthroughs in pellet quality by combining LD sludge, low-iron oxides, and nano-CaCO3, including improved iron grade, reduced reduction swelling index (RSI), and enhanced preheating/roasting strength. Future studies should focus on optimizing the molecular structure of organic binders by increasing the degree of substitution of functional groups and the overall degree of polymerization. This approach aims to replace traditional bentonite while exploring applications of composite industrial solid wastes, effectively addressing the high-temperature strength loss issues in organic binders and providing strong support for the steel industry to achieve the green and low-carbon goals. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

15 pages, 3762 KB  
Article
Transcriptomic Insights into the Degree of Polymerization-Dependent Bioactivity of Xylo-Oligosaccharides
by Hanbo Wang, Tieqiang Wang, Jiakun Zhang, Lijuan Wang, Weidong Li, Zhen Wang and Jiusheng Li
Plants 2025, 14(19), 2958; https://doi.org/10.3390/plants14192958 - 24 Sep 2025
Viewed by 284
Abstract
Plant cell wall-derived oligosaccharides, such as xylo-oligosaccharides (XOS), serve as key signaling molecules regulating plant growth and immunity. The bioactivity of XOS is closely tied to their degree of polymerization (DP), yet the molecular mechanisms underlying DP-specific effects remain poorly understood. Here, we [...] Read more.
Plant cell wall-derived oligosaccharides, such as xylo-oligosaccharides (XOS), serve as key signaling molecules regulating plant growth and immunity. The bioactivity of XOS is closely tied to their degree of polymerization (DP), yet the molecular mechanisms underlying DP-specific effects remain poorly understood. Here, we investigated the transcriptional and phenotypic responses of lettuce (Lactuca sativa) to foliar application of four high-purity XOS variants: xylobiose (XOSY, DP2), xylotriose (XOSB, DP3), xylotetraose (XOSD, DP4), and xylopentose (XOSW, DP5). Phenotypic analyses revealed that high-DP XOS (XOSD and XOSW) significantly enhanced aboveground biomass and root system development, with XOSD showing the most pronounced effects, including a 31.74% increase in leaf area and a 20.71% increase in aboveground biomass. Transcriptomic profiling identified extensive transcriptional reprogramming across treatments, with XOSD eliciting the highest number of differentially expressed genes (DEGs). Functional enrichment analyses indicated that XOSD and XOSW upregulated genes involved in plant hormone signaling, starch and sucrose metabolism, and cell wall biosynthesis, while downregulating photosynthesis-related genes. Notably, MapMan and KEGG pathway analyses revealed that XOSD significantly activated biotic stress-related pathways, including MAPK signaling, β-1,3-glucanase activity, and PR protein pathways. In contrast, XOSY treatment primarily upregulated genes linked to basal immunity, highlighting distinct mechanisms employed by low- and high-DP XOS. These findings demonstrate that XOS with varying DP differentially modulate growth- and immunity-related processes in lettuce. High-DP XOS, particularly XOSD, not only promote plant biomass accumulation but also enhance immune responses, highlighting their potential as biostimulants for sustainable agriculture. This study provides a molecular framework for understanding the DP-specific bioactivity of XOS and their dual role in optimizing plant growth and defense. Full article
(This article belongs to the Special Issue Reproductive and Developmental Mechanisms of Vegetable Crops)
Show Figures

Figure 1

39 pages, 7971 KB  
Review
Enhancing the Catalytic Performance of Zeolites via Metal Doping and Porosity Control
by Linda Zh. Nikoshvili, Lyudmila M. Bronstein, Valentina G. Matveeva and Mikhail G. Sulman
Molecules 2025, 30(18), 3798; https://doi.org/10.3390/molecules30183798 - 18 Sep 2025
Viewed by 671
Abstract
Zeolites are widely used as solid acid catalysts and also as supports in complex multifunctional heterogeneous systems. In recent years, there has been an increase in the development of zeolite-based catalysts with hierarchical porosity combined with metal dopants (modifiers or catalysts). These modifications [...] Read more.
Zeolites are widely used as solid acid catalysts and also as supports in complex multifunctional heterogeneous systems. In recent years, there has been an increase in the development of zeolite-based catalysts with hierarchical porosity combined with metal dopants (modifiers or catalysts). These modifications can significantly improve the catalytic characteristics of such materials. In this review, we discuss the application of hierarchically porous zeolites, including metal-doped ones, in catalytic reactions employed in the production and upgrading of liquid fuels, i.e., pyrolysis of biomass and polymeric wastes; conversion of alcohols to fuel hydrocarbons, aromatics and olefins; cracking and hydrocracking of polymeric wastes and hydrocarbons; and hydroisomerization. It is revealed that, in many cases, higher activity, selectivity and stability can be achieved for metal-doped hierarchical zeolites in comparison with parent ones due to control over the diffusion, surface acidity and coke deposition processes. Full article
(This article belongs to the Special Issue New Insights into Porous Materials in Adsorption and Catalysis)
Show Figures

Graphical abstract

14 pages, 1772 KB  
Article
Biosurfactant-Mediated Inhibition of Salmonella Typhimurium Biofilms on Plastics: Influence of Lipopolysaccharide Structure
by Shadi Khonsari, Andrea Cossu, Milan Vu, Dallas Roulston, Massimiliano Marvasi and Diane Purchase
Microorganisms 2025, 13(9), 2130; https://doi.org/10.3390/microorganisms13092130 - 11 Sep 2025
Viewed by 433
Abstract
Salmonella enterica subsp. enterica serovar Typhimurium is a major foodborne pathogen whose ability to form biofilms contributes to persistent contamination in food-processing and clinical environments. This study investigated the anti-biofilm activity of the biosurfactant surfactin, produced by Bacillus subtilis, against S. [...] Read more.
Salmonella enterica subsp. enterica serovar Typhimurium is a major foodborne pathogen whose ability to form biofilms contributes to persistent contamination in food-processing and clinical environments. This study investigated the anti-biofilm activity of the biosurfactant surfactin, produced by Bacillus subtilis, against S. Typhimurium wild type (LT2) and its lipopolysaccharide (LPS)-modified mutants on commonly used plastic surfaces such as polypropylene (PP) and polystyrene (PS). Biofilm formation was quantified using the crystal violet assay, revealing significantly higher biomass on PS compared to PP (p < 0.0001). Surfactin at 5 µg/mL was identified as the minimum biofilm inhibitory concentration (MBIC), significantly reducing biofilm formation in the wild-type and LPS mutants rfaL, rfaJ, rfaF (all p < 0.0001), and rfaI (p < 0.01). Further analysis using fluorescence microscopy and SYPRO® Ruby staining confirmed a significant reduction in extracellular polymeric substances (EPSs) on PP surfaces following surfactin treatment, particularly in strains LT2 (p < 0.0001), rfa (p < 0.01), rfaL (p < 0.0001), rfaG (p < 0.05), and rfaE (p < 0.0001). These findings highlight the influence of LPS structure on biofilm development and demonstrate surfactin’s potential as an eco-friendly antimicrobial agent for controlling S. Typhimurium biofilms on food-contact surfaces. Analysis of mutants revealed that disruption of the rfa gene, which is involved in the biosynthesis of the outermost region of the lipopolysaccharide (LPS), significantly reduced bacterial attachment to polypropylene. This suggests that interactions between the external LPS layer and the plastic surface are important for colonisation. In contrast, mutants in core LPS biosynthesis genes such as rfaE and rfaD did not show any notable differences in attachment compared to the wild-type strain. This highlights the specific importance of outer LPS components, particularly under surfactant conditions, in mediating interactions with plastic surfaces. This work supports the application of biosurfactants in food safety strategies to reduce the risk of biofilm-associated contamination. Full article
(This article belongs to the Section Biofilm)
Show Figures

Figure 1

15 pages, 638 KB  
Article
Polymeric Applications of Cellulose from Tibouchina lepidota (Bonpl.) Baill Extracted from Sustainable Forest Residues
by Dennis Renato Manzano Vela, Rolando Fabian Zabala Vizuete, Ana Carola Flores Mancheno and Edison Marcelo Salas Castelo
Int. J. Mol. Sci. 2025, 26(17), 8592; https://doi.org/10.3390/ijms26178592 - 4 Sep 2025
Viewed by 534
Abstract
The extraction of cellulose from underutilized forest residues can diversify bio-based material supply chains and reduce pressure on commercial pulps. In this study, cellulose was isolated from Tibouchina lepidota (Bonpl.) Baill pruning residues through an alkaline–acid–oxidative protocol, and its suitability for [...] Read more.
The extraction of cellulose from underutilized forest residues can diversify bio-based material supply chains and reduce pressure on commercial pulps. In this study, cellulose was isolated from Tibouchina lepidota (Bonpl.) Baill pruning residues through an alkaline–acid–oxidative protocol, and its suitability for polymeric applications was evaluated. Two granulometric fractions (250 µm and 125 µm) were used; the yields were 4.73 ± 0.12 g and 3.62 ± 0.11 g per 50 g of biomass, equivalent to 90.5% and 92.8% recovery, respectively (fractional remains as bleached pulp after removal of non-cellulosic components). Fourier Transform Infrared spectroscopy (FTIR) showed the disappearance of lignin and hemicelluloses bands and a pronounced β-glucopyranosic signal at 894 cm−1, indicating high purity. Selective solubility in 17.5% NaOH classified the polymer as β-cellulose, suitable for wet spinning and film regeneration. Optical microscopy revealed smooth fibers of 25–50 µm length and 0.5–1 µm diameter, with aspect ratios ≥ 50, indicating favorable morphology for load transfer in composites. Statistical analysis (Shapiro–Wilk, F-test, and Student’s t-test) confirmed the significant influence of particle size on yield (p < 10−15). Overall, T. lepidota residues constitute a viable source of high-purity β-cellulose, whose molecular integrity and microstructure satisfy the requirements of sustainable polymeric manufacturing. Full article
Show Figures

Figure 1

24 pages, 3956 KB  
Article
Impact of Stepwise Salinity Elevation on Nitrogen Removal and Microbial Properties of Morphologically Distinct Anammox Sludge
by Keying Sun, Huining Zhang, Kefeng Zhang, Jianqing Ma, Zhengmin Pan and Shuting Zhang
Water 2025, 17(17), 2611; https://doi.org/10.3390/w17172611 - 3 Sep 2025
Viewed by 970
Abstract
The anaerobic ammonium oxidation (anammox) process offers potential for saline wastewater treatment but is hindered by salt inhibition. This study investigates the salt tolerance mechanisms of granular (R1), biofilm-carrier (R2), and floccular (R3) sludge in up-flow anaerobic sludge blanket (UASB) reactors under 0–20 [...] Read more.
The anaerobic ammonium oxidation (anammox) process offers potential for saline wastewater treatment but is hindered by salt inhibition. This study investigates the salt tolerance mechanisms of granular (R1), biofilm-carrier (R2), and floccular (R3) sludge in up-flow anaerobic sludge blanket (UASB) reactors under 0–20 g/L NaCl. Granular sludge outperformed other biomass types, maintaining >90% ammonia nitrogen (NH4+-N) removal at 20 g/L NaCl due to structural stability and extracellular polymeric substances (EPS) adaptation (shift from hydrophobic proteins to polysaccharides). Microbial analysis revealed a transition from Planctomycetes/Proteobacteria to salt-tolerant Pseudomonadota, with Candidatus_Kuenenia replacing Candidatus_Brocadia as the dominant anaerobic ammonium oxidation bacteria (AnAOB) (reaching 14.5% abundance in R1). Genetic profiling demonstrated coordinated nitrogen metabolism: Hzs/Hdh inhibition (>85%) and NirBD/NrfAH activation (0.23%) elevated NH4+-N, while NarGIV/NapA decline (1.10%→0.58%) increased nitrate nitrogen (NO3-N). NxrB/NirSK maintained low nitrite nitrogen (NO2-N), and GltBD upregulation (0.43%) enhanced osmoregulation. These findings underscore the superior resilience of granular sludge under high salinity, linked to microbial community shifts and metabolic adaptations. This study provides critical insights for optimizing anammox processes in saline environments, emphasizing the importance of biomass morphology and microbial ecology in mitigating salt inhibition. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

24 pages, 2164 KB  
Review
Catalytic and Non-Catalytic Co-Gasification of Biomass and Plastic Wastes for Energy Production
by Mariana Busto, Liza Ainalen Dosso, Franco Nardi, Juan Manuel Badano and Carlos Roman Vera
Catalysts 2025, 15(9), 844; https://doi.org/10.3390/catal15090844 - 2 Sep 2025
Viewed by 805
Abstract
The management of solid waste and the supply of energy are two of the most important environmental problems of our time. Projections indicate that by 2050, the global demand for electrical energy is expected to increase by 35% and the amount of solid [...] Read more.
The management of solid waste and the supply of energy are two of the most important environmental problems of our time. Projections indicate that by 2050, the global demand for electrical energy is expected to increase by 35% and the amount of solid waste generated to increase by 45%. In this context, polymeric waste materials such as biomass and plastics can be valorised through thermochemical processes for the generation of energy. Gasification, which converts carbonaceous materials into syngas, tar, and char, is one of the most promising recycling technologies. The composition and relative quantities of the products are influenced by the process configuration, operating parameters, and the type of fuel used. Tar removal is facilitated by adding specific catalysts to the process. The co-processing of biomass and plastics in the gasification process, called co-gasification, improves the gas yield and reduces solid residues. This review evaluates catalytic and non-catalytic co-gasification of biomass waste and non-biodegradable plastics, with a focus on syngas production and its energy potential. Full article
Show Figures

Graphical abstract

41 pages, 2216 KB  
Review
Perspectives on the Catalytic Processes for the Deep Valorization of Carbohydrates into Fuels and Chemicals
by Aigul T. Zamanbekova, Alima K. Zharmagambetova, Assemgul S. Auyezkhanova, Eldar T. Talgatov, Aigul I. Jumekeyeva, Sandugash N. Akhmetova and Alima M. Kenzheyeva
Molecules 2025, 30(17), 3498; https://doi.org/10.3390/molecules30173498 - 26 Aug 2025
Viewed by 906
Abstract
The global depletion of fossil resources, combined with accelerating climate change and environmental concerns, is driving intensive research into alternative, sustainable sources of energy and raw materials. Particular attention is being paid to lignocellulosic biomass as the most abundant and renewable organic resource. [...] Read more.
The global depletion of fossil resources, combined with accelerating climate change and environmental concerns, is driving intensive research into alternative, sustainable sources of energy and raw materials. Particular attention is being paid to lignocellulosic biomass as the most abundant and renewable organic resource. The catalytic conversion of biomass-derived carbohydrates into high-value-added products (fuels and chemicals) aligns with the principles of sustainable development and offers a viable alternative to petroleum-based feedstocks. This review provides a product-oriented perspective on the deep valorization of carbohydrates, focusing on catalytic strategies that enable the production of renewable fuels and chemicals. It highlights two key stages in the valorization of lignocellulosic biomass: (1) the acid-catalyzed conversion of carbohydrates into platform molecules (furfural, 5-hydroxymethylfurfural, and levulinic acid); and (2) the selective hydrogenation and hydrogenolysis of these intermediates to obtain target end products. These target products fall into two major categories: (i) biofuels and fuel additives; and (ii) green chemicals, such as solvents, pharmaceuticals, agrochemicals, cosmetics, and intermediates for the synthesis of biobased polymeric materials, including polyesters, resins, and polyurethanes. Particular emphasis is placed on recent advances in the development of heterogeneous catalysts. Solid acid catalysts used in the synthesis of platform molecules are discussed, along with ruthenium-based catalysts employed in the subsequent hydrogenation and hydrogenolysis steps. Recent efforts toward integrating both catalytic stages into a single one-pot processes using bifunctional metal–acid catalysts and dual catalytic systems based on ruthenium are also reviewed, as they represent a promising route to simplify biomass valorization schemes and improve product selectivity toward fuels and chemicals. Full article
Show Figures

Figure 1

23 pages, 2605 KB  
Review
Microalgae: Green Engines for Achieving Carbon Sequestration, Circular Economy, and Environmental Sustainability—A Review Based on Last Ten Years of Research
by Md. Muzammal Hoque, Valeria Iannelli, Francesca Padula, Rosa Paola Radice, Biplob Kumar Saha, Giuseppe Martelli, Antonio Scopa and Marios Drosos
Bioengineering 2025, 12(9), 909; https://doi.org/10.3390/bioengineering12090909 - 25 Aug 2025
Viewed by 2016
Abstract
Feeding a growing global population requires sustainable, innovative, and cost-effective solutions, especially in light of the environmental damage and nutrient imbalances caused by excessive chemical fertilizer use. Microalgae have gained prominence due to their phylogenetic diversity, physiological adaptability, eco-compatible characteristics, and potential to [...] Read more.
Feeding a growing global population requires sustainable, innovative, and cost-effective solutions, especially in light of the environmental damage and nutrient imbalances caused by excessive chemical fertilizer use. Microalgae have gained prominence due to their phylogenetic diversity, physiological adaptability, eco-compatible characteristics, and potential to support regenerative agriculture and mitigate climate change. Functioning as biofertilizers, biostimulants, and bioremediators, microalgae accelerate nutrient cycling, improve soil aggregation through extracellular polymeric substances (EPSs), and stimulate rhizospheric microbial diversity. Empirical studies demonstrate their ability to increase crop yields by 5–25%, reduce chemical nitrogen inputs by up to 50%, and boost both organic carbon content and enzymatic activity in soils. Their application in saline and degraded lands further promotes resilience and ecological regeneration. Microalgal cultivation platforms offer scalable in situ carbon sequestration, converting atmospheric carbon dioxide (CO2) into biomass with potential downstream vaporization into biofuels, bioplastics, and biochar, aligning with circular economy principles. While the commercial viability of microalgae is challenged by high production costs, technical complexities, and regulatory gaps, recent breakthroughs in cultivation systems, biorefinery integration, and strain optimization highlight promising pathways forward. This review highlights the strategic importance of microalgae in enhancing climate resilience, promoting agricultural sustainability, restoring soil health, and driving global bioeconomic transformation. Full article
(This article belongs to the Special Issue Engineering Microalgal Systems for a Greener Future)
Show Figures

Graphical abstract

15 pages, 1438 KB  
Article
Broad Host Range Peptide Nucleic Acids Prevent Gram-Negative Biofilms Implicated in Catheter-Associated Urinary Tract Infections
by Hannah Q. Karp, Elizabeth S. Nowak, Gillian A. Kropp, Nihan A. Col, Michael D. Schulz, Nammalwar Sriranganathan and Jayasimha Rao
Microorganisms 2025, 13(8), 1948; https://doi.org/10.3390/microorganisms13081948 - 20 Aug 2025
Cited by 1 | Viewed by 631
Abstract
Biofilms develop in sequential steps resulting in the formation of three-dimensional communities of microorganisms that are encased in self-produced extracellular polymeric substances. Biofilms play a key role in device-associated infections, such as catheter-associated urinary tract infections (CAUTIs), because they protect microorganisms from standard [...] Read more.
Biofilms develop in sequential steps resulting in the formation of three-dimensional communities of microorganisms that are encased in self-produced extracellular polymeric substances. Biofilms play a key role in device-associated infections, such as catheter-associated urinary tract infections (CAUTIs), because they protect microorganisms from standard antimicrobial therapies. Current strategies to prevent biofilm formation in catheter-related infections, including prophylactic antibiotics and antibiotic-coated catheters, have been unsuccessful. This finding highlights a need for novel approaches to address this clinical problem. In this study, biofilm-forming phenotypes of common Gram-negative bacteria associated with CAUTIs were treated with antisense peptide nucleic acids (PNAs), and biofilm biomass and bacterial viability were quantified after 24 h of treatment. A cocktail of PNAs targeting the global regulator genes rsmA, amrZ, and rpoS in Pseudomonas aeruginosa significantly reduced viability and thus appropriately eliminated biofilm biomass. Antisense-PNAs against these same gene targets and the motility regulator gene motA inhibited biofilm formation among isolates of Klebsiella pneumoniae, Enterobacter cloacae, and Escherichia coli but did not reduce bacterial viability. These results suggest that antisense-PNAs are a promising new technology in preventing biofilm formation in urinary catheters, especially as a potential complement to conventional antimicrobials. Full article
Show Figures

Figure 1

10 pages, 1917 KB  
Article
Semi-Industrial Preparation of Versatile Panel Rolls from Micronized Hemp Stalks
by Lorenzo Gallina, Salah Chaji, Luca Querci, Maela Manzoli and Giancarlo Cravotto
J. Compos. Sci. 2025, 9(8), 440; https://doi.org/10.3390/jcs9080440 - 15 Aug 2025
Viewed by 631
Abstract
In recent years, agricultural biomass-filled materials have been increasingly explored as sustainable alternatives to fossil-based polymers and for the development of biocomposites. In this study, micronized hemp stalks, a byproduct of the cannabis industry, were loaded into 10–20% of polypropylene/polyethylene bicomponent fibers in [...] Read more.
In recent years, agricultural biomass-filled materials have been increasingly explored as sustainable alternatives to fossil-based polymers and for the development of biocomposites. In this study, micronized hemp stalks, a byproduct of the cannabis industry, were loaded into 10–20% of polypropylene/polyethylene bicomponent fibers in a cost-effective original airlaying process. The production process was developed to achieve high hemp content (up to 80%), while maintaining suitable structural and mechanical properties. Experimental analyses confirmed that the hemp-based biocomposite exhibited promising thermal conductivity values (0.068 ± 0.002 W/mK) and effective sound-attenuation capabilities that are comparable to commonly used insulating materials, such as stone wool. Furthermore, X-ray diffraction and field emission scanning electron microscopy measurements analyzed the insulation features of the hemp-based biocomposite prepared with its morphological and structural properties, revealing its high internal porosity and polymeric crystallinity. These results highlight the potential of hemp biocomposites as sustainable, economically viable alternatives for thermal and acoustic insulation applications. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Graphical abstract

17 pages, 671 KB  
Article
Agronomic Practices to Maximize Seed and Straw Yield of Monoecious Hemp Cultivar ‘Henola’
by Jakub Frankowski, Agnieszka Łacka, Dominika Sieracka and Konrad Banaś
Agronomy 2025, 15(8), 1961; https://doi.org/10.3390/agronomy15081961 - 14 Aug 2025
Viewed by 847
Abstract
Hemp (Cannabis sativa L.), as a valuable source of biomass, has been utilized for textile purposes, the production of environmentally friendly polymeric materials, modern composites, and paper. Moreover, hemp can be used for biofuel production. Therefore, optimal conditions for the cultivation of [...] Read more.
Hemp (Cannabis sativa L.), as a valuable source of biomass, has been utilized for textile purposes, the production of environmentally friendly polymeric materials, modern composites, and paper. Moreover, hemp can be used for biofuel production. Therefore, optimal conditions for the cultivation of hemp varieties are essential. The aim of this study was to optimize agronomic practices—sowing date, row spacing, and mineral fertilization —to maximize straw and seed yield of the monoecious hemp cultivar ‘Henola’ under temperate climate conditions. Field experiments were conducted over three growing seasons using a randomized block design, testing five fertilization treatments, three sowing dates, and three row spacings. Statistical analysis revealed that high nitrogen doses (PK + 120 N) significantly increased both straw and seed yields. The optimal sowing period was from late April to early May. Narrower row spacings (0.2 m and 0.35 m) favored higher seed yields, while row spacing had no significant effect on straw biomass. These findings support the development of evidence-based recommendations for maximizing hemp yield depending on end-use objectives. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

19 pages, 2232 KB  
Article
Impact of Co-Substrates on the Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Burkholderia thailandensis E264
by Jonathan Uriel Hernández-Alonso, María Alejandra Pichardo-Sánchez, Sergio Huerta-Ochoa, Angélica Román-Guerrero, Oliverio Rodríguez-Fernández, Humberto Vázquez-Torres, Roberto Olayo-González, Roberto Olayo-Valles, Luis Víctor Rodríguez-Durán and Lilia Arely Prado-Barragán
Materials 2025, 18(15), 3577; https://doi.org/10.3390/ma18153577 - 30 Jul 2025
Viewed by 524
Abstract
The synthesis of bioplastics from renewable resources is essential for green living. PHBV (poly(3-hydroxybutyrate-co-3-hydroxyvalerate)) is a biodegradable and biocompatible material ideal for various industrial applications. The impact of levulinic (LA), valeric acids (VA), and sodium propionate (SPr) as co-substrates in biomass and the [...] Read more.
The synthesis of bioplastics from renewable resources is essential for green living. PHBV (poly(3-hydroxybutyrate-co-3-hydroxyvalerate)) is a biodegradable and biocompatible material ideal for various industrial applications. The impact of levulinic (LA), valeric acids (VA), and sodium propionate (SPr) as co-substrates in biomass and the synthesis of 3-hydroxy valerate (3HV) and co-polymerization of PHBV by Burkholderia thailandensis E264 (BtE264) was assessed. Thermogravimetric, XRD, NMR, and mechanical characterization were performed on the homopolymer (PHB) and co-polymer (PHBV), and compared to the PHBV-STD. BtE264 produced the co-polymer PHBV when adding any of the three co-substrates. LA showed a higher positive effect on microbial growth (8.4 g∙L−1) and PHBV production (3.91 g∙L−1), representing 78 and 22 mol % of 3HB and 3HV, respectively. The PHBV obtained with LA had a melting temperature (Tm) lower than the PHB homopolymer and presented lower values for melting enthalpies (ΔHf); the degree of crystallization and TGA values indicated that PHBV had better thermal stability. Additionally, FTIR and NMR revealed that BtE264 synthesizes PHBV with an organization in monomeric units (3HB-3HV), suggesting differentiated incorporation of the monomers, improving 3.4 times the break elongation the co-polymer’s tensile properties. This study highlights the co-substrates’ relevance in PHBV synthesis using BtE264 for the first time. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

20 pages, 2239 KB  
Article
Synthesis of Biomass Polycarboxylate Superplasticizer and Its Performance on Cement-Based Materials
by Zefeng Kou, Kaijian Huang, Muhua Chen, Hongyan Chu, Linye Zhou and Tianqi Yin
Materials 2025, 18(14), 3416; https://doi.org/10.3390/ma18143416 - 21 Jul 2025
Viewed by 830
Abstract
Polycarboxylate superplasticizer (PCE) is an important part of improving the overall performance of concrete. However, its synthetic raw materials are overly dependent on petrochemical products, and it also causes problems such as environmental pollution. With the development of the building material industry, the [...] Read more.
Polycarboxylate superplasticizer (PCE) is an important part of improving the overall performance of concrete. However, its synthetic raw materials are overly dependent on petrochemical products, and it also causes problems such as environmental pollution. With the development of the building material industry, the demand for petrochemical resources required for synthetic water-reducing agents will increase rapidly. Therefore, there is an urgent need to transition the synthetic raw materials of PCE from petrochemicals to biomass materials to reduce the consumption of nonrenewable resources as well as the burden on the environment. Biomass materials are inexpensive, readily available and renewable. Utilizing biomass resources to develop good-performing water-reducing agents can reduce the consumption of fossil resources. This is conducive to carbon emission reduction in the concrete material industry. In addition, it promotes the high-value utilization of biomass resources. Therefore, in this study, a biomass polyether monomer, acryloyl hydroxyethyl cellulose (AHEC), was synthesized from cellulose via the reaction route of ethylene oxide (EO) etherification and acrylic acid (AA) esterification. Biomass polycarboxylate superplasticizers (PCE-Cs) were synthesized through free radical polymerization by substituting AHEC for a portion of the frequently utilized polyether monomer isopentenyl polyoxyethylene ether (TPEG). This study primarily focused on the properties of PCE-Cs in relation to cement. The findings of this study indicated that the synthesized PCE-C5 at a dosing of 0.4% (expressed as mass fraction of cement) when the AHEC substitution ratio was 5% achieved good water reduction properties and significant delays. With the same fluidity, PCE-C5 could enhance the mechanical strength of cement mortar by 30% to 40%. This study utilized green and low-carbon biomass resources to develop synthetic raw materials for water-reducing agents, which exhibited effective water-reducing performance and enhanced the utilization rate of biomass resources, demonstrating significant application value. Full article
Show Figures

Figure 1

Back to TopTop