Agronomic Practices to Maximize Seed and Straw Yield of Monoecious Hemp Cultivar ‘Henola’
Abstract
1. Introduction
2. Materials and Methods
2.1. Conducting Field Experiments
- Fertilization experiment
- No mineral fertilization (control);
- 40 P2O5 + 80 K2O;
- P + K + 40 N;
- P + K + 80 N;
- P + K + 120 N.
- 2.
- Sowing date and row spacing experiment
- Sowing dates:
- ○
- Mid-April—at the beginning of spring cereal sowing;
- ○
- Late April to early May—at the end of spring cereal sowing;
- ○
- Mid-May—as an aftercrop following winter cereals.
2.2. Statistical Analysis
3. Results
3.1. Effects of Fertilization on Hemp Yield
3.2. Influence of Sowing Date and Row Spacing on Straw and Seed Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
P2O5 | Diphosphorus pentoxide |
K2O | Potassium oxide |
References
- Arodudu, O.; Holmatov, B.; Voinov, A. Ecologogical impacts and limits of biomass use: A critical review. Clean. Techn. Environ. Policy 2022, 22, 1591–1611. [Google Scholar] [CrossRef]
- Santana-Méridas, O.; González-Coloma, A.; Sánchez-Vioque, R. Agricultural residues as a source of bioactive natural products. Phytochem. Rev. 2012, 22, 447–466. [Google Scholar] [CrossRef]
- European Commission. A European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 4 May 2025).
- Baldini, M.; Ferfuia, C.; Zuliani, F.; Danuso, F. Suitability assessment of different hemp (Cannabis sativa L.) varieties to the cultivation environment. Ind. Crops Prod. 2020, 143, 111860. [Google Scholar] [CrossRef]
- Industrial Hemp Licensing Statistics. Government of Canada. Available online: https://www.canada.ca/en/health-canada/services/drugs-medication/cannabis/producing-selling-hemp/about-hemp-canada-hemp-industry/statistics-reports-fact-sheets-hemp.html (accessed on 23 July 2025).
- National Hemp Report, National Agricultural Statistics Service (NASS), Agricultural Statistics Board, United States Department of Agriculture (USDA). Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/gf06h2430/76538f824/w9506f61g/hempan23.pdf (accessed on 23 July 2025).
- FAOSTAT, Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/-#data/QCL?countries=33,351,231&elements=2312&items=336,777&years=2022&output_type=table&file_type=csv&submit=true (accessed on 23 July 2025).
- Crop Production in EU Standard Humidity, EUROSTAT, European Union. Available online: https://ec.europa.eu/eurostat/databrowser/view/APRO_CPSH1__custom_5830898/default/table?lang=en (accessed on 23 July 2025).
- EIHA, European Industrial Hemp Association. Available online: https://eiha.org/ (accessed on 23 July 2025).
- Wielgusz, K.; Praczyk, M.; Irzykowska, L.; Świerk, D. Fertilization and soil pH affect seed and biomass yield, plant morphology, and cadmium uptake in hemp (Cannabis sativa L.). Ind. Crops Prod. 2022, 175, 114245. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, X.; Guo, Y.; Qiu, C.; Long, S.; Wang, Y.; Qiu, H. Industrial Hemp—An Old but Versatile Bast Fiber Crop. J. Nat. Fibers 2022, 19, 6269–6282. [Google Scholar] [CrossRef]
- Karche, T.; Singh, M.R. The application of hemp (Cannabis sativa L.) for a green economy: A review. Turk. J. Bot. 2019, 43, 710–723. [Google Scholar] [CrossRef]
- Clarke, R.C.; Merlin, M.D. Cannabis Domestication, Breeding History, Present-day Genetic Diversity, and Future Prospects. Crit. Rev. Plant Sci. 2016, 35, 293–327. [Google Scholar] [CrossRef]
- Žydelis, R.; Herbst, M.; Weihermüller, L.; Ruzgas, R.; Volungevičius, J.; Barčauskaitė, K.; Tilvikienė, V. Yield potential and factor influencing yield gap in industrial hemp cultivation under nemoral climate conditions. Eur. J. Agron. 2022, 139, 126576. [Google Scholar] [CrossRef]
- Burczyk, H.; Frankowski, J. Henola—Polska odmiana konopi oleistych. Zagadnienia Doradz. Rol. 2018, 93, 89–101. [Google Scholar]
- Mańkowski, J.; Kołodziej, J.; Baraniecki, P. Energetyczne wykorzystanie biomasy z konopi uprawianych na terenach zrekultywowanych. Chemik 2014, 68, 901–902. [Google Scholar]
- Sieracka, D.; Frankowski, J.; Wacławek, S.; Czekała, W. Hemp Biomass as a Raw Material for Sustainable Development. Appl. Sci. 2023, 13, 9733. [Google Scholar] [CrossRef]
- Dudziec, P.; Warmiński, K.; Stolarski, M.J. Industrial hemp as a multi-purpose crop: Last achievements and research in 2018− 2023. J. Nat. Fibers 2024, 21, 2369186. [Google Scholar] [CrossRef]
- Lawson, L.; Degenstein, L.M.; Bates, B.; Chute, W.; King, D.; Dolez, P.I. Cellulose Textiles from Hemp Biomass: Opportunities and Challenges. Sustainability 2022, 14, 15337. [Google Scholar] [CrossRef]
- Sivasankar, G.A.; Arun Karthick, P.; Boopathi, C.; Brindha, S.; Nirmalraj, R.J.T.; Benham, A. Evaluation and comparison on mechanical properties of abaca and hemp fiber reinforced hybrid epoxy resin composites. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Sisodia, R.; Jerry, K.; Das, P.P.; Gupta, P.; Gupta, S.; Chaudhary, V. Experimental study on mechanical behavior of linen/epoxy and linen/hemp/epoxy hybrid polymer composite. Mater. Today Proc. 2023, 78, 372–377. [Google Scholar] [CrossRef]
- Scott, J.L.; Buchard, A. Polymers from plants: Biomass fixed carbon dioxide as a resource. In Managing Global Warming; Letcher, T.M., Ed.; Academic Press: Amsterdam, The Netherlands, 2019; Chapter 17; pp. 503–525. [Google Scholar] [CrossRef]
- Liao, J.; Zhang, S.; Tang, X. Sound Absorption of Hemp Fibers (Cannabis sativa L.) Based Nonwoven Fabrics and Composites: A Review. J. Nat. Fibers 2022, 19, 1297–1309. [Google Scholar] [CrossRef]
- Vidal, J.; Ponce, D.; Mija, A.; Rymarczyk, M.; Castell, P. Sustainable Composites from Nature to Construction: Hemp and Linseed Reinforced Biocomposites Based on Bio-Based Epoxy Resins. Materials 2023, 16, 1283. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Das, B.B. A comprehensive review on the use of hemp in concrete. Constr. Build. Mater. 2022, 341, 127857. [Google Scholar] [CrossRef]
- Yadav, M.; Saini, A. Opportunities & challenges of hempcrete as a building material for construction: An overview. Mater. Today Proc. 2022, 65, 2021–2028. [Google Scholar] [CrossRef]
- Teo, H.L.; Wahab, R.A. Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: A review. Int. J. Biol. Macromol. 2020, 161, 1414–1430. [Google Scholar] [CrossRef]
- Das, L.; Liu, E.; Saeed, A.; Williams, D.W.; Hu, H.; Li, C.; Ray, A.E.; Shi, J. Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum. Bioresour. Technol. 2017, 244, 641–649. [Google Scholar] [CrossRef]
- Frankowski, J.; Sieracka, D. Possibilities of Using Waste Hemp Straw for Solid Biofuel Production. Environ. Sci. Proc. 2021, 9, 18. [Google Scholar]
- Jasinskas, A.; Streikus, D.; Vonžodas, T. Fibrous hemp (Felina 32, USO 31, Finola) and fibrous nettle processing and usage of pressed biofuel for energy purposes. Renew. Energy 2020, 149, 11–21. [Google Scholar] [CrossRef]
- Parvez, A.M.; Lewis, J.D.; Afzal, M.T. Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook. Renew. Sustain. Energy Rev. 2021, 141, 110784. [Google Scholar] [CrossRef]
- Ingrao, C.; Novelli, V.; Valenti, F.; Messineo, A.; Arcidiacono, C.; Huisingh, D. Feasibility of usage of hemp as a feedstock for anaerobic digestion: Findings from a literature review of the relevant technological and energy dimensions. Crit. Rev. Environ. Sci. Technol. 2021, 51, 1129–1158. [Google Scholar] [CrossRef]
- Michal, P.; Svehla, P.; Malik, M.; Kaplan, L.; Hanc, A.; Tlustos, P. Production of biogas from the industrial hemp variety, Tiborszállási. Environ. Technol. Innov. 2023, 31, 103185. [Google Scholar] [CrossRef]
- Panday, D.; Acharya, B.S.; Bhusal, N.; Afshar, R.K.; Smith, A.; Ghalehgolabbehbahani, A. Precision nitrogen management for optimal yield and cannabinoid profile in CBD hemp agronomy. Agrosystems Geosci. Environ. 2025, 8, e70028. [Google Scholar] [CrossRef]
- Kaur, N.; Griffin, W.; Sandhu, A.; Sidhu, S.; Brym, Z.; Sharma, L. Nitrogen application and cultivar effects on industrial hemp yield dynamics. Agron. J. 2024, 116, 727–736. [Google Scholar] [CrossRef]
- Panday, D.; Acharya, B.S.; Dhakal, M.; Caton, T.; Lapham, C.; Smith, A.; Ghalehgolabbehbahani, A. Industrial hemp yield and chemical composition as influenced by row spacing, fertilization, and environmental conditions. Agrosystems Geosci. Environ. 2025, 8, e70093. [Google Scholar] [CrossRef]
- Visković, J.; Sikora, V.; Latković, D.; Zeremski, T.; Dunđerski, D.; Astatkie, T.; Noller, J.S.; Zheljazkov, V.D. Optimization of hemp production technology for fiber and seed. Ind. Crops Prod. 2024, 219, 119127. [Google Scholar] [CrossRef]
- Ball, G.; Hall, D. ISODATA, a Novel Method of Data Anlysis and Pattern Classification; Stanford Research Institute: Menlo Park, CA, USA, 1956; Volume 4, pp. 1–60. [Google Scholar]
- Łochyńska, M.; Frankowski, J. Impact of Silkworm Excrement Organic Fertilizer on Hemp Biomass Yield and Composition. J. Ecol. Eng. 2019, 20, 63–71. [Google Scholar] [CrossRef]
- Tang, K.; Struik, P.C.; Yin, X.; Calzolari, D.; Musio, S.; Thouminot, C.; Bjelkova, M.; Stramkale, V.; Magagnini, G.; Amaducci, S. A comprehensive study of planting density and nitrogen fertilization effect on dual-purpose hemp (Cannabis sativa L.) cultivation. Ind. Crops Prod. 2017, 107, 427–438. [Google Scholar] [CrossRef]
- Finnan, J.; Burke, B. Nitrogen fertilization to optimize the greenhouse gas balance of hemp crops grown for biomass. Glob. Change Biol. Bioenergy 2013, 6, 701–712. [Google Scholar] [CrossRef]
- Deng, G.; Du, G.; Yang, Y.; Bao, Y.; Liu, F. Planting Density and Fertilization Evidently Influence the Fiber Yield of Hemp (Cannabis sativa L.). Agronomy 2019, 9, 368. [Google Scholar] [CrossRef]
- Przybylska-Balcerek, A.; Frankowski, J.; Graczyk, M.; Niedziela, G.; Sieracka, D.; Wacławek, S.; Sázavská, T.; Buśko, M.; Szwajkowska-Michałek, L.; Stuper-Szablewska, K. Profile of polyphenols, fatty acids and terpenes in Henola hemp seeds depending on the method of fertilization. Molecules 2024, 29, 4178. [Google Scholar] [CrossRef]
- Frankowski, J.; Przybylska-Balcerek, A.; Graczyk, M.; Niedziela, G.; Sieracka, D.; Stuper-Szablewska, K. The Effect of Mineral Fertilization on the Content of Bioactive Compounds in Hemp Seeds and Oil. Molecules 2023, 28, 4870. [Google Scholar] [CrossRef]
- James, M.; Vann, M.C.; Suchoff, D.H.; McGinnis, M.; Whipker, B.E.; Edmisten, K.L.; Gatiboni, L.C. Hemp yield and cannabinoid concentrations under variable nitrogen and potassium fertilizer rates. Crop Sci. 2023, 63, 1555–1565. [Google Scholar] [CrossRef]
- Aubin, M.P.; Seguin, P.; Vanasse, A.; Tremblay, G.F.; Mustafa, A.F.; Charron, J.B. Industrial Hemp Response to Nitrogen, Phosphorus, and Potassium Fertilization. Crop Fortage Turfgrass Manag. 2015, 1, 1–10. [Google Scholar] [CrossRef]
- Prade, T.; Svensson, S.E.; Andersson, A.; Mattsson, J.E. Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomass Bioenergy 2011, 35, 3040–3049. [Google Scholar] [CrossRef]
Type of Agricultural Use | Soil Agronomic Category | pH | Bulk Density g/dm3 | Soil Salinity g NaCl/dm3 | N org. % | C org. % | Available Forms of Minerals in mg/100 g of Soil | ||
---|---|---|---|---|---|---|---|---|---|
Phosphorus | Potassium | Magnesium | |||||||
P2O2 Content | K2O Content | Mg Content | |||||||
arable land | light soil | 6.7 | 1350 | 0.32 | 0.105 | 0.87 | 43.5 | 16.7 | 8.8 |
Weather Conditions During the Growing Season | ||||||
---|---|---|---|---|---|---|
Month | 2021 | 2022 | 2023 | |||
Temperature [°C] | Precipitations [mm] | Temperature [°C] | Precipitations [mm] | Temperature [°C] | Precipitations [mm] | |
April | 12.1 | 37.1 | 9.2 | 11.3 | 7.7 | 4.2 |
May | 15.2 | 76.8 | 16.2 | 37.4 | 10.7 | 77.4 |
June | 17.8 | 67.3 | 23.4 | 17.2 | 17.4 | 116.5 |
July | 20.6 | 92.1 | 19.2 | 49 | 19.9 | 62.2 |
August | 21.5 | 18.6 | 21.1 | 50.1 | 21.4 | 92.4 |
Hydrothermal Coefficient | |||
---|---|---|---|
Month | 2021 | 2022 | 2023 |
April | 1.0 | 0.4 | 0.2 |
May | 1.7 | 2.1 | 2.4 |
June | 1.3 | 0.2 | 2.2 |
July | 1.5 | 0.8 | 1.0 |
August | 0.3 | 0.8 | 1.4 |
Straw Yield | |||||
---|---|---|---|---|---|
Fertilizer treatment/Effect | Estimate | SE | df | t | p-value |
Intercept (No fertilization-reference) | 10.7489 | 0.7427 | 2.4807 | 14.473 | 0.0019 |
PK | 0.8911 | 0.3758 | 38.0 | 2.371 | 0.0229 |
PK + 120 N | 3.0978 | 0.3758 | 38.0 | 8.243 | 5.5 × 10−10 |
PK + 40 N | 1.7822 | 0.3758 | 38.0 | 4.742 | 3 × 10−5 |
PK + 80 N | 1.69 | 0.3758 | 38.0 | 4.497 | 6.3 × 10−5 |
Random variance (Year) | 1.4429 | ||||
Random variance (Block:Year) | 0.0 | ||||
Residual variance | 0.6355 | ||||
Type III ANOVA results using Satterthwaite’s method. Fertilization: F(4; 38) = 18.73, p = 1.41 × 10−8 | |||||
Seed Yield | |||||
Intercept (No fertilization-reference) | 2.15667 | 0.16198 | 5.04587 | 13.315 | 4 × 10−5 |
PK | 0.02889 | 0.15712 | 38.0 | 0.184 | 0.8551 |
PK + 120 N | 0.39667 | 0.15712 | 38.0 | 2.525 | 0.0159 |
PK + 40 N | 0.20222 | 0.15712 | 38.0 | 1.287 | 0.2059 |
PK + 80 N | 0.31444 | 0.15712 | 38.0 | 2.001 | 0.0525 |
Random variance (Year) | 0.04168 | ||||
Random variance (Block:Year) | 0.0 | ||||
Residual variance | 0.11109 | ||||
Type III ANOVA results using Satterthwaite’s method. Fertilization: F(4; 38) = 2.44, p = 0.0636 |
Analysis of Variance | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Straw Yield—Year I | Straw Yield—Year II | Straw Yield—Year III | ||||||||||||||
Df | Sum Sq | Mean Sq | F value | Pr (>F) | Sum Sq | Mean Sq | F value | Pr (>F) | Sum Sq | Mean Sq | F value | Pr (>F) | ||||
Fertilization | 4 | 22.586 | 5.646 | 55.242 | 1.74 × 10−6 | *** | 1.144 | 0.286 | 5.110 | 0.024 | * | 44.621 | 11.155 | 126.945 | 2.86 × 10−7 | *** |
Block | 2 | 0.820 | 0.410 | 4.010 | 0.062 | . | 0.066 | 0.328 | 0.587 | 0.578 | 0.547 | 0.274 | 3.112 | 0.1 | ||
Residuals | 8 | 0.818 | 0.102 | 0.448 | 0.056 | 0.703 | 0.088 | |||||||||
Levene’s Test for Homogeneity of Variance | ||||||||||||||||
4;10 | 0.083 | 0.986 | 0.21 | 0.927 | 0.443 | 0.775 | ||||||||||
Analysis of Variance | ||||||||||||||||
Seed Yield—Year I | Seed Yield—Year II | Seed Yield—Year III | ||||||||||||||
Df | Sum Sq | Mean Sq | F value | Pr (>F) | Sum Sq | Mean Sq | F value | Pr (>F) | Sum Sq | Mean Sq | F value | Pr (>F) | ||||
Fertilization | 4 | 1.036 | 0.259 | 33.963 | 4.71 × 10−5 | *** | 2.624 | 0.656 | 251.940 | 1.91 × 10−8 | *** | 1.385 | 0.346 | 16.587 | 0.001 | *** |
Block | 2 | 0.007 | 0.004 | 0.4743 | 0.639 | 0.001 | 0.000 | 0.123 | 0.886 | 0.003 | 0.002 | 0.0719 | 0.931 | |||
Residuals | 8 | 0.062 | 0.008 | 0.021 | 0.003 | 0.167 | 0.021 | |||||||||
Levene’s Test for Homogeneity of Variance | ||||||||||||||||
4;10 | 0.574 | 0.688 | 1.367 | 0.313 | 0.048 | 0.995 |
Straw Yield [Mg∙ha−1] | ||||||
---|---|---|---|---|---|---|
Year I | Groups | Year II | Groups | Year III | Groups | |
No fertilization | 11.063 (±0.480) | c | 10.6 (±0.265) | b | 10.583 (±0.401) | d |
PK | 11.687 (±0.280) | c | 10.8 (±0.1) | ab | 12.433 (±0.340) | c |
PK + 120 N | 14.35 (±0.429) | a | 11.29 (±0.208) | a | 15.9 (±0.1) | a |
PK + 40 N | 13.643 (±0.407) | ab | 11 (±0.229) | ab | 12.95 (±0.477) | bc |
PK + 80 N | 13.2 (±0.4) | b | 10.533 (±0.284) | b | 13.583 (±0.333) | b |
Seed Yield [Mg∙ha−1] | ||||||
Year I | Groups | Year II | Groups | Year III | Groups | |
No fertilization | 2.797 (±0.045) | a | 1.59 (±0.1) | c | 2.083 (±0.1043) | c |
PK | 2.53 (±0.111) | b | 1.693 (±0.012) | c | 2.33 (±0.126) | bc |
PK + 120 N | 2.2 (±0.036) | cd | 2.527 (±0.093) | a | 2.933 (±0.153) | a |
PK + 40 N | 2.303 (±0.116) | bc | 2.123 (±0.031) | b | 2.65 (±0.132) | ab |
PK + 80 N | 2.047 (±0.072) | d | 2.617 (±0.031) | a | 2.75 (±0.132) | a |
Analysis of Variance—Straw Yield | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year I | Year II | Year III | ||||||||||||||||
Df | Sum Sq | Mean Sq | F value | Pr (>F) | Df | Sum Sq | Mean Sq | F value | Pr (>F) | Df | Sum Sq | Mean Sq | F value | Pr (>F) | ||||
BLOCK | 2 | 0.682 | 0.341 | 2 | 0.117 | 0.058 | 2 | 0.124 | 0.062 | |||||||||
SPACING | 2 | 1.499 | 0.750 | 5.922 | 0.064 | . | 2 | 0.191 | 0.096 | 0.858 | 0.490 | 2 | 5.363 | 2.681 | 14.598 | 0.015 | * | |
Ea | 4 | 0.506 | 0.127 | 4 | 0.446 | 0.112 | 4 | 0.735 | 0.184 | |||||||||
DATE | 2 | 9.680 | 4.840 | 28.651 | 2.70 × 10−5 | *** | 2 | 0.272 | 0.136 | 0.599 | 0.565 | 2 | 3.783 | 1.892 | 6.479 | 0.0124 | * | |
SPACING;DATE | 4 | 0.039 | 0.010 | 0.058 | 0.993 | 4 | 0.420 | 0.105 | 0.462 | 0.763 | 4 | 8.345 | 2.086 | 7.146 | 0.003 | ** | ||
Eb | 12 | 2.027 | 0.169 | 12 | 2.726 | 0.227 | 12 | 3.504 | 0.292 | |||||||||
Analysis of Variance—Seed Yield | ||||||||||||||||||
Year I | Year II | Year III | ||||||||||||||||
BLOCK | Df | Sum Sq | Mean Sq | F value | Pr (>F) | Df | Sum Sq | Mean Sq | F value | Pr (>F) | Df | Sum Sq | Mean Sq | F value | Pr (>F) | |||
SPACING | 2 | 0.022 | 0.011 | 2 | 0.063 | 0.032 | 2 | 0.051 | 0.025 | |||||||||
Ea | 2 | 0.035 | 0.018 | 1.569 | 0.314 | 2 | 0.495 | 0.248 | 4.496 | 0.095 | . | 2 | 0.395 | 0.197 | 10.568 | 0.025 | * | |
DATE | 4 | 0.045 | 0.011 | 4 | 0.220 | 0.055 | 4 | 0.075 | 0.019 | |||||||||
SPACING;DATE | 2 | 5.121 | 2.561 | 451.58 | 5.083 × 10−12 | *** | 2 | 8.091 | 4.045 | 77.735 | 1.354 × 10−7 | *** | 2 | 1.104 | 0.552 | 41.861 | 3.88 × 10−6 | *** |
Eb | 4 | 8.40 × 10−2 | 0.021 | 3.702 | 3.47 × 10−2 | * | 4 | 0.321 | 0.080 | 1.542 | 0.2523 | 4 | 0.043 | 0.011 | 0.816 | 0.539 | ||
BLOCK | 12 | 0.068 | 0.006 | 12 | 0.625 | 0.052 | 12 | 0.158 | 0.013 | 12 |
Straw Yield [Mg∙ha−1] | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year I | Year II | Year III | |||||||||||||||||||||
Row Spacing | Row Spacing | Row Spacing | |||||||||||||||||||||
Date | 20 | 35 | 50 | Mean | Date | 20 | 35 | 50 | Mean | Date | 20 | 35 | 50 | Mean | |||||||||
IV | 13.45 | 13.92 | 13.46 | 13.62 | b | IV | 13.25 | 13.63 | 13.14 | 13.34 | IV | 19.39 | a | 17.6 | ab | 16.78 | b | 17.92 | |||||
IV/V | 14.29 | 14.7 | 14.06 | 14.35 | a | IV/V | 13.42 | 13.72 | 13.59 | 13.58 | IV/V | 18 | ab | 16.92 | b | 16.91 | b | 17.27 | |||||
V | 12.81 | 13.21 | 12.63 | 12.88 | c | V | 13.38 | 13.31 | 13.53 | 13.40 | V | 16.65 | b | 17.28 | b | 17.16 | b | 17.03 | |||||
Mean | 13.53 | 13.94 | 13.39 | Mean | 13.35 | 13.55 | 13.42 | Mean | 18.01 | 17.27 | 16.95 | ||||||||||||
Seed Yield [Mg∙ha−1] | |||||||||||||||||||||||
Year I | Year II | Year III | |||||||||||||||||||||
Row Spacing | Row Spacing | Row Spacing | |||||||||||||||||||||
Date | 20 | 35 | 50 | Mean | Date | 20 | 35 | 50 | Mean | Date | 20 | 35 | 50 | Mean | |||||||||
IV | 1.53 | b | 1.45 | bc | 1.40 | bc | 1.46 | IV | 2.16 | 1.67 | 1.90 | 1.91 | b | IV | 2.67 | 2.52 | 2.29 | 2.49 | a | ||||
IV/V | 2.13 | a | 2.28 | a | 2.24 | a | 2.22 | IV/V | 2.66 | 2.56 | 2.20 | 2.47 | a | IV/V | 2.37 | 2.15 | 2.15 | 2.22 | b | ||||
V | 1.25 | cd | 1.23 | cd | 1.07 | d | 1.19 | V | 1.24 | 1.18 | 1.00 | 1.14 | c | V | 2.14 | 2.01 | 1.85 | 2.00 | c | ||||
Mean | 1.64 | 1.65 | 1.57 | Mean | 2.02 | 1.8 | 1.70 | Mean | 2.39 | a | 2.23 | ab | 2.10 | b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frankowski, J.; Łacka, A.; Sieracka, D.; Banaś, K. Agronomic Practices to Maximize Seed and Straw Yield of Monoecious Hemp Cultivar ‘Henola’. Agronomy 2025, 15, 1961. https://doi.org/10.3390/agronomy15081961
Frankowski J, Łacka A, Sieracka D, Banaś K. Agronomic Practices to Maximize Seed and Straw Yield of Monoecious Hemp Cultivar ‘Henola’. Agronomy. 2025; 15(8):1961. https://doi.org/10.3390/agronomy15081961
Chicago/Turabian StyleFrankowski, Jakub, Agnieszka Łacka, Dominika Sieracka, and Konrad Banaś. 2025. "Agronomic Practices to Maximize Seed and Straw Yield of Monoecious Hemp Cultivar ‘Henola’" Agronomy 15, no. 8: 1961. https://doi.org/10.3390/agronomy15081961
APA StyleFrankowski, J., Łacka, A., Sieracka, D., & Banaś, K. (2025). Agronomic Practices to Maximize Seed and Straw Yield of Monoecious Hemp Cultivar ‘Henola’. Agronomy, 15(8), 1961. https://doi.org/10.3390/agronomy15081961